JPH08243431A - Selective separation of magnetic material and device therefor - Google Patents

Selective separation of magnetic material and device therefor

Info

Publication number
JPH08243431A
JPH08243431A JP7081700A JP8170095A JPH08243431A JP H08243431 A JPH08243431 A JP H08243431A JP 7081700 A JP7081700 A JP 7081700A JP 8170095 A JP8170095 A JP 8170095A JP H08243431 A JPH08243431 A JP H08243431A
Authority
JP
Japan
Prior art keywords
magnetic
particles
magnetic field
magnetic material
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7081700A
Other languages
Japanese (ja)
Inventor
Yoshihisa Ohashi
善久 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7081700A priority Critical patent/JPH08243431A/en
Publication of JPH08243431A publication Critical patent/JPH08243431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE: To provide a method and a device in which powder of magnetic material is separated selectively and efficiently in a wet process in accordance with magnetic characteristics. CONSTITUTION: An external magnetic field is acted on powder 2 of magnetic material mixed with a dispersion medium such as water in a vessel 1. Orientation chaining particle groups 3 constrained by the magnetic field are formed and fluid flowing in the direction parallel to the magnetic field is acted on the particle groups 3 while leaving this state. Herein, only particles having weak connecting force are selectively separated and removed regardlessly of particle diameter. In a permanent magnet produced by magnetic material separated and purified by this method, the characteristic of the magnet especially residual magnetic characteristic is largely enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、フェライト磁石や希
土類磁石等の原料である磁性材料粉末をその磁気特性に
合わせて選択的に湿式でしかも効率よく分離する方法と
装置に係り、分散媒に混合された磁性材料粉末に外部磁
界を作用させて、磁界で拘束された配向連鎖粒子群を形
成し、これに所要の流体を作用させて連結力の弱い粒子
のみを選択的に分離し除去することにより、得られた磁
性材料で製造される永久磁石の磁石特性を向上させる磁
性材料の選択的分離方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for selectively separating wet magnetic material powder, which is a raw material for ferrite magnets and rare earth magnets, in accordance with its magnetic characteristics, and efficiently separating it. An external magnetic field is applied to the mixed magnetic material powder to form a group of oriented chain particles that are bound by the magnetic field, and a required fluid is applied to this to selectively separate and remove only particles with weak coupling force. Thus, the present invention relates to a magnetic material selective separation method and apparatus for improving the magnetic characteristics of a permanent magnet manufactured from the obtained magnetic material.

【0002】[0002]

【従来の技術】永久磁石の中で最も一般的で実績の大き
なフェライト焼結磁石においても、磁石特性の向上はい
まだ重要な開発要素である。現在、フェライト材料自体
の理論的磁石特性に対して、実際の磁石特性はエネルギ
ー積で8割弱とまだまだ開発の余地がある。
2. Description of the Related Art Improvement of magnet characteristics is still an important development factor even in the most popular permanent sintered ferrite magnet among permanent magnets. At present, there is still room for development, with the actual magnetic properties of the ferrite material itself being less than 80% of the theoretical magnetic properties of the ferrite material itself.

【0003】この理論特性値に対する差は、材料自体の
問題と言うより製造方法に起因する問題が多く、中でも
原料粉末の粒度制御が困難であることが最大の課題とな
っている。かかる磁性材料の粒度制御が困難な主な理由
は、材料自体が磁性を有して互いに凝集し合っているこ
とと、またその粒径が極めて小さく所要粒度に効率よく
分離できないことにある。
The difference with respect to the theoretical characteristic value is caused more by the manufacturing method rather than by the material itself, and the biggest problem is that it is difficult to control the particle size of the raw material powder. The main reasons why it is difficult to control the particle size of such magnetic materials are that the materials themselves are magnetic and aggregate with each other, and that their particle sizes are extremely small and they cannot be efficiently separated into the required particle sizes.

【0004】また、最近の研究では、単に粒子の大きさ
で分級して平均粒径を揃えるだけでは磁石の特性向上に
は不十分で、磁気特性の小さな粒子を選択的に除去する
ことが重要であることが分かってきた。つまり、磁性材
料はその粉末粒子径が1μm程度と磁石特性の向上にと
って好適であっても、当該磁性粉末中より磁気特性が小
さい粒子は除去する必要があるし、粒子径が0.2μm
と比較的小さくても磁気特性が高いものは除去すべきで
はないということである。
Further, in recent research, it is not sufficient to improve the characteristics of the magnet by simply classifying the particles by the particle size to make the average particle size uniform, and it is important to selectively remove particles having small magnetic characteristics. I have come to understand that. That is, even if the magnetic material has a powder particle size of about 1 μm and is suitable for improving the magnetic properties, it is necessary to remove particles having magnetic properties smaller than those of the magnetic powder, and the particle size is 0.2 μm.
That is, even if it is relatively small, one with high magnetic properties should not be removed.

