JPS6239611A - Production of thermoplastic resin - Google Patents

Production of thermoplastic resin

Info

Publication number
JPS6239611A
JPS6239611A JP17860785A JP17860785A JPS6239611A JP S6239611 A JPS6239611 A JP S6239611A JP 17860785 A JP17860785 A JP 17860785A JP 17860785 A JP17860785 A JP 17860785A JP S6239611 A JPS6239611 A JP S6239611A
Authority
JP
Japan
Prior art keywords
elastomer
weight
parts
graft
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17860785A
Other languages
Japanese (ja)
Inventor
Satoshi Ishii
聡 石井
Tomoyuki Kitsunai
橘内 智之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP17860785A priority Critical patent/JPS6239611A/en
Publication of JPS6239611A publication Critical patent/JPS6239611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the titled resin having improved heat resistance, impact strength and modability, by graft copolymerizing a graft polymerizable elastomer with a monomer mixture by a method for adding the above-mentioned elastomer to the reaction system in divided portions before and after the phase inversion and imidating the resultant polymer. CONSTITUTION:(A) 10-90wt%, based on the total amount to be used in a reaction, graft polymerizable elastomer is first added to the reaction system, and the remainder is added thereto after the phase inversion. Thereby, 60-95pts. wt. mixture consisting of (B) 50-90wt% aromatic vinyl monomer, preferably styrene, (C) 5-40wt% unsaturated dicarboxylic acid anhydride, preferably maleic anhydride and (D) 0-30wt% vinyl monomer copolymerizable therewith, preferably acrylic acid is graft polymerized with 5-40pts.wt. component (A). The resultant polymer is then imidated with ammonia and/or a tertiary amine, preferably aniline to afford the aimed resin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エラストマーにグラフトした芳香族ビニル単
量体と、不飽和ジカルボン酸を主成分とする共重合体中
の酸無水物残基をイミド化せしめたイミド化共重合体よ
り成る熱可塑性樹脂の製造方法に関し、本発明により得
られる熱可塑性樹脂を含有して成る熱可塑性樹脂組成物
は、耐熱性、衝撃強度および成形性に優れ、自動車部品
、電気、電子部品、事務用機器部品、家庭電気部品、医
療機器部品、カメラ部品等に好ましく用いることができ
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for combining an aromatic vinyl monomer grafted onto an elastomer and an acid anhydride residue in a copolymer mainly composed of an unsaturated dicarboxylic acid. Regarding the method for producing a thermoplastic resin made of an imidized copolymer, the thermoplastic resin composition containing the thermoplastic resin obtained by the present invention has excellent heat resistance, impact strength, and moldability, It can be preferably used for automobile parts, electrical and electronic parts, office equipment parts, household electrical parts, medical equipment parts, camera parts, etc.

(従来の技術) 従来から芳香族ビニル単量体、無水マレイン酸および他
のビニル単量体よりなる共重合体の製造法(特公昭40
−15829号、特公昭45−31953号、特公昭4
9 ’−10156号)が知られている。またグラフト
重合性エラストマーに無水マレイン酸、芳香族ビニル単
量体および/又はこれらと共重合可能なビニル単量体を
グラフト重合させた耐衝撃性を改良した熱可塑性共重合
体の製造法も提案されている(特開昭48−42091
号、特開昭49−28693号、特開昭53−7825
2号、特開昭5 :3−80490号)。
(Prior art) A method for producing a copolymer consisting of an aromatic vinyl monomer, maleic anhydride and other vinyl monomers (Japanese Patent Publication No. 40
-15829, Special Publication No. 45-31953, Special Publication No. 4
No. 9'-10156) is known. We also proposed a method for producing a thermoplastic copolymer with improved impact resistance by graft polymerizing maleic anhydride, an aromatic vinyl monomer, and/or a vinyl monomer copolymerizable with these onto a graft-polymerizable elastomer. (Japanese Patent Application Laid-Open No. 48-42091
No., JP-A-49-28693, JP-A-53-7825
No. 2, Japanese Unexamined Patent Publication No. 5:3-80490).

しかし、これら無水マレイン酸を共重合した重合体は、
高い熱変形温度を有しているが、いずれの場合も共重合
体は熱水により分解し易く、また熱によってゲル化およ
び発泡し易いという欠点を持つため、射出または押出加
工する際に著しい制約がありミ又加工品を六叉;ま水蒸
気に接触させたり、高温下にさらしたりすると、機械的
特性、特に衝撃強度が低下するという欠点があった。
However, these copolymerized maleic anhydride polymers are
Although it has a high heat distortion temperature, in both cases the copolymer has the disadvantage of being easily decomposed by hot water and easily gelling and foaming due to heat, so there are significant restrictions when injection or extrusion processing is performed. However, when a processed product is brought into contact with water vapor or exposed to high temperatures, the mechanical properties, particularly the impact strength, deteriorate.

これらの欠点を改良する目的で無水マレイン酸をマレイ
ミド誘導体に置きかえた共重合体の製造法および組成物
も提案されている(米国特許第3651171号、米国
特許第3652726号、特開昭57−98536号)
In order to improve these drawbacks, methods and compositions for producing copolymers in which maleic anhydride is replaced with maleimide derivatives have also been proposed (U.S. Pat. No. 3,651,171, U.S. Pat. No. 3,652,726, JP-A-57-98536). issue)
.

