JPH02303505A - High gradient magnetic separator of continuously changing flow velocity - Google Patents

High gradient magnetic separator of continuously changing flow velocity

Info

Publication number
JPH02303505A
JPH02303505A JP12176289A JP12176289A JPH02303505A JP H02303505 A JPH02303505 A JP H02303505A JP 12176289 A JP12176289 A JP 12176289A JP 12176289 A JP12176289 A JP 12176289A JP H02303505 A JPH02303505 A JP H02303505A
Authority
JP
Japan
Prior art keywords
filter element
shape
gradient magnetic
ferromagnetic
magnetic separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12176289A
Other languages
Japanese (ja)
Inventor
Hideki Nagata
英樹 永田
Nobuyuki Yamada
信幸 山田
Takashi Amamiya
隆 雨宮
Takao Obara
隆雄 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP12176289A priority Critical patent/JPH02303505A/en
Publication of JPH02303505A publication Critical patent/JPH02303505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To allow the sepn. and removal of magnetic fine particles having a small specific magnetization rate with the adequate treatment amt. by uniformly distributing the treating fluid passing the inflow side of a filter element consisting of a ferromagnetic body to uniformly lower the flow velocity of the inflow side. CONSTITUTION:The filter element 18 consisting of the ferromagnetic material is disposed in a main flow passage P1 for the treating fluid and a magnetic field is formed in the main flow passage P1 to adsorb and remove the magnetic fine particles suspended in the treating fluid by the high-gradient magnetic field formed around the ferromagnetic material. A pretreating flow passage P2 is provided in the front part of the main flow passage P1 and the sectional area of the flow passage is so formed as to increase gradually in the progressing direction in the pretreating flow passage P2 to lower the flow velocity of the treating fluid passing the element 18. In addition, the main flow passage P1 is so formed to such shape as to decrease the sectional area of the flow passage gradually in the progressing direction to increase the flow velocity on the outflow side past the element 18. As a result, the magnetic fine particles having the small specific magnetization rate are separated away with the adequate treatment atm.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、流体中に含まれる磁性微粒子を効果的に捕集
することができる高勾配磁気分離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a high gradient magnetic separation device that can effectively collect magnetic particles contained in a fluid.

(ロ)従来の技術 従来、上記を目的とした高勾配磁気分離装置として特公
昭59−43208号公報に記載のものがある。
(b) Prior Art Conventionally, there is a high gradient magnetic separation apparatus for the above purpose described in Japanese Patent Publication No. 59-43208.

第9図〜第11図にかかる高勾配磁気分離装置の内部構
造を示す。
The internal structure of the high gradient magnetic separation apparatus according to FIGS. 9 to 11 is shown.

図示するように、N磁極51とS磁極52との間の空間
に非磁性体セル53が配設されており、同非磁性体セル
53はその内部に微粒子を除去するためのフィルタ空間
を形成するとともに、その下部と上部に、それぞれ、流
入口54と流出口55とを設けている。
As shown in the figure, a non-magnetic cell 53 is arranged in the space between the N magnetic pole 51 and the S magnetic pole 52, and the non-magnetic cell 53 forms a filter space for removing particulates therein. At the same time, an inlet 54 and an outlet 55 are provided at the lower and upper portions, respectively.

また、非磁性体セル53内に形成したフィルタ空間には
、多数の強磁性細線56が処理流体の流れの方向と平行
に配設されている。
Further, in the filter space formed within the non-magnetic cell 53, a large number of ferromagnetic thin wires 56 are arranged parallel to the flow direction of the processing fluid.

そして、これらの強磁性線!56は、等間隔を隔て、密
で、しかも相互に平行に並設されている。
And those ferromagnetic wires! 56 are arranged closely and parallel to each other at equal intervals.

かかる構成によって、強磁性細線56を用いて周囲に高
勾配磁界を形成し、非常に小さい微粒子を吸着除去する
ことができる。
With this configuration, a high gradient magnetic field is formed around the ferromagnetic thin wire 56, and very small particles can be adsorbed and removed.

ところで、上記高勾配磁気分離装置の性能は、一般に、
実効長さしeを用いて以下の式(1)で示される。
By the way, the performance of the above-mentioned high gradient magnetic separation device is generally as follows.
It is expressed by the following equation (1) using the effective length e.

Le= (L/a )(Vs/Vo )  ・・・(1
)ここに、Lとaはそれぞれ強磁性細線の有効長と半径
で、vOは処理水流速、V■は次式(2)で与えられる
磁気速度である。
Le= (L/a)(Vs/Vo)...(1
) Here, L and a are the effective length and radius of the ferromagnetic thin wire, respectively, vO is the treated water flow rate, and V is the magnetic velocity given by the following equation (2).