【0005】磁石特性の向上を目的とする従来の技術を
総合すると、上記のような磁気凝集による困難を伴う中
で、磁性材料粉末を分級することが試験的に試みられ、
かかる分級を実施する方法には乾式法と湿式法がある。
乾式法としては、特公昭32−382号公報を代表的な
例として、磁性材料を交番磁界中で飛散させてこれを既
知の方法にて分級する手法がある。しかしながら、通常
のフェライト焼結磁石では、磁性材料を湿式で粉砕しか
つ湿式で成形することが一般的であり、これら湿式法で
の工程中で乾式法による分級を実施するためには、原料
を乾燥しかつ成形前に再度水と混合する必要が生じ、工
程が煩雑になる。
Combining the conventional techniques for the purpose of improving the magnet characteristics, a trial was conducted to classify the magnetic material powder in the above-mentioned difficulties due to magnetic aggregation.
As a method for carrying out such classification, there are a dry method and a wet method.
As a typical dry method, there is a method in which a magnetic material is scattered in an alternating magnetic field and classified by a known method, as a typical example of Japanese Patent Publication No. 32-382. However, in a normal ferrite sintered magnet, it is general that the magnetic material is pulverized by a wet method and then is molded by a wet method, and in order to carry out the classification by the dry method in the steps of these wet methods, the raw material is It becomes necessary to dry and mix again with water before molding, which complicates the process.

【0006】一方、湿式法では特公昭52−275号公
報に示されたように、同じく硬質磁性材料粉末を流体内
に懸濁し、交番磁界を作用させて磁性粒子の相互吸着に
よる連結を切断させ、重力と粒子の流体からの抗力との
バランスによるストークスの法則を利用した分級を実施
する方法がある。
On the other hand, in the wet method, as shown in Japanese Patent Publication No. 52-275, the same hard magnetic material powder is suspended in a fluid and an alternating magnetic field is applied to disconnect the magnetic particles by mutual adsorption. , There is a method of performing classification using Stokes' law based on the balance between gravity and drag force of fluid from particles.

【0007】[0007]

【発明が解決しようとする課題】従来、磁気凝集が強い
ために分級できなかった硬質磁性材料の分級には、交番
磁界を作用させることはある程度の効果があると思われ
るが、以下に示すような課題がある。
The classification of hard magnetic materials, which could not be classified due to strong magnetic agglomeration in the past, seems to have some effect by applying an alternating magnetic field, but as shown below. There is a problem.

【0008】課題としては、1) 基本的には、重力を
用いたストークスの法則を利用するため、分級能率が極
めて低いこと、2) 1)を克服すべく磁界を作用させ
て磁力を用いたストークスの法則を利用することも提案
されているが、実際には交番磁界中で安定しかつ磁束密
度勾配の一定した磁界を得ることが極めて困難で、安定
した分級は望めないこと、3) これら既存の方法の最
大の課題は、分級が粒子径のみによりなされ、その結
果、磁石特性の向上に有効な磁気特性の高い小粒子を除
去して、逆に所定粒子径であるが磁気特性の低い粒子を
残存させてしまうことにある。
The problems are as follows: 1) Basically, the Stokes' law using gravity is used, so that the classification efficiency is extremely low. 2) The magnetic field is used by applying a magnetic field to overcome 1). It has been proposed to use Stokes' law, but in practice it is extremely difficult to obtain a magnetic field that is stable in an alternating magnetic field and has a constant magnetic flux density gradient, and stable classification cannot be expected 3) The biggest problem with the existing method is that classification is performed only by the particle size, and as a result, small particles with high magnetic properties that are effective in improving the magnetic properties are removed, and conversely, the particle size is low but the magnetic properties are low. It is to leave the particles.

【0009】この発明は、磁性材料粉末をその磁気特性
に合わせて選択的に湿式でしかも効率よく分離する方法
と装置を目的とし、分散媒に混合された磁性材料粉末に
外部磁界を作用させながら、磁気特性の弱い粒子のみを
選択的に分離し除去することにより、分離精製した磁性
材料で製造される永久磁石の磁石特性を向上させること
が可能な磁性材料の選択的分離方法とその装置の提供を
目的としている。
The present invention is directed to a method and apparatus for selectively and efficiently separating magnetic material powders according to their magnetic characteristics, while applying an external magnetic field to the magnetic material powders mixed in a dispersion medium. , A selective separation method of magnetic material capable of improving the magnetic characteristics of a permanent magnet manufactured by a separated and purified magnetic material by selectively separating and removing only particles having weak magnetic characteristics, and an apparatus therefor It is intended to be provided.

【0010】[0010]

【課題を解決するための手段】発明者は、湿式法で磁性
材料粉末をその磁気特性に合わせて選択的に効率よく分
離する方法を目的に種々検討した結果、分散媒に混合さ
れた磁性材料粉末に外部磁界を作用させて、磁界で拘束
された配向連鎖粒子群を形成し、この状態のまま該粒子
群に、例えば磁界に平行な方向に流れる流体を作用させ
ると、粒子径にかかわらず連結力の弱い粒子のみを選択
的に分離し除去することが可能で、この方法で分離精製
された磁性材料で製造される永久磁石はその磁石特性が
大きく向上することを知見し、この発明を完成した。
As a result of various investigations by the inventor for the purpose of selectively and efficiently separating magnetic material powders according to their magnetic characteristics by a wet method, as a result, magnetic materials mixed in a dispersion medium have been obtained. When an external magnetic field is applied to the powder to form a group of oriented chain particles that are constrained by the magnetic field and a fluid flowing in a direction parallel to the magnetic field is applied to the particle group in this state, regardless of the particle diameter. It was found that it is possible to selectively separate and remove only particles having a weak coupling force, and that the permanent magnet manufactured by the magnetic material separated and purified by this method has greatly improved magnetic properties, and the present invention completed.