(発明が解決しようとする問題点) しかしながらこれら共重合体又は組成物は耐熱安定性お
よび耐熱水性は改良されたものの未だ衝撃強度および成
形性において不十分であるという欠点がある。
(Problems to be Solved by the Invention) However, although these copolymers or compositions have improved heat stability and hot water resistance, they still have the drawback of being insufficient in impact strength and moldability.

(問題点を解決するための手段) 本発明はかかる欠点を解決したものであり、クラフト重
合において使用するグラフト重合性エラストマーを転相
の前後に分けて添加することにより、耐熱性はもとより
衝撃強度および成形性にも優れた熱可塑性樹脂を提供し
ようとする。ものであ旧館に芳香族ビニル単量体50〜
90重量%、不飽和ジカルボン酸無水物5〜40重里%
、およびこれらと共重合可能なビニル単量体0〜30重
量%からなる単量体混合物60〜95重量部をグラフト
重合させた後、アンモニアおよび/または第1級アミン
でイミド化せしめて熱可塑性(封脂を製造する方法にお
いて、グラフト重合において使用するエラストマー全量
の10〜90重量%を転相前に添加し、残りの90〜1
0重量%のエラストマーを転ト目後に添加してグラフト
重合を行なうことを特徴とする熱可塑性樹脂の製造方法
である。
(Means for Solving the Problems) The present invention solves these drawbacks, and by adding the graft polymerizable elastomer used in kraft polymerization separately before and after phase inversion, it improves not only heat resistance but also impact strength. The present invention aims to provide a thermoplastic resin that also has excellent moldability. Aromatic vinyl monomer 50~ in the old building
90% by weight, unsaturated dicarboxylic anhydride 5-40%
, and 60 to 95 parts by weight of a monomer mixture consisting of 0 to 30% by weight of a vinyl monomer copolymerizable with these, and then imidized with ammonia and/or a primary amine to form a thermoplastic material. (In a method for producing sealants, 10 to 90% by weight of the total amount of elastomer used in graft polymerization is added before phase inversion, and the remaining 90 to 1% by weight is added to the total amount of elastomer used in graft polymerization.
This is a method for producing a thermoplastic resin, characterized in that 0% by weight of an elastomer is added after rolling to carry out graft polymerization.

本発明方法によれば、エラストマーのグラフト効率が従
来法に比しがなり低いグラフト体が得られる。要するに
グラフト効率の異なるエラストマーによって耐熱性はも
とより衝撃強度および成形性にも涜れた熱可塑性樹脂が
得られるものと推定される。
According to the method of the present invention, a grafted body can be obtained in which the grafting efficiency of the elastomer is lower than that of the conventional method. In short, it is presumed that thermoplastic resins with poor heat resistance, impact strength, and moldability can be obtained by using elastomers with different graft efficiencies.

本発明に用いられるグラフト重合性エラストマーとして
はブクシエン重合体、ブタジェンと共重合可能なビニル
単量体との共重合体、エチレン−プロピレン共F4i合
体、エチレン−プロピレン−ジエン共重合体、ブタジェ
ンと芳香族ビニルとのブロック共重合体、アクリル酸エ
ステル重合体およびアクリル酸エステルとこれと共重合
可能なビニル単量体との共重合体等が用いられる。
The graft-polymerizable elastomers used in the present invention include a buxene polymer, a copolymer of butadiene and a copolymerizable vinyl monomer, an ethylene-propylene co-F4i polymer, an ethylene-propylene-diene copolymer, and a butadiene and aromatic copolymer. Block copolymers with group vinyl, acrylic ester polymers, and copolymers of acrylic esters with vinyl monomers copolymerizable therewith are used.

芳香族ビニル単量体としてはスチレン、α−メチルスチ
レン、ビニルトルエン、t−ブチルスチレン、クロロス
チレン等のスチレン単量体およびその置換単量体および
それらの混合物であり、これらの中でスチレンが特に好
ましい。不飽和シカ/l/ ホン酸無水物としてはマレ
イン酸、イタコン酸、シトラコン酸、アコニ・・ノド酸
等の無水物およびそれらの混合物であり、マレイン酸無
水物が特に好ましい。またこれらと共重合可能なビニル
単量体としてはアクリロニトリル、メタクリロニトリル
、。
Examples of aromatic vinyl monomers include styrene monomers such as styrene, α-methylstyrene, vinyltoluene, t-butylstyrene, and chlorostyrene, substituted monomers thereof, and mixtures thereof; among these, styrene is Particularly preferred. The unsaturated acid anhydride includes anhydrides such as maleic acid, itaconic acid, citraconic acid, aconi-nodic acid, and mixtures thereof, with maleic anhydride being particularly preferred. Vinyl monomers that can be copolymerized with these include acrylonitrile and methacrylonitrile.