V■−(2/9 )(Xs  ・Ms・H*・b”/ 
v ・a )・・・(2) 上記式(2)で、χ、とbは磁性微粒子の比磁化率と半
径、Msは強磁性細線の飽和磁束密度、H6は印加磁界
の強さ、ηは微粒子に対する流体の粘性係数である。
V■-(2/9)(Xs・Ms・H*・b”/
v ・a )...(2) In the above formula (2), χ and b are the relative magnetic susceptibility and radius of the magnetic fine particles, Ms is the saturation magnetic flux density of the ferromagnetic wire, H6 is the strength of the applied magnetic field, and η is the viscosity coefficient of the fluid for particles.

つまり、Leの値が大きいほど高勾配磁気分離としての
性能は向上することになる。
In other words, the larger the value of Le, the better the performance as high gradient magnetic separation.

(ハ)発明が解決しようとする課題 しかるに、比磁化率のきわめて小さな微粒子を分離除去
するためには、(1)(2)式より、■極めて大きな磁
界勾配、したがって十分細い強磁性線を使用する必要が
あるが、かかる強磁性細線の製作は困難であり、また、
製造コストが高くなる。
(c) Problems to be Solved by the Invention However, in order to separate and remove fine particles with extremely low specific magnetic susceptibility, from equations (1) and (2), ■ an extremely large magnetic field gradient, and therefore a sufficiently thin ferromagnetic wire must be used. However, it is difficult to produce such ferromagnetic thin wires, and
Manufacturing costs increase.

■印加磁界H0を大きく、或いは強磁性m線の有効長し
、即ち、フィルタの長さを長(する必要があるが、これ
らの要素を大きく、或いは長くすると、磁界発生装置が
非常に大きくなり、製造コストが高くなる。
■It is necessary to increase the applied magnetic field H0 or increase the effective length of the ferromagnetic m-ray, that is, increase the length of the filter, but if these elements are increased or lengthened, the magnetic field generator will become very large. , manufacturing cost increases.

■処理水流速V、を低くする必要があるが、このために
は、流路の断面積を広くとる必要があり、矩形状のセル
では流入口から流入した処理流体をフィルタ空間で均一
に分配することが難しく、またセルが大型化するので装
置の製造コストが高くなる。
■It is necessary to lower the treated water flow rate V, but for this purpose, the cross-sectional area of the flow path must be widened, and in rectangular cells, the treated fluid flowing in from the inlet must be distributed uniformly in the filter space. Moreover, since the cell becomes larger, the manufacturing cost of the device increases.

本発明は、上記課題を解決することができる高勾配磁気
分離装置を提供することを目的とする。
An object of the present invention is to provide a high gradient magnetic separation device that can solve the above problems.

(ニ)課題を解決するための手段 本発明は、処理流体の主流路内に、強磁性体からなるフ
ィルタエレメントを配設して同主流路内に磁場を形成し
、同強磁性体の周囲に形成される高勾配磁場により処理
流体中に浮遊する磁性微粒子を吸着除去させるための高
勾配磁気分離装置において、主流路の前部に前処理流路
を設け、同前処理流路において、流路の断面積を進行方
向に漸次拡大するように形成して、主流路の流入側で、
フィルタエレメントを通過する処理流体の流速を低減し
、かつ、主流路の形状を、流路の断面積が進行方向に漸
次縮小するように形成し、フィルタエレメントを通過し
た流出側で流速を増大させるようにしたことを特徴とす
る流速が連続的に変化する高勾配磁気分離装置に係るも
のである。
(d) Means for Solving the Problems The present invention provides a filter element made of a ferromagnetic material in the main flow path of a processing fluid to form a magnetic field in the main flow path, and to create a magnetic field around the ferromagnetic material. In a high-gradient magnetic separation device for adsorbing and removing magnetic fine particles suspended in a processing fluid using a high-gradient magnetic field formed in the The cross-sectional area of the channel is formed so as to gradually expand in the direction of travel, and on the inflow side of the main channel,
The flow rate of the processing fluid passing through the filter element is reduced, and the shape of the main flow path is formed so that the cross-sectional area of the flow path gradually decreases in the advancing direction, and the flow rate is increased on the outflow side after passing through the filter element. The present invention relates to a high-gradient magnetic separation device in which the flow rate changes continuously, characterized in that the flow rate changes continuously.

また、上記構成においてフィルタエレメントの形状は、
■円柱状或いは円環や扇形等、円柱の一部を切り抜いた
形状、■球状或いは円錐や角錐環球の一部を切り抜いた
形状とすることができる。
In addition, in the above configuration, the shape of the filter element is
(2) It can be cylindrical or a shape obtained by cutting out a part of a cylinder, such as a ring or a sector; (2) It can be spherical, or a shape obtained by cutting out a part of a cone or a pyramid.