【0011】すなわち、この発明は、流体の分散媒に混
合された磁性材料粉末に対して、該材料中の磁性粒子が
連鎖状に連結して拘束固定されるように外部磁界を作用
させた状態で、磁界で拘束された配向連鎖粒子群に対し
て相対的な流速を有する流体を流し、配向連鎖粒子群を
含む磁性材料粉末中より連結力の弱い粒子を選択的に分
離し除去することを特徴とする磁性材料の選択的分離方
法である。
That is, according to the present invention, an external magnetic field is applied to a magnetic material powder mixed in a dispersion medium of a fluid so that magnetic particles in the material are connected in a chain form and restrained and fixed. At this point, a fluid having a flow velocity relative to the oriented chain particle group constrained by the magnetic field is caused to flow to selectively separate and remove particles having a weak coupling force from the magnetic material powder containing the oriented chain particle group. It is a method of selectively separating a magnetic material having a feature.

【0012】また、この発明は、上記の構成において、
分散媒に混合された磁性材料粉末を収容可能な容器と、
容器内の分散媒流体を所要方向に流下可能にした配管手
段と、容器内の分散媒流体流れに平行な磁界を印加可能
な磁気回路を有することを特徴とする磁性材料の選択的
分離装置を併せて提案する。
Further, according to the present invention, in the above structure,
A container capable of containing the magnetic material powder mixed in the dispersion medium,
A selective separation device for a magnetic material, characterized by having a piping means capable of allowing a dispersion medium fluid in a container to flow down in a required direction and a magnetic circuit capable of applying a magnetic field parallel to the dispersion medium fluid flow in the container. We also propose.

【0013】[0013]

【作用】この発明による分離方法の作用を図面に基づい
て詳述する。図1Aは外部磁界により磁性粒子が柱状に
連鎖結合している状態を示す説明図であり、同Bはその
結合状態を拡大し、連鎖に対して流体の流れを与えたこ
の発明による分離方法の基本原理を示す説明図である。
図2はこの発明による分離装置の一例を示す縦断説明図
であり、図3はこの発明による分離方法を連続的に行う
分離装置の概念を示す説明図である。
The operation of the separation method according to the present invention will be described in detail with reference to the drawings. FIG. 1A is an explanatory view showing a state in which magnetic particles are column-shaped and chain-bonded by an external magnetic field, and FIG. 1B is a separation method of the present invention in which the bonded state is enlarged and a fluid flow is given to the chain. It is explanatory drawing which shows a basic principle.
FIG. 2 is a longitudinal sectional view showing an example of the separation apparatus according to the present invention, and FIG. 3 is an explanatory view showing the concept of the separation apparatus for continuously performing the separation method according to the present invention.

【0014】まず、図1Aに示すように処理容器1の内
部に水などの液体と混合された磁性材料粉末2を入れ、
外部より磁場イ、ロを作用させると、容器1内部の磁性
材料粉末2粒子はこの磁界により磁界と平行に配列する
ようになる。磁性材料粉末2粒子は磁束方向には張力が
作用し、それと垂直方法には互いの斥力が作用するた
め、図1Aに示すように磁界方向に柱状に並び柱間には
斥力のため隙間ができるような配列となり、磁界により
拘束を受け固定された状態となる。これを配向連鎖粒子
群と呼ぶ。
First, as shown in FIG. 1A, a magnetic material powder 2 mixed with a liquid such as water is put in a processing container 1,
When magnetic fields a and b are applied from the outside, the two particles of the magnetic material powder inside the container 1 are arranged in parallel with the magnetic field by this magnetic field. Two magnetic material powder particles have a tensile force acting in the magnetic flux direction, and a repulsive force acts in a perpendicular direction to the magnetic material powder particles. Therefore, as shown in FIG. The arrangement is such that it is fixed by being constrained by the magnetic field. This is called a group of oriented chain particles.

【0015】図1Bは、図1Aの磁界により配列し拘束
を受けた柱状の磁性材料粉末2粒子の連鎖配列状態、す
なわち、配向連鎖粒子群3を拡大して示したものであ
る。この発明では、この拘束された柱状配列の配向連鎖
粒子群3に対して、図の矢印に示すような流体の流れを
与え、互いの連結力の小さな粒子のみを流体にて流出さ
せることを基本原理としている。
FIG. 1B is an enlarged view showing a chained arrangement state of two particles of columnar magnetic material powder arranged and constrained by the magnetic field of FIG. 1A, that is, an oriented chained particle group 3. In the present invention, a fluid flow as shown by an arrow in the figure is applied to the constrained columnar aligned particle group 3 so that only particles having a small mutual coupling force are caused to flow out by the fluid. It is based on the principle.