α−クロロアクリロニトリル等のシアン化ビニル単量体
、メチルアクリル酸エステル、エチルアクリル酸エステ
ル、ブチルアクリル酸エステル等のアクリル酸エステル
単1体、メチルメタクリル酸エステル、エチルメタクリ
ル酸エステル等のメタクリル酸エステル単量体、アクリ
ル酸、メタクリル酸等のビニルカルボン酸単量体、アク
リル酸アミド、メタクリル酸アミド、アセナフチレン及
びN−ビニルカルバゾール等およびそれらの混合物であ
って、これらの中でアクリロニトリノベメタクリル酸エ
ステル、アクリル酸、メタクリル酸などの単量体が好適
である。
Vinyl cyanide monomers such as α-chloroacrylonitrile, single acrylic esters such as methyl acrylate, ethyl acrylate, and butyl acrylate, methacrylic esters such as methyl methacrylate and ethyl methacrylate monomers, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, acrylic acid amide, methacrylic acid amide, acenaphthylene and N-vinylcarbazole, and mixtures thereof, among which acrylonitrinobemethacrylic acid Monomers such as esters, acrylic acid, methacrylic acid are preferred.

本発明においてグラフト重合性エラストマー含有量は熱
可塑性樹脂に要求される衝撃強度により、イミド化前の
共重合体を基準に5〜40重量%の範囲で選択すること
が出来る。グラフト重合性エラストマーの含有量が増加
すると、衝撃強度が向上するがグラフト重合性エラスト
マー含有量が40重量%を越えると最終的に得られる熱
可塑性樹脂の耐熱j生および成形加工性が悪く、また5
重量%未満では衝撃改良効果が不十分である。
In the present invention, the content of the graft polymerizable elastomer can be selected in the range of 5 to 40% by weight based on the copolymer before imidization, depending on the impact strength required of the thermoplastic resin. As the content of the graft polymerizable elastomer increases, the impact strength improves, but if the content of the graft polymerizable elastomer exceeds 40% by weight, the heat resistance and molding processability of the final thermoplastic resin are poor, and 5
If it is less than % by weight, the impact improving effect is insufficient.

本発明においてグラフト重合性エラストマーにグラフト
させる単量体は芳香族ビニル単量体50〜90重量%、
不飽和ジカルボン酸無水物5〜50重量%およびこれら
と共重合可能なビニル単量体0〜30重量%からなる混
合物であり、芳香族ビニル単量体が50重量%未満であ
ると芳香族ビニル化合物の特徴、特にスチレンの場合、
成形性および寸法安定性が失われる。また不飽和ジカル
ボン酸無水物が5重量%未満では耐熱性が十分でなく、
50重量%を越えると共重合体がもろくなりそして成形
性が著しく悪くなる。
In the present invention, the monomers to be grafted to the graft polymerizable elastomer include 50 to 90% by weight of aromatic vinyl monomers;
It is a mixture consisting of 5 to 50% by weight of an unsaturated dicarboxylic acid anhydride and 0 to 30% by weight of a vinyl monomer copolymerizable with these, and if the aromatic vinyl monomer is less than 50% by weight, it is an aromatic vinyl. Characteristics of compounds, especially in the case of styrene,
Formability and dimensional stability are lost. Furthermore, if the content of unsaturated dicarboxylic acid anhydride is less than 5% by weight, heat resistance is insufficient;
If it exceeds 50% by weight, the copolymer becomes brittle and its moldability deteriorates significantly.

芳香族ビニル単量体と不飽和ジカルボン酸無水物を共重
合するに邑っては、両者は交互共重合性が強いため後者
の消費速度が早いので不飽和ジカルボン酸無水物を重合
系に少量ずつ添加して共重合組成を均一化する方法も採
用し得る。又、意識的に共重合組成を不均一にして不飽
和ジカルボン酸無水物のプロ・ツクシーケンスを得る目
的で、不飽和ジカルボン酸無水物を重合系に重合期間中
断続的に添加する方法も採用し得る。しかしながら、使
用する不飽和ジカルボン酸無水物を反応の初期に全■添
加する方法は、不飽和ジカルボン酸伴水物の組成が20
重M%以下の低い場合には採用出来るが、それ以上不飽
和ジカルボン酸無水物の多い組成では、重合の初期に反
応が暴走し、重合系から不溶の不飽和ジカルボン酸含量
の多い交互共重合体に近い組成の物が析出して来るので
、これを避ける為には極端に除熱能力の高い反応博を用
いたり溶剤を多量に用いる必要がある為、経済的に不利
である。
When copolymerizing an aromatic vinyl monomer and an unsaturated dicarboxylic anhydride, since both have strong alternating copolymerizability, the consumption rate of the latter is fast, so a small amount of the unsaturated dicarboxylic anhydride is added to the polymerization system. It is also possible to adopt a method in which the copolymerization composition is made uniform by adding the components one by one. In addition, in order to intentionally make the copolymerization composition non-uniform and obtain a sequence of unsaturated dicarboxylic anhydrides, we also adopted a method in which unsaturated dicarboxylic anhydrides are added to the polymerization system intermittently during the polymerization period. It is possible. However, the method of adding all of the unsaturated dicarboxylic anhydride used at the beginning of the reaction is such that the composition of the unsaturated dicarboxylic acid anhydride is 20%.
It can be used if it is low (weight M% or less), but if the composition contains more unsaturated dicarboxylic anhydride, the reaction will run out of control in the early stage of polymerization, resulting in alternating copolymerization with a high content of insoluble unsaturated dicarboxylic acid from the polymerization system. Since substances having a composition similar to that of coalescence precipitate, in order to avoid this it is necessary to use a reaction mixture with extremely high heat removal ability or to use a large amount of solvent, which is economically disadvantageous.