さらに、上記■において、円柱状或いは円柱の一部を切
り抜いた形状をなすフィルタエレメントを構成する強磁
性細線が、円柱の径方向に沿って放射状に配置されてい
ること、及び■において、球状或いは球の一部を切り抜
いた形状をなすフィルタエレメントを構成する強磁性細
線が、球の径方向に沿って放射状に配置されていること
にも特徴を有する。
Furthermore, in (1) above, the ferromagnetic thin wires constituting the filter element, which have a cylindrical shape or a shape obtained by cutting out a part of a cylinder, are arranged radially along the radial direction of the cylinder; Another feature is that the ferromagnetic thin wires constituting the filter element, which has a shape obtained by cutting out a part of a sphere, are arranged radially along the radial direction of the sphere.

(ホ)作用及び効果 本発明では、主流路の前部に前処理流路を設け、同流路
の断面積が進行方向に漸次拡大するように形成して、フ
ィルタエレメントの流入側を通過する処理流体を均一に
分配し流入側の流速を均一に低減させるようにしたので
、容易に発生しうる磁界強度及び従来の強磁性ステンレ
ス線を使用して比磁化率のきわめて小さな微粒子を適量
な処理量にて分離除去できる。
(e) Functions and Effects In the present invention, a pretreatment flow path is provided in the front part of the main flow path, and the cross-sectional area of the flow path is formed so as to gradually expand in the direction of movement, so that the pretreatment flow path passes through the inflow side of the filter element. By uniformly distributing the processing fluid and uniformly reducing the flow velocity on the inlet side, it is possible to treat an appropriate amount of fine particles with extremely low specific magnetic susceptibility using magnetic field strength that can easily be generated and conventional ferromagnetic stainless steel wire. It can be separated and removed depending on the amount.

一方、その後、主流路の形状を、流路の断面積が進行方
向に漸次縮小するように形成し、フィルタエレメントを
通過した流出側で流速を増大させるようにしたので、流
路出口の口径を下流側の給水管口径に一致させることに
より処理後水を速やかに所望の個所へ供給することがで
きる。
On the other hand, later on, the shape of the main flow path was formed so that the cross-sectional area of the flow path gradually decreased in the traveling direction, and the flow velocity was increased on the outflow side after passing through the filter element, so the diameter of the flow path outlet was changed. By matching the diameter of the water supply pipe on the downstream side, the treated water can be quickly supplied to the desired location.

(へ)実施例 以下、添付図に示す実施例に基づいて、本発明を具体的
に説明する。
(f) Examples The present invention will be specifically described below based on examples shown in the attached drawings.

第1図〜第4図に、本実施例に係る高勾配磁気分離装置
Aの具体的構造を示す。
1 to 4 show the specific structure of the high gradient magnetic separation apparatus A according to this embodiment.

第1図及び第2図において、10は軟鉄等を素材とする
リターンフレームであり、後述する永久磁石11.12
とともに、磁気回路を形成することができる。
In FIGS. 1 and 2, 10 is a return frame made of soft iron or the like, and permanent magnets 11 and 12, which will be described later.
At the same time, a magnetic circuit can be formed.

本実施例において、かかるリターンフレームIOは、円
板状の上下壁10a、 lObと筒状の周壁10cとか
ら形成されている。
In this embodiment, the return frame IO is formed from disk-shaped upper and lower walls 10a and lOb and a cylindrical peripheral wall 10c.

そして、リターンフレーム10は、その上下壁10a、
 10bの内面に、それぞれ、ドーナッツ状の上下永久
磁石11.12を取付けており、両永久磁石11゜12
の間の間隙に、後述する磁性微粒子22(第7図及び第
8図参照)を吸着除去するための厚肉円板状のフィルタ
カートJ)ッジ13を介設している。
The return frame 10 has upper and lower walls 10a,
Upper and lower donut-shaped permanent magnets 11 and 12 are attached to the inner surface of 10b, respectively, and both permanent magnets 11° and 12
A filter cart 13 in the form of a thick disc for adsorbing and removing magnetic fine particles 22 (see FIGS. 7 and 8), which will be described later, is interposed in the gap between them.

フィルタカートリッジ13は、その内部に後述する主流
路PIを形成するとともに、その外周部には環状の流体
流入部14を連通連結している。
The filter cartridge 13 has a main flow path PI, which will be described later, formed inside thereof, and an annular fluid inflow portion 14 is connected to the outer peripheral portion of the filter cartridge 13 for communication.