【0016】要するに、柱状の連鎖に連結された配向連
鎖粒子群3の粒子の連結力と流体から受ける抗力との大
小関係を利用して連結力の小さな粒子、つまり磁性の弱
く磁石特性の向上に寄与しない粒子を除去するわけであ
る。また、柱状の配向連鎖粒子群3自体は、外部の磁界
により拘束されているため流体からの抵抗によってもほ
ぼ配向連鎖状態を保っており、磁性の弱い粒子だけが除
去される。このような外部磁界により磁性材料粉末粒子
を拘束することは、この発明の主要な構成であり、従来
の方法と全く異なる構成でもある。
In short, particles having a small connecting force, that is, magnetism is weak and magnet characteristics are improved by utilizing the magnitude relation between the connecting force of the particles of the oriented chain particle group 3 connected in a columnar chain and the drag force received from the fluid. The particles that do not contribute are removed. Further, since the columnar oriented chain particle group 3 itself is constrained by the external magnetic field, the columnar oriented chain particle group 3 itself maintains a substantially oriented chain state due to the resistance from the fluid, and only particles having weak magnetism are removed. Restraining the magnetic material powder particles by such an external magnetic field is the main constitution of the present invention, and is a constitution completely different from the conventional method.

【0017】また、この発明は、磁性材料粉末粒子同士
の連結力と流体から受ける抗力とのバランスを分離の基
本原理としているため、重力と流体力あるいは勾配のあ
る外部磁界と流体力によるストークスの法則を利用した
従来の方法とは構成が全く異なり、しかも粒子同士の連
結力の大小に基づいて、除去されるか否かが決まるた
め、磁性の弱い粒子が選択的に除去されるという利点が
ある。例えば、重力と流体力のバランスによる分級を実
施した場合には粒子径が小さな粒子は一律に除去される
が、この発明の方法では、磁性が強く連結力の大きなも
のは微粒子であろうとも残留し、磁性が弱く連結力が小
さなものは粗粒子であろうとも除去されることになる。
Further, in the present invention, since the balance between the coupling force between the magnetic material powder particles and the drag force received from the fluid is the basic principle of separation, the Stokes caused by gravity and fluid force or a gradient external magnetic field and fluid force The structure is completely different from the conventional method using the law, and it is decided whether or not to remove the particles based on the magnitude of the connecting force between the particles, which has the advantage that particles with weak magnetism are selectively removed. is there. For example, when classification is performed by the balance between gravity and fluid force, particles with a small particle size are uniformly removed, but with the method of the present invention, even if particles with strong magnetism and large coupling force are fine particles, they remain. However, particles having weak magnetism and small coupling force will be removed even if they are coarse particles.

【0018】この原理は勾配のある外部磁界と流体力の
バランスを利用した分級でも同様の傾向があると考えら
れるが、実際問題として磁界はその中にある磁性流体の
影響を大きく受けるため、均一で安定した勾配磁界を形
成することが極めて困難で先行特許公報に示されている
ように、交番磁界を併用して勾配磁界を形成することは
ほとんど不可能に近い。
It is considered that this principle has a similar tendency in classification using a balance between an external magnetic field having a gradient and a fluid force. However, as a practical problem, the magnetic field is greatly influenced by the magnetic fluid therein, so that it is uniform. It is extremely difficult to form a stable gradient magnetic field in the above, and as shown in the prior patent publication, it is almost impossible to form a gradient magnetic field by using an alternating magnetic field together.

【0019】また、外部磁界を作用させて磁性材料粉末
粒子を柱状に連結させるのは、次の理由による。つま
り、外部磁界により磁性材料粉末粒子を拘束しない場合
には、粒子は凝集したとしても約数十μm程度であり、
流体の流れにより粒子が流動あるいは回転し流れに流さ
れてしまって、結果として流体との相対的速度を維持で
きなくなる。従って、磁界による該磁性粒子の拘束なし
では、連結力の小さな粒子を離脱させるには至らない。
このように粒子を離脱させるためには、粒子を磁界によ
り拘束固定し、それに対して相対速度の大きな流体の流
れを与えることが必要であり、外部磁界による磁性粒子
の拘束は不可欠の要素である。さらにこの発明方法で
は、粒子相互の連結を離脱させるような流体力を作用さ
せるため従来の方法に比べて大きな流速を与えることが
でき、分離能率を十分に大きくとれることが大きな利点
となっている。
The reason why the magnetic material powder particles are connected in a columnar shape by applying an external magnetic field is as follows. That is, when the magnetic material powder particles are not constrained by the external magnetic field, the particles are about several tens of μm even if they are aggregated,
The fluid flow causes the particles to flow or rotate and flow into the flow, and as a result, the relative velocity with the fluid cannot be maintained. Therefore, unless the magnetic particles are restrained by the magnetic field, the particles having a small coupling force cannot be separated.
In order to release the particles in this way, it is necessary to fix the particles with a magnetic field and to give a fluid flow with a large relative velocity to the particles, and the restriction of magnetic particles by an external magnetic field is an essential element. . Further, in the method of the present invention, since a fluid force that causes the particles to be disconnected from each other is applied, a high flow velocity can be applied as compared with the conventional method, and it is a great advantage that the separation efficiency can be sufficiently large. .