不飽和ジカルボン酸無水物を重合系に添加する方法は不
飽和ジカルボン酸無水物の芳香7疾ビニル単量体溶液又
はその池の溶剤による溶液を調製して添加する方法、不
飽和ジカルボン酸無水物を溶融して添加する方法等いず
れの方法も採用し得る。
The unsaturated dicarboxylic anhydride can be added to the polymerization system by preparing and adding a solution of the unsaturated dicarboxylic anhydride in an aromatic vinyl monomer solution or its solvent; Any method can be adopted, such as a method of melting and adding.

本発明において、エラストマー添加の具体的方法として
は、例えば、回分式重合方法にあっては、使用するエラ
ストマーの10〜90重量%を転相前の反応の初期に添
加し、且つ、重合反応が進行し、エラストマーの転相が
起ってからエラストマーの残部即ち90〜10重量%を
重合系に添加する。
In the present invention, as a specific method for adding the elastomer, for example, in a batch polymerization method, 10 to 90% by weight of the elastomer to be used is added at the initial stage of the reaction before phase inversion, and the polymerization reaction is continued. After the process has proceeded and phase inversion of the elastomer has occurred, the remainder of the elastomer, i.e. 90-10% by weight, is added to the polymerization system.

ここにおける転相とは、ニジストマーが連続相を、モノ
“マー及びポリマー溶液が分散相を形成している状態か
ら、重合が進行し、モノマー及びポリマー溶液が連続相
をエラストマーが分散相を形成する状、熊への移行現象
をさす。転相現象は透明なエラストマー溶液が白濁する
現象及び重合の進行とともに上昇する系の粘度の急激な
変化、すなわち、系の粘度に極大値と極小値が現れるこ
とにより確認できる。ここにおいて転相前とは系の粘度
が極大値に達する前をさし、転相後とは系の粘度が極小
値に達した後をさす。転相後においてエラストマー分散
相はポリマー相を内包したいわゆる゛ハス状構造″とな
る。転相中すなわち、系の粘度が急激に低下する間のエ
ラストマー後添加は系が不安定となり好ましくない。こ
の添加の方法は、エラストマーの転相直後から連続的に
添加する方法、更に数分割して時間間隔をおいて添加す
る方法及び転相後の一時期に残部のエラストマーを添加
する方法等を選択することができる。
Phase inversion here means that polymerization progresses from a state in which the diistomer forms a continuous phase and the monomer and polymer solution form a dispersed phase, and the monomer and polymer solution form a continuous phase and the elastomer forms a dispersed phase. The phase inversion phenomenon refers to the phenomenon in which a transparent elastomer solution becomes cloudy and the rapid change in the viscosity of the system that increases with the progress of polymerization, i.e., the appearance of maximum and minimum values in the viscosity of the system. Here, "before phase inversion" refers to the time before the viscosity of the system reaches its maximum value, and "after phase inversion" refers to the time after the viscosity of the system reaches its minimum value.After the phase inversion, the elastomer dispersed phase becomes a so-called "helical structure" containing a polymer phase. Adding the elastomer after the phase inversion, that is, while the viscosity of the system is rapidly decreasing, is not preferred because the system becomes unstable. This addition method includes a method in which the elastomer is added continuously immediately after the phase inversion, a method in which the elastomer is added in several parts at time intervals, a method in which the remaining elastomer is added at a certain period after the phase inversion, etc. be able to.

又例えば連続式重合方法にあっては、使用するエラスト
マーの10〜90重量%を例えば第1(曹に連続的に添
加し転ト目させた後、且つ第2槽以降にエラストマーの
残部即ち90〜10重最96を連続的に添加する。この
添加方法は、第2槽以降の多槽に連続的に添加する方法
や第2槽以降の選択された1個以上の槽にのみ連続的に
添加する方法や、ピストンフローを示す連続横型反応槽
に一点又は多点に連続的に添加する方法その他が採用さ
れる。重合反応の温度は50℃〜180℃の範囲が適当
で、それ以下では重合温度が遅すぎて反応に長時間かか
り過ぎるし、それ以上では重合速度が早すぎて、暴走反
応を起こし易く危険である。
For example, in a continuous polymerization method, 10 to 90% by weight of the elastomer to be used is added continuously to the first (soda) and turned over, and the remainder of the elastomer, i.e. 90% by weight, is Continuously add up to 10 layers of 96. This addition method can be used to continuously add to multiple tanks after the second tank or only to one or more selected tanks after the second tank. Addition methods, methods of continuous addition at one point or multiple points in a continuous horizontal reaction tank exhibiting piston flow, and other methods are adopted.The temperature for the polymerization reaction is suitably in the range of 50°C to 180°C; If the polymerization temperature is too low, the reaction takes too long, and if it is higher than that, the polymerization rate is too fast and a runaway reaction is likely to occur, which is dangerous.

重合温度が100℃以上の高温では、無触媒でスチレン
の熱ラジカル開始によるいわゆる熱グラフト重合も行な
い得るが、ベンゾイルパーオキサイド、ラウロイルパー
オキサイド、ジクミルパーオキサイドの如き過酸化物触
媒やアゾビスイソブチロニトリルの如きラジカル開始剤
を用いて通常のラジカルグラフト重合を行なうことも勿
論可能である。
At high polymerization temperatures of 100°C or higher, so-called thermal graft polymerization can be carried out without a catalyst by thermal radical initiation of styrene; Of course, it is also possible to carry out conventional radical graft polymerization using a radical initiator such as butyronitrile.