そして、同流体流入部14には、リターンフレーム10
の上部に配設した前処理装置Bの下部を形成する環状の
流体流出部17bが接続されている。
A return frame 10 is provided in the fluid inflow portion 14.
An annular fluid outflow portion 17b forming the lower part of the pretreatment device B disposed on the upper portion of the pretreatment device B is connected thereto.

即ち、本実施例において、前処理装置Bは、流体流入管
16の下端を、下方に向けて漸次直径を大きくする中空
円錐状の流速低減部17の流入側部17aに接続してお
り、一方、同流速低減部17の流体流出部17bは、フ
ィルタカートリッジI3の周壁部に設けた環状の流体流
入部14に連通連結されている。
That is, in the present embodiment, the pretreatment device B connects the lower end of the fluid inflow pipe 16 to the inflow side portion 17a of the hollow conical flow rate reduction portion 17 whose diameter gradually increases downward; The fluid outflow section 17b of the flow rate reduction section 17 is connected in communication with the annular fluid inflow section 14 provided on the peripheral wall of the filter cartridge I3.

なお、第3図に示すように、流速低減部17は、その外
周壁17cと内周壁17dによって区画形成される環状
の前処理流路pgの断面積を漸次下方に向けて拡大して
いる。
As shown in FIG. 3, the flow rate reduction section 17 gradually expands the cross-sectional area of the annular pretreatment flow path pg defined by the outer circumferential wall 17c and the inner circumferential wall 17d downward.

また、内周壁17dは、固定ガイド17eによって外周
壁に固定している。
Further, the inner circumferential wall 17d is fixed to the outer circumferential wall by a fixed guide 17e.

そして、かかる構成によって、流体流入管16から高勾
配磁気分離装置Aに流入する処理水は、まず、第2図及
び第3図に示すように、前処理流路ptの横断面積が、
流入側と流出側とで著しく相違しているために、流速低
減部17によって流速が著しく低減され、フィルタカー
トリッジ13の流体流入部14において流速は最小とな
る。
With this configuration, the treated water flowing into the high gradient magnetic separation device A from the fluid inflow pipe 16 first has a cross-sectional area of the pre-treatment channel pt, as shown in FIGS. 2 and 3.
Due to the significant difference between the inflow and outflow sides, the flow rate is significantly reduced by the flow rate reduction section 17, and the flow rate is at a minimum at the fluid inlet section 14 of the filter cartridge 13.

その後、処理水は、最小流速状態でフィルタカートリッ
ジ13内の主流路P1に流入することになる。
Thereafter, the treated water will flow into the main flow path P1 in the filter cartridge 13 at the minimum flow rate.

次に、フィルタカートリッジ13の内部構成について、
第1図、第5図及び第6図を参照して説明する。
Next, regarding the internal configuration of the filter cartridge 13,
This will be explained with reference to FIGS. 1, 5, and 6.

即ち、本実施例において、かかるフィルタカートリッジ
13は、第1図に示すように、薄肉円板状の上下壁と薄
肉周壁とからなる中空筒状フィルタ容器13aと、同中
空筒状フィルタ容器13a内に積層状態に配設した多数
の円盤状のフィルタエレメント(又はフィルタモジュー
ル)18とからなる。
That is, in this embodiment, as shown in FIG. 1, the filter cartridge 13 includes a hollow cylindrical filter container 13a consisting of thin disc-shaped upper and lower walls and a thin peripheral wall, and a hollow cylindrical filter container 13a that includes a hollow cylindrical filter container 13a. It consists of a large number of disc-shaped filter elements (or filter modules) 18 arranged in a stacked manner.

そして、各フィルタエレメント18は、第5図及び第6
図に示すように、多数の強磁性細線19を360°全方
向に放射状に配設しており、強磁性細線19間に形成さ
れる主流路P1の断面積が、フィルタエレメント18の
外周縁から中央部に向かって漸次小さくなるようにして
いる。
5 and 6. Each filter element 18 is
As shown in the figure, a large number of ferromagnetic thin wires 19 are arranged radially in all directions of 360°, and the cross-sectional area of the main flow path P1 formed between the ferromagnetic thin wires 19 is from the outer peripheral edge of the filter element 18. It gradually becomes smaller towards the center.

かかる構成によって、前処理装置Bから各フィルタエレ
メント18の主流路P1に流入した処理流体の速度は、
まず、フィルタエレメント18の外周縁で最低速度とな
り、その後、フィルタエレメント18の外周縁から内部
に向かって流れるにつれて漸次早くなることになる。
With this configuration, the speed of the processing fluid flowing into the main flow path P1 of each filter element 18 from the pretreatment device B is as follows.
First, the velocity is the lowest at the outer periphery of the filter element 18, and then gradually becomes faster as it flows from the outer periphery toward the inside of the filter element 18.