【0020】この発明において、図1Bでは流体の流れ
を平行磁界および柱状の配向連鎖粒子群3と平行に示し
ているが、必ずしも平行である必要はなく、柱状配向連
鎖粒子群3に対して所要の角度をなして流体を流すこと
も可能で、同様の効果が期待できる。ただし柱状連鎖と
平行に流体を流す場合には、流れの抵抗が最小になる利
点がある。また、外部磁界は必ずしも平行磁界である必
要はなく、磁性材料粉末粒子が集合し柱状の配向連鎖粒
子群を形成できればいずれの配向でもよい。分散流体の
流れ方向も図1Bに示すごとく必ずしも一定である必要
はなく、交互に流入と流出を繰り返してもよい。
In the present invention, the flow of the fluid is shown in parallel with the parallel magnetic field and the columnar oriented chain particle group 3 in FIG. 1B, but it is not always required to be parallel and is required for the columnar oriented chain particle group 3. It is also possible to flow the fluid at an angle of, and the same effect can be expected. However, when the fluid flows in parallel with the columnar chain, there is an advantage that the flow resistance is minimized. The external magnetic field does not necessarily have to be a parallel magnetic field, and may have any orientation as long as the magnetic material powder particles can be aggregated to form a columnar oriented chain particle group. The flow direction of the dispersed fluid does not necessarily have to be constant as shown in FIG. 1B, and inflow and outflow may be alternately repeated.

【0021】以下に、分離装置の一構成例を説明する。
処理容器1の収納空間内には磁性材料粉末2が収納され
るが、処理容器1の底面及び上面にはそれぞれ流路孔
4,5が多数穿孔配列され、収納空間内の流路孔4,5
に面する箇所には後述の外部磁界によって磁性粒子が当
該流路孔4,5内に入り込むのを防止するための濾材
6,7が配置してある。この処理容器1は、磁気回路を
構成する箱型ヨーク10の中心部に配置されるが、ここ
ではヨーク10の中心部に貫通配置する下部配管11と
上部配管12との間に嵌入配置され、流路孔4,5が各
々下部配管11と上部配管12に連通している。また、
箱型ヨーク10には処理容器1の上下に一対の電磁コイ
ル13,14が配置され、容器1内に所定の磁界を印加
可能にしてある。磁気回路には電磁石式、永久磁石式な
ど公知のいずれのものも適用できる。
An example of the configuration of the separating device will be described below.
The magnetic material powder 2 is stored in the storage space of the processing container 1, and a large number of flow path holes 4 and 5 are arranged on the bottom surface and the upper surface of the processing container 1, respectively. 5
Filter media 6 and 7 for preventing the magnetic particles from entering the flow path holes 4 and 5 due to an external magnetic field described later are arranged at the locations facing the. The processing container 1 is arranged at the center of a box-shaped yoke 10 that constitutes a magnetic circuit. Here, the processing container 1 is fitted and arranged between a lower pipe 11 and an upper pipe 12 which penetrate through the center of the yoke 10. The flow path holes 4 and 5 communicate with the lower pipe 11 and the upper pipe 12, respectively. Also,
In the box-shaped yoke 10, a pair of electromagnetic coils 13 and 14 are arranged above and below the processing container 1 so that a predetermined magnetic field can be applied inside the container 1. Any known magnetic circuit such as an electromagnet type or a permanent magnet type can be applied to the magnetic circuit.

【0022】作用を説明すると、処理容器1に収納され
た分散媒流体中に混合された磁性材料粉末2に電磁コイ
ル13,14に所定の電流をかけて外部磁界を作用させ
ると、図1Bに示すごとく、磁界イ、ロで拘束された配
向連鎖粒子群3を形成し、この状態のまま該粒子群3
に、この磁界に平行な方向に下から上へ、すなわち、流
路孔4から流路孔5へと流れる流体を作用させると、粒
子径にかかわらず連結力の弱い粒子のみを選択的に分離
し除去することができる。従って、上下の濾材6,7の
メッシュを適宜選定することにより、連結力の弱い粒子
を流路孔5から上部配管12へと排出させることができ
る。
The operation will be described. When a predetermined current is applied to the magnetic coils 13 and 14 of the magnetic material powder 2 mixed in the dispersion medium fluid contained in the processing container 1 to cause an external magnetic field to act, FIG. As shown, the oriented chain particle group 3 constrained by the magnetic fields a and b is formed, and the particle group 3 remains in this state.
When a fluid flowing from the bottom to the top in the direction parallel to the magnetic field, that is, from the flow path hole 4 to the flow path hole 5 is applied, only particles having a weak coupling force are selectively separated regardless of the particle diameter. Can be removed. Therefore, by appropriately selecting the meshes of the upper and lower filter media 6 and 7, particles having a weak coupling force can be discharged from the flow path hole 5 to the upper pipe 12.