又重合プロセスは竪型重合槽等を一段又は多段で用いた
回分式プロ、−1ス、或は竪型又は横型重合装置を一段
又は多段に連結した連続式プロセスのいずれも採用し得
る。必要に応じて、抗酸化剤、紫外線吸収剤、滑剤、可
塑剤及び着色剤等の添加物を重合前、重合中又は重合後
に適宜添加することができる。
The polymerization process may be a batch process using a vertical polymerization tank or the like in one or more stages, a -1 stage process, or a continuous process in which vertical or horizontal polymerization apparatuses are connected in one or more stages. If necessary, additives such as antioxidants, ultraviolet absorbers, lubricants, plasticizers, and colorants can be added as appropriate before, during, or after polymerization.

本発明のイミド化反応に用いるアンモニアや第1級アミ
ンは無水又は水溶液のいずれの状態であってもよく、ま
た第1級アミンの例としてメチルアミン、エチルアミン
、n−プロピルアミン、イソプロピルアミン、ブチルア
ミン、ペンチルアミン、シクロヘキシルアミン等のアル
キルアミン、およびこれらのクロル又はブロム置換アル
キルアミン、アニリン、トリルアミン、ナフチルアミン
等の芳香族アミンおよびクロルまたはブロム置換アニリ
ン等のハロゲン置換芳香族アミン及びそれらの混合物が
あげられ、これらの中でアニリンが特に好ましい。
Ammonia and primary amines used in the imidization reaction of the present invention may be in either an anhydrous or aqueous state, and examples of primary amines include methylamine, ethylamine, n-propylamine, isopropylamine, and butylamine. , pentylamine, cyclohexylamine, and their chlor- or bromo-substituted alkyl amines; aromatic amines such as aniline, tolylamine, naphthylamine; and halogen-substituted aromatic amines such as chloro- or bromo-substituted aniline; and mixtures thereof. Among these, aniline is particularly preferred.

本発明においてゴム状重合体−芳香族ビニルー不飽和ジ
カルボン酸無水物系共重合体をアンモニア及び/又は第
1級アミンによりイミド−化する際に角市媒を存在させ
てもよく、通常第3級アミンが用いられる。
In the present invention, when the rubbery polymer-aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer is imidized with ammonia and/or primary amine, a corner solvent may be present, and usually a tertiary solvent may be present. grade amines are used.

イミド化反応を溶液状態又は懸濁状態で行なう場合は通
常の反応容器、例えばオートクレーブなどを用いるのが
好ましく、塊状溶融状態で行なう場合は脱揮装置の付い
た押出機を用いてもよい。
When the imidization reaction is carried out in a solution or suspension state, it is preferable to use a conventional reaction vessel such as an autoclave, and when it is carried out in a bulk molten state, an extruder equipped with a devolatilization device may be used.

イミド化反応の温度は約80〜350℃であり、好まし
くは100〜300℃である。80℃未満の場合には反
応速度が遅く、反応に長時間を要し実用的でない。一方
350℃を越える場合には重合体の熱分解による物性低
下をきたす。
The temperature of the imidization reaction is about 80 to 350°C, preferably 100 to 300°C. If the temperature is lower than 80°C, the reaction rate is slow and the reaction takes a long time, which is not practical. On the other hand, if the temperature exceeds 350°C, the physical properties will deteriorate due to thermal decomposition of the polymer.

以上に説明した方法によって製造される無水マレイン酸
系共重合体のイミド化共重合体は高い熱変形温度を保持
しつつ、水又は熱に対しても高度の安定性を有し、かつ
耐衝撃性および成形性においても優れたものである。
The imidized copolymer of maleic anhydride copolymer produced by the method described above maintains a high heat distortion temperature, has high stability against water and heat, and has impact resistance. It also has excellent properties and moldability.

このイミド化共重合体はスチレン−アクリロニトリル共
重合体(S A N tl脂)、アクリロニトリル−ブ
タジェン−スチレン共重合体(A B S +flt 
脂)アクリロニトリル−ブタジェン−スチレン−α−メ
チルスチレン共重合体、アクリロニトリル−アクリル系
ゴム−スチレン共重合体、アクリロニトリル−エチレン
プロピレン系ゴム−スチレン共重合体、スチレン−メチ
ルメタクリレート共重合体、メチルメタクリレート−ブ
タジェン−スチレン共重合体、芳香族ポリカーボネート
、芳香族ポリエステル、ポリフェニレンオキサイ、ド、
およびスチレン変性ポリフェニレンオキサイド等と混合
することも出来る。特にABS樹脂との混合物は耐衝撃
性および成形性の点で好ましい。また更に安定剤、難燃
剤、可塑剤、滑剤、充填剤、着色剤等を添加することも
出来る。
This imidized copolymer is styrene-acrylonitrile copolymer (SA N tl resin), acrylonitrile-butadiene-styrene copolymer (A B S + flt
Acrylonitrile-butadiene-styrene-α-methylstyrene copolymer, acrylonitrile-acrylic rubber-styrene copolymer, acrylonitrile-ethylenepropylene rubber-styrene copolymer, styrene-methyl methacrylate copolymer, methyl methacrylate copolymer butadiene-styrene copolymer, aromatic polycarbonate, aromatic polyester, polyphenylene oxide, do,
It can also be mixed with styrene-modified polyphenylene oxide, etc. In particular, a mixture with ABS resin is preferred in terms of impact resistance and moldability. Furthermore, stabilizers, flame retardants, plasticizers, lubricants, fillers, colorants, etc. can also be added.