つまり、フィルタカートリッジ13における処理水の流
れにおいて、放射状に強磁性細線19を配置した各フィ
ルタエレメント18の任意における流速は常に変化し、
外周近傍の流速に比べて中心部近傍の流速は、半径に反
比例して増加することになる。
In other words, in the flow of treated water in the filter cartridge 13, the flow velocity at any point in each filter element 18 in which the ferromagnetic wires 19 are arranged radially changes constantly.
Compared to the flow velocity near the outer periphery, the flow velocity near the center increases in inverse proportion to the radius.

ただし、径方向に対して、フィルタエレメント18の単
位体積当たりの強磁性細線19の空間占積率を略同−に
するために、強磁性細線19は多段階に放射状に配置し
ている。即ち、強磁性細線19の単位中心角当たりの密
度は、中央部は粗に、外周縁に向かうに従って漸次密に
配置している。
However, in order to make the space factor of the ferromagnetic wires 19 per unit volume of the filter element 18 substantially the same in the radial direction, the ferromagnetic wires 19 are arranged radially in multiple stages. That is, the density per unit central angle of the ferromagnetic thin wires 19 is coarse in the center and gradually denser toward the outer periphery.

一方、リターンフレーム10の下壁10bの中央部に開
口20が設けられており、同開口20を上下方向に貫通
して流体流出管21が、リターンフレーム10の内部に
伸延しており、その伸延端に形成した開口部21aは、
フィルタカートリッジ13の下面中央部と連通連結して
いる。
On the other hand, an opening 20 is provided in the center of the lower wall 10b of the return frame 10, and a fluid outflow pipe 21 extends inside the return frame 10 by passing through the opening 20 in the vertical direction. The opening 21a formed at the end is
It is communicatively connected to the center portion of the lower surface of the filter cartridge 13 .

次に、上記構成を有する本発明に係る高勾配磁気分離袋
MAの微粒子吸着除去原理を、従来装置の場合と比較し
ながら、第7図及び第8図を参照して説明する。
Next, the principle of fine particle adsorption and removal of the high gradient magnetic separation bag MA according to the present invention having the above configuration will be explained with reference to FIGS. 7 and 8 while comparing it with the case of a conventional device.

第7図(X−Z断面図)において、磁界はX方向に印加
されており、磁性微粒子22を含んだ処理流体はY方向
へ流れる。(つまり紙面の裏から表へ流れている。) そして、第7図において、強磁性細線19の近傍には磁
界の歪みが生じて、処理流体中に浮遊する磁性微粒子2
2に磁気吸引力が働き、実線矢印で示した様な軌跡に沿
って磁性微粒子22は移動し、最終的に磁性線19に吸
着されることになる。
In FIG. 7 (X-Z sectional view), the magnetic field is applied in the X direction, and the processing fluid containing the magnetic particles 22 flows in the Y direction. (In other words, it flows from the back of the page to the front.) In FIG. 7, a distortion of the magnetic field occurs near the ferromagnetic wire 19, and the magnetic fine particles 2 floating in the processing fluid
A magnetic attraction force acts on the magnetic particles 2 , and the magnetic fine particles 22 move along a trajectory as shown by the solid arrow, and are finally attracted to the magnetic wire 19 .

即ち、X−Z断面における磁性微粒子22の吸着軌跡は
、本発明も従来技術においても違いが生じない。
That is, there is no difference in the adsorption trajectory of the magnetic fine particles 22 in the X-Z cross section between the present invention and the prior art.

次にX−Y断面における磁性微粒子22が強磁性細線1
9に吸着されるまでの軌跡を第8図に示す。
Next, the magnetic fine particles 22 in the X-Y cross section
Fig. 8 shows the trajectory until it is adsorbed by 9.

この場合、処理流体の流れの方向は紙面の上から下へと
流れていることになる。
In this case, the flow direction of the processing fluid is from the top to the bottom of the page.

従来技術における磁性微粒子22の軌跡は一点鎖線で示
し、本発明における磁性微粒子22の軌跡は破線で示す
The locus of the magnetic fine particles 22 in the prior art is shown by a dashed line, and the locus of the magnetic fine particles 22 in the present invention is shown by a broken line.

図示するように、本発明と従来技術との間には明らかな
相違があり、磁性微粒子22を強磁性細線19に吸着す
るまでの本発明による有効磁性線長さ21が従来技術に
よる有効磁性線長さ12に比べてかなり短くなっている
ことがゎがる。
As shown in the figure, there is a clear difference between the present invention and the prior art, and the effective magnetic line length 21 according to the present invention until the magnetic fine particles 22 are attracted to the ferromagnetic wire 19 is different from the effective magnetic line length 21 according to the prior art. It is interesting that it is much shorter than the length 12.