【0023】また、図2の構成の分離装置において、連
続操業に使用するには、処理容器1を交換可能にして、
所定のインターバルで未分離の磁性材料粉末の入った処
理容器1と交換する方式とするか、あるいは図3に示す
ごとく、磁性性材料粉末と流体の混合流体を配管20で
流し、その途中に処理容器1を設置し、下部配管11と
上部配管12から流体を流入あるいは流出させることに
より、連続的な分離処理を実施することができる。この
際、該混合流体は連続的に流してもよいが、断続的に流
して処理容器1内部での滞留時間を長くして分離を安定
させることにより効果的な分離処理を実現できる。
Further, in the separating apparatus having the structure shown in FIG. 2, in order to use it for continuous operation, the processing container 1 is made replaceable,
The method is such that the processing container 1 containing the unseparated magnetic material powder is replaced at a predetermined interval, or as shown in FIG. 3, a mixed fluid of the magnetic material powder and the fluid is flown through a pipe 20, and processing is performed in the middle thereof. A continuous separation process can be carried out by installing the container 1 and allowing the fluid to flow in or out from the lower pipe 11 and the upper pipe 12. At this time, the mixed fluid may be allowed to flow continuously, but it is possible to realize an effective separation process by making it flow intermittently to prolong the residence time in the processing container 1 and stabilize the separation.

【0024】以上に述べたこの発明方法により、実用上
問題のない程度にまで磁性材料粉末の選択的分離が可能
ではあるが、より効率を上げるために外部磁界に時間的
あるいは空間的変化を与えることによって配向連鎖粒子
群、すなわち、柱状の磁性粒子の連鎖状態を変化させる
ことは有効である。例えば、外部磁界の強度に強弱を繰
り返し与えること、外部磁界の方向を繰り返し変化させ
ること、外部磁界を繰り返し移動させることなどは、磁
性粒子の連鎖を変化させ、選択的に除去したい磁性の弱
い粒子をより効率よく流体の流れに曝すことが可能で、
これにより分離の効率が向上する。但し、いずれの場合
においても、外部磁界により磁性粒子を拘束した状態で
除去したい粒子を流出させることは言うまでもない。
By the method of the present invention described above, it is possible to selectively separate the magnetic material powder to the extent that there is no problem in practical use, but in order to improve the efficiency, the external magnetic field is changed temporally or spatially. Therefore, it is effective to change the chain state of the oriented chain particle group, that is, the columnar magnetic particles. For example, repeatedly giving strength to the strength of the external magnetic field, repeatedly changing the direction of the external magnetic field, repeatedly moving the external magnetic field, etc. changes the chain of magnetic particles, and particles with weak magnetism to be selectively removed. Can be exposed to the flow of fluid more efficiently,
This improves the efficiency of separation. However, in any case, it goes without saying that the particles to be removed are allowed to flow out while the magnetic particles are bound by the external magnetic field.

【0025】また、この発明において、外部磁界の強度
と流体の流速は磁性材料の磁性粒子を選択的に分離する
際の制御変数となり、また流体の特性、例えば、流体
種、温度や粘度、密度そして処理時間等も分離条件を左
右する項目であり、分離後の所望の特性に合わせてこれ
らの条件を設定する必要がある。また、分離装置の濾材
や配管手段は、流体種、設定する流速、温度や粘度によ
り適宜選定され、濾材には、市販の織布やフェルト等が
利用でき、また、ろ紙を重ねて使用すると経済的であ
る。分散流体は磁性材料の材質に応じて適宜選定される
が、フェライト磁石用磁性材料の場合、水のほか、エチ
レングリコール水溶液、エチルアルコール水溶液、メチ
ルセルロース水溶液などが好ましい。
Further, in the present invention, the strength of the external magnetic field and the flow velocity of the fluid serve as control variables when selectively separating the magnetic particles of the magnetic material, and the characteristics of the fluid, such as fluid type, temperature, viscosity and density. The processing time and the like also affect the separation conditions, and it is necessary to set these conditions in accordance with the desired characteristics after separation. In addition, the filter material and piping means of the separation device are appropriately selected according to the fluid type, the set flow rate, the temperature and the viscosity, and commercially available woven cloth, felt, etc. can be used as the filter material. Target. The dispersion fluid is appropriately selected according to the material of the magnetic material, but in the case of the magnetic material for the ferrite magnet, water, ethylene glycol aqueous solution, ethyl alcohol aqueous solution, methyl cellulose aqueous solution, etc. are preferable.

【0026】[0026]

【実施例】【Example】

実施例1 直径50mm、深さ15mmの円筒状の処理容器に重量
百分率で42%のSrフェライト混合水を充填し、図2
に示す構成と同様の装置を用いて、該容器の中心軸方向
にほぼ平行な磁場を作用させた。この時の磁界強度は中
心で約4000Oeであった。これにより深さ方向にフ
ェライト粒子は配列し、配向連鎖粒子群を形成した。処
理容器の上下面の直径50mmの蓋部には、直径2mm
の流入及び流出孔が2mm間隔で穿孔してあり、フェラ
イト混合物に接する面には5μm以下の粒子を通す濾布
を設置した。
Example 1 A cylindrical processing container having a diameter of 50 mm and a depth of 15 mm was filled with 42% by weight of Sr ferrite mixed water in a weight percentage, and FIG.
A magnetic field substantially parallel to the central axis direction of the container was applied by using the same device as the structure shown in FIG. The magnetic field strength at this time was about 4000 Oe at the center. As a result, ferrite particles were arranged in the depth direction to form a group of oriented chain particles. 2 mm in diameter for the 50 mm diameter lid on the top and bottom of the processing container
The inflow and outflow holes of No. 2 were perforated at 2 mm intervals, and a filter cloth for passing particles of 5 μm or less was placed on the surface in contact with the ferrite mixture.