(実施例) 以下に実施例を掲げて本発明を説明するが、本発明はこ
れに限是されるものではない。実施例中の部および%は
特記のない限りいずれも重量基準で表わした。
(Example) The present invention will be described below with reference to Examples, but the present invention is not limited thereto. All parts and percentages in the examples are expressed on a weight basis unless otherwise specified.

実施例1 攪拌器を備えたオートクレーブ中にスチレン(以下St
と略)60部、メチルエチルケトン(以下MEKと略)
30部、小片状に切断したポリブタジェン(旭化成工業
■製、ジエンNF35R)12部を仕込み、系内を窒素
ガスで置換した後、室温で一昼夜攪拌しゴムを溶解させ
た。温度を80℃とした後、無水マレイン酸(以下MA
!−!と略)40部とベンゾイルパーオキサイド0.0
9部、アゾビスイソブチロニトリル0.09部をMEK
250部に溶解した溶液を8時間で連続的に添加した。
Example 1 Styrene (hereinafter St) was placed in an autoclave equipped with a stirrer.
) 60 parts, methyl ethyl ketone (hereinafter abbreviated as MEK)
30 parts of polybutadiene cut into small pieces (Diene NF35R, manufactured by Asahi Kasei Corporation) were charged, and after purging the system with nitrogen gas, the mixture was stirred at room temperature all day and night to dissolve the rubber. After setting the temperature to 80°C, maleic anhydride (hereinafter MA
! -! abbreviated) 40 parts and benzoyl peroxide 0.0
9 parts and 0.09 parts of azobisisobutyronitrile in MEK.
A solution of 250 parts was added continuously over 8 hours.

重合液の粘度を注射針の落下速度により測定した。粘度
はMAH溶液の添加開始とともに上昇し、2時間目に極
大値を示した後低下し、2.5 時間目に極小液となっ
た後は、徐々に経時的に上昇した。
The viscosity of the polymerization solution was measured by the falling speed of the injection needle. The viscosity increased with the start of addition of the MAH solution, reached a maximum value at 2 hours, then decreased, became a minimal liquid at 2.5 hours, and then gradually increased over time.

これによって相転移を確認した。This confirmed the phase transition.

添加開始から5時間目に、ポリブタジェン3部をトルエ
ン50部に溶解した溶液を約10分間かけて加えた。M
AH溶液の添加終了後さらに4時間温度を80℃に保っ
た。粘調な反応液の一部をサンプリングしてガスクロマ
トグラフィーにより未反応単量体の定量を行ない重合率
を測定した結果、5t96%、MAH99%であった。
Five hours after the start of the addition, a solution of 3 parts of polybutadiene dissolved in 50 parts of toluene was added over about 10 minutes. M
After the addition of the AH solution was complete, the temperature was maintained at 80° C. for an additional 4 hours. A portion of the viscous reaction solution was sampled and the amount of unreacted monomer was determined by gas chromatography to determine the polymerization rate, which was found to be 5t96% and MAH99%.

この重合液にアニリン37部、トリエチルアミン1部を
加え140℃で7時間反応させた。反応溶液を90℃ま
で冷却し、激しく攪拌したメタノール1000部に注ぎ
、析出、濾別、乾燥してイミド化共重合体を得た。C−
C−13部分析より酸無水物基のイミド基への転化率は
96%であった。
To this polymerization solution, 37 parts of aniline and 1 part of triethylamine were added and reacted at 140°C for 7 hours. The reaction solution was cooled to 90° C., poured into 1000 parts of vigorously stirred methanol, precipitated, filtered, and dried to obtain an imidized copolymer. C-
Analysis of C-13 showed that the conversion rate of acid anhydride groups to imide groups was 96%.

このようにして得られたイミド化共重合体60部とアク
リロニトリル−スチレン系(封脂(電気化学工業@製、
H3−300)40部をブレンドし、このブレンド物を
脱揮装置付スクリュー押出機により押出し、ペレット化
した。ブレンド物にはトリステアリルフォスファイト1
部およびオクタデシル3−(35−ジターシャリブチル
−4−ヒドロキシフェニル)−プロピオネート0.3部
を含有させた。
60 parts of the imidized copolymer thus obtained and acrylonitrile-styrene based sealant (manufactured by Denki Kagaku Kogyo @,
40 parts of H3-300) were blended, and this blend was extruded using a screw extruder equipped with a devolatilization device to pelletize. Tristearylphosphite 1 in the blend
part and 0.3 part of octadecyl 3-(35-ditertiarybutyl-4-hydroxyphenyl)-propionate.

実施例2 ポリブタジェンのトルエン溶液の添加をM A R溶液
の添加終了後すぐに10分間かけて加えたほかは実施例
1と同様の操作を行なった。
Example 2 The same operation as in Example 1 was carried out, except that the toluene solution of polybutadiene was added over a period of 10 minutes immediately after the addition of the MAR solution.