つまり、長尺矩形状のセルにフィルタを充填しているの
で、フィルタ空間を流れる処理流体の流速が流入口近傍
から流出口まで、すべての位置で一定である。
In other words, since the long rectangular cells are filled with filters, the flow rate of the processing fluid flowing through the filter space is constant at all positions from the vicinity of the inlet to the outlet.

これに対して、本発明では、前処理装置Bによって、流
体供給管16からフィルタエレメント18の主流路P、
に流入する処理水は、フィルタエレメント18の外周縁
で、その流速を著しく減速されているので、強磁性細線
19の有効長さが短い場所にて磁性微粒子22を吸着可
能となる。
On the other hand, in the present invention, the main flow path P from the fluid supply pipe 16 to the filter element 18 is
The flow velocity of the treated water flowing into the filter element 18 is significantly reduced at the outer periphery of the filter element 18, so that the magnetic fine particles 22 can be adsorbed at a location where the effective length of the ferromagnetic wire 19 is short.

従って、本発明による磁性微粒子吸着除去範囲一1は、
従来技術による磁性微粒子吸着除去箱Ml&Itに比べ
て、磁性線19のτ本当たりの微粒子吸着除去範囲を、
第8図に二点鎖線で示すように、大幅に向上することが
できる。
Therefore, the magnetic fine particle adsorption/removal range 1 according to the present invention is as follows:
Compared to the conventional magnetic particle adsorption/removal box Ml & It, the particle adsorption/removal range per τ of the magnetic wire 19 is
As shown by the two-dot chain line in FIG. 8, a significant improvement can be achieved.

その後、以上のようにして磁性微粒子が除去された処理
水はフィルタエレメント18内を中央部に向けて流れる
ことになるが、その過程において流速を増加し、装置下
流の給水管に接続されている流体流出管21を通して所
望の個所へ速やかに給送されることになる。
Thereafter, the treated water from which the magnetic particles have been removed as described above flows toward the center within the filter element 18, but in the process, the flow velocity is increased and the water is connected to the water supply pipe downstream of the device. The fluid is quickly delivered to a desired location through the fluid outflow pipe 21.

なお、上記した実施例においては、磁場を形成するため
、永久磁石11.12を用いたが、これに限定されるも
のではなく、i!磁石、超電導磁石等により磁場を形成
することもできる。
In addition, in the above-described embodiment, permanent magnets 11 and 12 were used to form a magnetic field, but the invention is not limited to this, and i! A magnetic field can also be formed using a magnet, a superconducting magnet, or the like.

また、強磁性細線19は、腐食等を考慮して、強磁性の
ステンレス線を用いるのが好ましいが、何らステンレス
線に限定されるものではなく、強磁性を有するものであ
れば、他の素材からなる線を用いることもできる。
In addition, it is preferable to use a ferromagnetic stainless steel wire as the ferromagnetic thin wire 19 in consideration of corrosion etc. However, it is not limited to stainless steel wire in any way, and may be made of other materials as long as it has ferromagnetism. It is also possible to use a line consisting of

また、強磁性11!1119によって形成されるフィル
タエレメント18の形状は、■円柱状或いは円環や扇形
等、円柱の一部を切り抜いた形状、■球状或いは円錐や
角錐等球の一部を切り抜いた形状とすることができる。
In addition, the shape of the filter element 18 formed by the ferromagnetic material 11!1119 is: ■Cylindrical or a shape obtained by cutting out a part of a cylinder, such as an annular shape or a fan shape, ■A shape obtained by cutting out a part of a cylinder such as a cylindrical shape, or ■A shape cut out from a part of a cylinder such as a spherical shape or a cone or a pyramid. It can be made into a shape.

さらに、上記■において、フィルタエレメント18を形
成する強磁性細線19を、円柱の径方向に沿って放射状
に配置したり、■において、フィルタエレメント1Bを
構成する強磁性線[19を、球の径方向に沿って放射状
に配置するようにすることもできる。
Furthermore, in (1) above, the ferromagnetic wires 19 forming the filter element 18 are arranged radially along the radial direction of the cylinder, and in (2) the ferromagnetic wires [19 forming the filter element 1B] are arranged radially along the radial direction of the cylinder. They can also be arranged radially along the direction.