【0027】上記の流入孔から毎分1000ccの流量
で水を1分間流入させて分離処理したところ、流出した
流体はわずかに着色しており、微細粉末の分離がなされ
ていることを示していた。分離された粒子の粒度を測定
しようとしたが、磁気凝集ならびに粒子自体が微細であ
ることにより粒度を測定することが不可能であった。
When water was flown through the above-mentioned inflow hole at a flow rate of 1000 cc per minute for 1 minute for separation treatment, the fluid that flowed out was slightly colored, indicating that fine powder was separated. . Although it was attempted to measure the particle size of the separated particles, it was impossible to measure the particle size due to magnetic agglomeration and fine particles themselves.

【0028】このようにして磁性の弱い粒子を除去した
のち、容器からフェライト混合水を取り出し、成形荷重
450kgf/cm2にて通常の湿式プレス成形を実施
し、密度が3.25g/cm3の直径10mmのグリー
ン成形体を得た。これを乾燥した後、1220℃にて1
時間保持することにより焼結し、さらに15kOeの磁
界中で着磁することにより磁石とした。
After removing the weakly magnetic particles in this way, the ferrite-mixed water was taken out from the container, and ordinary wet press molding was carried out at a molding load of 450 kgf / cm 2 to obtain a density of 3.25 g / cm 3 . A green molded body having a diameter of 10 mm was obtained. After drying this, 1 at 1220 ℃
It was sintered by holding for a time and magnetized in a magnetic field of 15 kOe to obtain a magnet.

【0029】上述のごとく製作したこの発明による分離
を行った磁石と、この発明による分離をせずに、直接同
様の方法で成形そして焼結した磁石との磁石特性を比較
したところ、この発明の分離方法によるものは、残留磁
束密度が4.6kOe、保持力が3.3kOeであり、
本法によらない比較例に対して残留磁束密度で約10
%、保持力で約3%も向上したことが確認された。
When the magnet characteristics of the present invention manufactured as described above and separated according to the present invention and the magnet formed and sintered directly in the same manner without the separation according to the present invention were compared. The separation method has a residual magnetic flux density of 4.6 kOe and a coercive force of 3.3 kOe,
The residual magnetic flux density is about 10 compared to the comparative example not based on this method.
%, The holding power was confirmed to be improved by about 3%.

【0030】実施例2 さらに処理条件の影響を評価するため、実施例1におい
て、外部磁界による磁界強度、水の流量、処理時間そし
てフェライトの分散媒である流体を変化させて実験を行
い、得られた材料を実施例1と同様の方法にて成形焼結
して、その効果を残留磁束密度で評価した。その結果を
表1に示すが、磁界強度、水の流量は大きいほど、処理
時間は長いほど磁石特性としての残留磁束密度が上昇す
るが、ある値以上では残留磁束密度が上限となりそれ以
上変化しないことがわかる。また分散媒については粘度
の高い方が分離の効果が大きいことが確認された。
Example 2 Further, in order to evaluate the influence of the treatment conditions, an experiment was conducted by changing the magnetic field strength by the external magnetic field, the flow rate of water, the treatment time and the fluid as the dispersion medium of ferrite in Example 1 to obtain the results. The obtained material was compacted and sintered in the same manner as in Example 1, and the effect was evaluated by the residual magnetic flux density. The results are shown in Table 1. The larger the magnetic field strength and the flow rate of water, and the longer the treatment time, the higher the residual magnetic flux density as a magnet characteristic increases. However, at a certain value or more, the residual magnetic flux density becomes the upper limit and does not change further. I understand. It was also confirmed that the higher the viscosity of the dispersion medium, the greater the effect of separation.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】実施例に明らかなように、この発明の方
法を磁性材料の分離に用いることにより、磁性の弱い粒
子を選択的にしかも効率的に除去することが可能とな
り、これにより得られた磁石は特に残留磁気特性が大幅
に向上する。かかる発明による効果は、従来の方法では
事実上実現不可能であり、分散媒に混合された磁性材料
粉末に外部磁界を作用させて、磁界で拘束された配向連
鎖粒子群を形成し、これに所要の流体を作用させて連結
力の弱い粒子のみを選択的に分離し除去することにより
はじめて実現できるものである。
As is apparent from the examples, by using the method of the present invention for separating magnetic materials, it becomes possible to selectively and efficiently remove particles having weak magnetic properties. In particular, the remanent magnetism characteristic of the magnet is greatly improved. The effect of the invention is practically unrealizable by the conventional method, and an external magnetic field is applied to the magnetic material powder mixed in the dispersion medium to form a group of oriented chain particles constrained by the magnetic field. It can be realized only by causing a desired fluid to act and selectively separating and removing only particles having a weak coupling force.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1Aは外部磁界により磁性粒子が柱状に連鎖
結合している状態を示す説明図であり、同Bはその結合
状態を拡大し、連鎖に対して流体の流れを与えたこの発
明による分離方法の基本原理を示す説明図である。
FIG. 1A is an explanatory view showing a state in which magnetic particles are linked in a columnar shape by an external magnetic field, and FIG. 1B is an enlarged view of the binding state to give a fluid flow to the chain. It is explanatory drawing which shows the basic principle of the separation method by.