ガスクロマトグラフィーによる重合率の測定結果はS、
t 97%、MΔH99,5%であった。C−C−13
部分析による酸無水物基のイミド基への転化率は94%
であった。
The measurement results of the polymerization rate by gas chromatography are S,
t was 97% and MΔH was 99.5%. C-C-13
The conversion rate of acid anhydride groups to imide groups was 94% by partial analysis.
Met.

実施例3 オートクレーブ中に仕込むStを40部、ポリブタジェ
ンを10部とし、MAH溶液添加開始から4時間目より
ポリブタジェン5部を5t20部に溶解した溶液を4時
間かけて連続的に添加したほかは実施例1と同様の操作
を行なった。
Example 3 The same procedure was carried out except that 40 parts of St and 10 parts of polybutadiene were charged into the autoclave, and a solution of 5 parts of polybutadiene dissolved in 20 parts of 5t was continuously added over 4 hours from 4 hours after the start of addition of the MAH solution. The same operation as in Example 1 was performed.

ガスクロマトグラフィーによる重合率の測定結果は5t
95%、MAH98,5%であった。C−C−13部分
析による酸無水物基のイミド基への転化率は97%であ
った。
The measurement result of the polymerization rate by gas chromatography is 5t.
95%, MAH 98.5%. The conversion rate of acid anhydride groups to imide groups was 97% by CC-13 moiety analysis.

比較例1 実施例1と同様に5t60部、VER30部、ポリブタ
ジェン15部を仕込み、系内を窒素ガスで置換した後、
室温で一昼夜攪拌しゴムを溶解させた。温度を80℃と
した後、MAH40部とペンソイルパーオキサイド0.
09 B 、アゾビスイソブチロニトリル0.09部を
MEK250部に溶解した溶液を8時間で連続的に添加
した。添加終了後さらに4時間温度を80℃に保った。
Comparative Example 1 As in Example 1, 60 parts of 5t, 30 parts of VER, and 15 parts of polybutadiene were charged, and after replacing the inside of the system with nitrogen gas,
The mixture was stirred at room temperature overnight to dissolve the rubber. After setting the temperature to 80°C, 40 parts of MAH and 0.0 parts of Penn Soil peroxide were added.
A solution of 0.09 part of azobisisobutyronitrile dissolved in 250 parts of MEK was continuously added over 8 hours. After the addition was complete, the temperature was maintained at 80° C. for an additional 4 hours.

これ以降の操作は実施例1と同様である。The subsequent operations are the same as in the first embodiment.

ガスクロマトグラフィーによる重合率の測定結果は5t
95%MAH99%であった。C−C−13部分析によ
る酸無水物基のイミド基への転化率は96%であった。
The measurement result of the polymerization rate by gas chromatography is 5t.
It was 95% MAH 99%. The conversion rate of acid anhydride groups to imide groups was 96% by C-C-13 moiety analysis.

実施例4 実施例1と同様にオートクレーブ中に5t55部、アク
リロニトリル10部、MEK50部、ポリブタジェン1
0部を仕込み、系内を窒素ガスで置換した後、室温で一
昼夜攪拌しゴムを溶解させた。温度を80℃とした後、
MAH35iとベンゾイルパーオキサイド0.06部、
アゾビスイソブチロニトリルJル0.12部をMEK2
50部に溶解した溶液を8時間で連続的に添加した。添
加開始から4時間目に実施例1と同様にして相転移を確
認した後、ポリブタジェン8部をトルエン70部に溶解
した溶液を4時間かけて連続的に添加した。添加後さら
に4時間温度を80℃に保った。未反応単量体の定量よ
り重合率は5t99%、MAH98%、アクリロニl−
IJル90%であった。この重合液にアニリン32.4
部、トリエチルアミン1部を加え140℃で7時間反応
させた。酸無水物基のイミド基への転化率は97%であ
った。この後は実施例1と同様な操作を行なった。
Example 4 In the same manner as in Example 1, 55 parts of 5t, 10 parts of acrylonitrile, 50 parts of MEK, and 1 part of polybutadiene were placed in an autoclave.
After charging 0 parts and replacing the inside of the system with nitrogen gas, the rubber was dissolved by stirring at room temperature all day and night. After setting the temperature to 80℃,
MAH35i and 0.06 part of benzoyl peroxide,
Add 0.12 parts of azobisisobutyronitrile to MEK2
A solution of 50 parts was added continuously over a period of 8 hours. Four hours after the start of addition, phase transition was confirmed in the same manner as in Example 1, and then a solution of 8 parts of polybutadiene dissolved in 70 parts of toluene was continuously added over 4 hours. The temperature was maintained at 80° C. for an additional 4 hours after the addition. From the quantitative determination of unreacted monomers, the polymerization rate was 5t99%, MAH98%, acryloni l-
IJ was 90%. Aniline 32.4 was added to this polymerization solution.
1 part of triethylamine were added thereto, and the mixture was reacted at 140°C for 7 hours. The conversion rate of acid anhydride groups to imide groups was 97%. After this, the same operations as in Example 1 were performed.

比較例2 オートクレーブ中に仕込むポリブタジェンを18部とし
、ポリブタジェンのトルエン溶液の添加を行なわなかっ
た以外は実施例4と同様の操作を行なった。
Comparative Example 2 The same operation as in Example 4 was carried out except that 18 parts of polybutadiene was charged into the autoclave and no toluene solution of polybutadiene was added.