尚、磁気分離装置Aのフィルタエレメントを構成する強
磁性細線19は、強磁性体の薄板をエツチングまたは、
打ち抜き等により細線部分が残るように加工したもの又
は、非磁性体薄板に、強磁性体をプリント加工したもの
でもよい。また、磁性細線を投網状或いは、蜘蛛の巣状
に編んだ網でもよい。
The ferromagnetic thin wire 19 constituting the filter element of the magnetic separation device A is made by etching a thin ferromagnetic plate or by
It may be processed by punching so that thin wire portions remain, or it may be a non-magnetic thin plate printed with a ferromagnetic material. Alternatively, it may be a net made of magnetic fine wires woven into a cast net shape or a spider web shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る高勾配磁気分離装置の断面正面図
、第2図は第1図1−1線による横断面図、第3図は第
1図■−■線による横断面図、第4図は第1図■−■線
による横断面図、第5図はフィルタエレメントの斜視図
、第6図はフィルタエレメントの一部拡大斜視図、第7
図及び第8図は磁性微粒子の吸着原理説明図、第9図は
従来の高勾配磁気分離装置の概念的構成を示す斜視図、
第1O図は同断面側面図、第11図は第10図IV−I
V線による横断面図である。 図中、 A;高勾配磁気分離装置 PI:主流路    Pt:前処理流路10:  リタ
ーンフレーム 11:永久磁石   12:永久磁石 13: フィルタカートリッジ 14:開口 16;流体流入管 18: フィルタエレメント 19:強磁性細線 21:流体流出管 22: m性微粒子
FIG. 1 is a cross-sectional front view of a high gradient magnetic separation apparatus according to the present invention, FIG. 2 is a cross-sectional view taken along line 1-1 in FIG. 1, and FIG. 3 is a cross-sectional view taken along line ■-■ in FIG. Fig. 4 is a cross-sectional view taken along line ■-■ in Fig. 1, Fig. 5 is a perspective view of the filter element, Fig. 6 is a partially enlarged perspective view of the filter element, and Fig. 7
8 and 8 are explanatory diagrams of the adsorption principle of magnetic fine particles, and FIG. 9 is a perspective view showing the conceptual configuration of a conventional high gradient magnetic separation device.
Figure 1O is the same cross-sectional side view, Figure 11 is Figure 10 IV-I.
It is a cross-sectional view taken along the V line. In the figure, A: High gradient magnetic separation device PI: Main flow path Pt: Pretreatment flow path 10: Return frame 11: Permanent magnet 12: Permanent magnet 13: Filter cartridge 14: Opening 16; Fluid inlet pipe 18: Filter element 19: Ferromagnetic thin wire 21: Fluid outflow pipe 22: M fine particles

Claims (1)