【図2】この発明による分離装置の一例を示す縦断説明
図である。
FIG. 2 is a vertical cross sectional view showing an example of a separation device according to the present invention.

【図3】この発明による分離方法を連続的に行う分離装
置の概念を示す説明図である。
FIG. 3 is an explanatory view showing the concept of a separation device for continuously performing the separation method according to the present invention.

【符号の説明】[Explanation of symbols]

1 処理容器 2 磁性材料粉末 3 配向連鎖粒子群 4,5 流路孔 6,7 濾材 10 ヨーク 11 下部配管 12 上部配管 13,14 電磁コイル イ,ロ 磁界 20 配管 DESCRIPTION OF SYMBOLS 1 Processing container 2 Magnetic material powder 3 Oriented chain particle group 4,5 Flow path hole 6,7 Filter medium 10 Yoke 11 Lower pipe 12 Upper pipe 13,14 Electromagnetic coil A, Magnetic field 20 Pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流体の分散媒に混合された磁性材料粉末
に対して、該材料中の磁性粒子が連鎖状に連結して拘束
固定されるように外部磁界を作用させた状態で、磁界で
拘束された配向連鎖粒子群に対して相対的な流速を有す
る流体を流し、配向連鎖粒子群を含む磁性材料粉末中よ
り連結力の弱い粒子を選択的に分離し除去することを特
徴とする磁性材料の選択的分離方法。
1. A magnetic field is applied to a magnetic material powder mixed with a dispersion medium of a fluid in a state where an external magnetic field is applied so that the magnetic particles in the material are linked and constrained and fixed in a chain form. A magnetism characterized by causing a fluid having a flow velocity relative to a constrained group of oriented chain particles to flow to selectively separate and remove particles having a weak coupling force from the magnetic material powder containing the group of oriented chain particles. Selective separation of materials.
【請求項2】 請求項1において、分散媒に混合された
磁性材料粉末を収容可能な容器と、容器内の分散媒流体
を所要方向に流下可能にした配管手段と、容器内の分散
媒流体流れに平行な磁界を印加可能な磁気回路を有する
ことを特徴とする磁性材料の選択的分離装置。
2. The container according to claim 1, which can accommodate the magnetic material powder mixed with the dispersion medium, the piping means capable of flowing the dispersion medium fluid in the container in a desired direction, and the dispersion medium fluid in the container. A selective separation device for magnetic material, comprising a magnetic circuit capable of applying a magnetic field parallel to a flow.
JP7081700A 1995-03-13 1995-03-13 Selective separation of magnetic material and device therefor Pending JPH08243431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7081700A JPH08243431A (en) 1995-03-13 1995-03-13 Selective separation of magnetic material and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7081700A JPH08243431A (en) 1995-03-13 1995-03-13 Selective separation of magnetic material and device therefor

Publications (1)

Publication Number Publication Date
JPH08243431A true JPH08243431A (en) 1996-09-24

Family

ID=13753663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7081700A Pending JPH08243431A (en) 1995-03-13 1995-03-13 Selective separation of magnetic material and device therefor

Country Status (1)

Country Link
JP (1) JPH08243431A (en)

Similar Documents

Publication Publication Date Title
US4190524A (en) Magnetic separators
US8142892B2 (en) Tailored magnetic particles comprising a non-magnetic component and a magnetic core-shell component, and method to produce same
CA1074261A (en) Density classifier using ferro-paramagnetic slurry medium
Stephens et al. Analytical methods for separating and isolating magnetic nanoparticles
Svoboda The effect of magnetic field strenght on the efficiency of magnetic separation
CN114100704B (en) Magnetic separation micro-fluidic chip and manufacturing method thereof
CN106061615B (en) Dense media separation process
US4544482A (en) Apparatus for extracting magnetizable particles from a fluid medium
JP5704618B2 (en) Method and apparatus for separating mixture
Iacob et al. Experimental observations on the saturation mass in the capture process of an ordered transverse high gradient magnetic separation matrix
EP2809448A1 (en) Separation of luminescent nanomaterials
Dean et al. Magnetic separation of ores
JPH08243431A (en) Selective separation of magnetic material and device therefor
CA1036981A (en) Magnetic separation
US2902153A (en) Particle separation utilizing a magnetized fluid
JP2002537096A (en) Ferrohydrostatic separation method and apparatus
Freeman et al. The progress of the magnetic hydrocyclone
CA1046450A (en) Method of separating particles of relatively high magnetic susceptibility from particles of relatively low magnetic susceptibility in a fluid
Wang et al. The recovery of hematite and chromite fines and ultrafines by wet magnetic methods
Friedlaender et al. Status of magnetic separation
JP2005140501A (en) Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance
JPS58501662A (en) Apparatus and method for magnetic sorting
JPS5853926B2 (en) Jikibunrihouhou
JPS58145623A (en) Purification of magnetic fluid
Takeda et al. Development of a colloid chemical process for magnetic seeding to organic dye