以上のようにして得られた組成物の物性を測定して第1
表に示した。
The physical properties of the composition obtained as described above were measured and the first
Shown in the table.

第1表より本発明の製造方法により得られた熱可塑性樹
脂は従来の熱安定性、耐熱性および耐熱水性を低下させ
ることなく、衝撃強度および成形時の流動性において著
しい向上が認められる。
As shown in Table 1, the thermoplastic resin obtained by the production method of the present invention exhibits significant improvements in impact strength and fluidity during molding without deteriorating the conventional thermal stability, heat resistance, and hot water resistance.

なお物性の測定;ま下記の方法によった。The physical properties were measured by the following method.

(1)衝撃強度・・・ノツチ付アイゾツト衝撃強度。(1) Impact strength: Izot impact strength with notches.

ASTM  D  256に準じた。According to ASTM D 256.

(2)VIFI(メルトフローインデックス)・・・温
度270℃、荷重5kg、 ASTM  D−1238
に準じた。
(2) VIFI (melt flow index)...Temperature 270℃, load 5kg, ASTM D-1238
According to.

(3)熱安定性・・窒素気流50cc/分、昇温速度1
0℃/分の条件で熱天秤分析における重合体の重ff1
N少が1%の場合の温度を示す。
(3) Thermal stability: Nitrogen flow 50cc/min, heating rate 1
Weight of polymer in thermobalance analysis at 0°C/min condition ff1
The temperature is shown when the N content is 1%.

(4)VSP(ビカット軟化点)・・・荷重5 kg、
ASTシi  D−1525に準じた。
(4) VSP (Vicat Softening Point)...load 5 kg,
According to AST D-1525.

(5)耐熱水性・・・ASTM  D−256に準じた
ノツチ付アイソット試験片を100℃の熱水中に24時
間浸漬後、測定した衝撃値の(1)に対する保持率を示
した。
(5) Hot water resistance: A notched isot test piece according to ASTM D-256 was immersed in hot water at 100°C for 24 hours, and the retention rate of the measured impact value (1) was shown.

Claims (1)

【特許請求の範囲】[Claims] グラフト重合性エラストマー5〜40重量部に芳香族ビ
ニル単量体50〜90重量%、不飽和ジカルボン酸無水
物5〜40重量%、およびこれらと共重合可能なビニル
単量体0〜30重量%からなる単量体混合物60〜95
重量部をグラフト重合させた後、アンモニアおよび/ま
たは第1級アミンでイミド化せしめて熱可塑性樹脂を製
造する方法において、グラフト重合において使用するエ
ラストマー全量の10〜90重量%を転相前に添加し、
残りの90〜10重量%のエラストマーを転相後に添加
してグラフト重合を行なうことを特徴とする熱可塑性樹
脂の製造方法。
5 to 40 parts by weight of graft polymerizable elastomer, 50 to 90% by weight of aromatic vinyl monomer, 5 to 40% by weight of unsaturated dicarboxylic acid anhydride, and 0 to 30% by weight of vinyl monomer copolymerizable with these. A monomer mixture consisting of 60 to 95
In a method of producing a thermoplastic resin by graft polymerizing parts by weight and then imidizing with ammonia and/or a primary amine, 10 to 90% by weight of the total amount of elastomer used in graft polymerization is added before phase inversion. death,
A method for producing a thermoplastic resin, which comprises adding the remaining 90 to 10% by weight of an elastomer after phase inversion to perform graft polymerization.
JP17860785A 1985-08-15 1985-08-15 Production of thermoplastic resin Pending JPS6239611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17860785A JPS6239611A (en) 1985-08-15 1985-08-15 Production of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17860785A JPS6239611A (en) 1985-08-15 1985-08-15 Production of thermoplastic resin

Publications (1)

Publication Number Publication Date
JPS6239611A true JPS6239611A (en) 1987-02-20

Family

ID=16051408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17860785A Pending JPS6239611A (en) 1985-08-15 1985-08-15 Production of thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS6239611A (en)

Similar Documents

Publication Publication Date Title
JPS6126936B2 (en)
JPS6023438A (en) Thermoplastic resin composition
JPH083012B2 (en) Resin composition with excellent retention heat stability
JPS628456B2 (en)
JPS5943494B2 (en) thermoplastic resin composition
JPS6149325B2 (en)
JPH09136917A (en) Styrenic random copolymer and its preparation
EP0393685A1 (en) Imidated copolymers and uses thereof
JPS60243102A (en) Production of thermoplastic resin
JPS6239611A (en) Production of thermoplastic resin
JPS6225700B2 (en)
JPH06885B2 (en) Heat resistant resin composition
JPS6317949A (en) Heat-resistant resin composition
JPS60155216A (en) Production of thermoplastic resin
JPS61163949A (en) Thermoplastic resin composition
JPH0526820B2 (en)
JPH0262585B2 (en)
JPS60248708A (en) Heat-resistant copolymer
JPS6222806A (en) Production of matte thermoplastic resin
JPH0627235B2 (en) Thermoplastic resin composition
JPS6220549A (en) Discoloration-resistant resin composition
JP3252981B2 (en) Thermoplastic resin composition
KR100217790B1 (en) Rubber-reinforced styrene resin composition
JP2002003673A (en) Heat-resistant thermoplastic resin composition and method of producing it
JPH062854B2 (en) Heat resistant resin composition