【特許請求の範囲】 1、処理流体の主流路内に、強磁性体からなるフィルタ
エレメントを配設して同主流路内に磁場を形成し、同磁
性体の周囲に形成される高勾配磁場により処理流体中に
浮遊する磁性微粒子を吸着除去させるための高勾配磁気
分離装置において、 主流路の前部に前処理流路を設け、同前処理流路におい
て、流路の断面積を進行方向に漸次拡大するように形成
して、主流路の流入側で、フィルタエレメントを通過す
る処理流体の流速を低減し、かつ、主流路の形状を、流
路の断面積が進行方向に漸次縮小するように形成し、フ
ィルタエレメントを通過した流出側で流速を増大させる
ようにしたことを特徴とする流速が連続的に変化する高
勾配磁気分離装置。 2、フィルタエレメントの形状が、円柱状或いは円環や
扇形等、円柱の一部を切り抜いた形状をなしていること
を特徴とする請求項1記載の流速が連続的に変化する高
勾配磁気分離装置。 3、フィルタエレメントの形状が、球状或いは円錐や角
錐等球の一部を切り抜いた形状をなしていることを特徴
とする流速が連続的に変化する請求項1記載の高勾配磁
気分離装置。 4、円柱状或いは円柱の一部を切り抜いた形状をなすフ
ィルタエレメントを構成する強磁性細線が、円柱の径方
向に沿って放射状に配置されていることを特徴とする流
速が連続的に変化する請求項2記載の高勾配磁気分離装
置。 5、球状或いは球の一部を切り抜いた形状をなすフィル
タエレメントを構成する強磁性細線が、球の径方向に沿
って放射状に配置されていることを特徴とする流速が連
続的に変化する請求項3記載の高勾配磁気分離装置。 6、強磁性細線を放射状に配置したフィルタエレメント
が強磁性体の薄板をエッチング又は打ち抜き加工により
細線部が残るように加工したもの、又は、非磁性体薄板
に強磁性体をプリント加工したものからなることを特徴
とする流速が連続的に変化する請求項4項記載の高勾配
磁気分離装置。 7、磁性体細線を放射状に配置したフィルタエレメント
が、磁性細線を投網状、或いは蜘蛛の巣状に編んだ網か
らなることを特徴とする流速が連続的に変化する請求項
4項記載の高勾配磁気分離装置。
[Claims] 1. A filter element made of a ferromagnetic material is disposed in the main flow path of the processing fluid to form a magnetic field in the main flow path, and a high gradient magnetic field is formed around the magnetic material. In a high-gradient magnetic separation device for adsorbing and removing magnetic fine particles suspended in a processing fluid, a pre-treatment channel is provided at the front of the main channel, and the cross-sectional area of the channel is set in the direction of travel. The flow rate of the processing fluid passing through the filter element is reduced on the inflow side of the main flow path by gradually expanding, and the shape of the main flow path is such that the cross-sectional area of the flow path gradually decreases in the direction of movement. 1. A high gradient magnetic separation device in which a flow rate changes continuously, characterized in that the flow rate is increased on the outflow side after passing through a filter element. 2. The high-gradient magnetic separation in which the flow rate changes continuously according to claim 1, wherein the filter element has a shape such as a cylinder, or a shape obtained by cutting out a part of a cylinder, such as an annular shape or a fan shape. Device. 3. The high-gradient magnetic separation apparatus according to claim 1, wherein the filter element has a shape that is spherical or a shape obtained by cutting out a part of a sphere such as a cone or a pyramid, and the flow velocity changes continuously. 4. The ferromagnetic thin wires constituting the filter element, which has a cylindrical shape or a shape obtained by cutting out a part of a cylinder, are arranged radially along the radial direction of the cylinder.The flow velocity changes continuously. The high gradient magnetic separation apparatus according to claim 2. 5. A claim in which the flow velocity changes continuously, characterized in that the ferromagnetic thin wires constituting the filter element, which are spherical or have a shape obtained by cutting out a part of a sphere, are arranged radially along the radial direction of the sphere. Item 3. High gradient magnetic separation device. 6. The filter element, in which fine ferromagnetic wires are arranged radially, is made by etching or punching a thin ferromagnetic plate so that the fine wire portion remains, or by printing a ferromagnetic substance on a thin non-magnetic plate. 5. The high gradient magnetic separation apparatus according to claim 4, wherein the flow rate changes continuously. 7. The filter element according to claim 4, wherein the filter element in which the magnetic thin wires are arranged radially is made of a mesh of magnetic thin wires woven in a cast net shape or a spider web shape, and the flow velocity changes continuously. Gradient magnetic separation device.
JP12176289A 1989-05-15 1989-05-15 High gradient magnetic separator of continuously changing flow velocity Pending JPH02303505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12176289A JPH02303505A (en) 1989-05-15 1989-05-15 High gradient magnetic separator of continuously changing flow velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12176289A JPH02303505A (en) 1989-05-15 1989-05-15 High gradient magnetic separator of continuously changing flow velocity

Publications (1)

Publication Number Publication Date
JPH02303505A true JPH02303505A (en) 1990-12-17

Family

ID=14819257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12176289A Pending JPH02303505A (en) 1989-05-15 1989-05-15 High gradient magnetic separator of continuously changing flow velocity

Country Status (1)

Country Link
JP (1) JPH02303505A (en)

Similar Documents

Publication Publication Date Title
US5169006A (en) Continuous magnetic separator
US4478711A (en) Method and apparatus for separating dry magnetic material
US4941969A (en) Method of and an apparatus for the separation of paramagnetic particles in the fine and finest particle size ranges in a high-intensity magnetic field
EP1616627B1 (en) High gradient magnetic separator
US2430157A (en) Magnetic separator for removing finely divided magnetic material from liquids
US4190524A (en) Magnetic separators
US4209394A (en) Magnetic separator having a multilayer matrix, method and apparatus
US4116829A (en) Magnetic separation, method and apparatus
WO1999019071A1 (en) High gradient magnetic device and method for cell separation or purification
GB1578396A (en) Magnetic separator
EP0082925A1 (en) Magnetic separator
US2329893A (en) Magnetic device for the purification of fluids
US8357294B2 (en) Device for separating ferromagnetic particles from a suspension
EP2679310A1 (en) Method and apparatus for separation of mixture
US3693792A (en) Electrodynamic particle separator
US5356015A (en) Magnetic separation process
JPS6344003B2 (en)
US3714037A (en) Flocculating apparatus and method
US3399134A (en) Magnetic sparator
JPH02303505A (en) High gradient magnetic separator of continuously changing flow velocity
JP3513597B2 (en) Magnetic separation method and magnetic separation device
JPS607769Y2 (en) Magnetizable particle separator
JP2011056369A (en) Magnetic separator, and magnetic separation system
JPS634443B2 (en)
WO2000025929A1 (en) Magnetic separation method and apparatus