JPS6238984B2 - - Google Patents

Info

Publication number
JPS6238984B2
JPS6238984B2 JP54088063A JP8806379A JPS6238984B2 JP S6238984 B2 JPS6238984 B2 JP S6238984B2 JP 54088063 A JP54088063 A JP 54088063A JP 8806379 A JP8806379 A JP 8806379A JP S6238984 B2 JPS6238984 B2 JP S6238984B2
Authority
JP
Japan
Prior art keywords
transducers
ultrasonic
simultaneously driven
transducer
transducer group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54088063A
Other languages
Japanese (ja)
Other versions
JPS5613935A (en
Inventor
Taketoshi Iida
Kazuyoshi Saito
Toshio Shirasaka
Yasuhiko Takemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8806379A priority Critical patent/JPS5613935A/en
Publication of JPS5613935A publication Critical patent/JPS5613935A/en
Publication of JPS6238984B2 publication Critical patent/JPS6238984B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 本発明は、複数個の振動子を一列に配置し、そ
のうち同時に使用する振動子数を繰り返しパルス
毎に、あるいは任意一定周期毎に変化させて、超
音波走査線密度を向上させるとともに、可変口径
機能を具備した超音波診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention arranges a plurality of transducers in a row, and changes the number of transducers used at the same time for each repeated pulse or for each arbitrary fixed period, thereby increasing the ultrasonic scanning line density. The present invention relates to an ultrasonic diagnostic device that improves the caliber and has a variable aperture function.

従来複数個の振動子を一列に配置した超音波プ
ローブを具備した超音波診断装置により被検体の
Bモード表示を得る場合、前記超音波プローブに
よる超音波ビームの走査線密度を向上させる方法
として、同時駆動振動子数を増減する方法が知ら
れている。
Conventionally, when obtaining a B-mode display of a subject using an ultrasonic diagnostic apparatus equipped with an ultrasonic probe in which a plurality of transducers are arranged in a row, a method for improving the scanning line density of an ultrasonic beam by the ultrasonic probe includes: A method of increasing or decreasing the number of simultaneously driven vibrators is known.

第1図には、繰り返しパルス毎に同時駆動の振
動子数を1個ずつ増減し、そのとき送信時と受信
時との同時駆動振動子数を同じにし、超音波走査
線間隔を各振動子ピツチの1/2とする方法を示し
てある。第1図において、第一の繰り返しパルス
時に複数個の振動子を配列した超音波プローブの
うち3個(No.1〜No.3)を同時に駆動し、超音波
ビームを被検体内部に送波し被検体内部からの超
音波エコーを同じ3個(No.1〜No.3)で受波す
る。次に第二の繰り返しパルス時に1個増加した
4個(No.1〜No.4)の振動子を同時駆動し、超音
波ビームを被検体内部へ送波し、被検体内部から
の超音波エコーを同じ4個(No.1〜No.4)で受波
する。以下同様に繰り返しパルス毎に同時駆動振
動子数を3個、4個と変化させていくことによ
り、同時駆動振動子群の指向性中心は振動子ピツ
チの1/2とすることができる。
In Figure 1, the number of simultaneously driven transducers is increased or decreased by one for each repeated pulse, the number of simultaneously driven transducers is the same during transmission and reception, and the interval between ultrasonic scanning lines is changed between each transducer. A method to reduce the pitch to 1/2 is shown. In Fig. 1, during the first repeated pulse, three of the ultrasound probes (No. 1 to No. 3) having multiple transducers arranged are simultaneously driven to send an ultrasound beam inside the object. Then, the same three ultrasound echoes (No. 1 to No. 3) receive the ultrasound echoes from inside the subject. Next, at the time of the second repeated pulse, four transducers (No. 1 to No. 4), increased by one, are simultaneously driven to transmit the ultrasonic beam to the inside of the object, and the ultrasonic wave from inside the object is transmitted. The same four echoes (No. 1 to No. 4) are received. By similarly changing the number of simultaneously driven vibrators from three to four for each repeated pulse, the center of directivity of the group of simultaneously driven vibrators can be set to 1/2 of the vibrator pitch.

第2図には、送.受信時に同時駆動の振動子数
を変化させる方法を示してあり、第2図aに示す
通り第一の繰り返しパルス時に3個の振動子(No.
1〜No.3)を同時に駆動することにより超音波ビ
ームを送波し、次に被検体内部からの超音波エコ
ーを送信時と同じ振動子3個(No.1〜No.3)で受
信する。次の繰り返しパルス時において、第2図
bに示すように3個の振動子(No.1〜No.3)を同
時駆動し超音波ビームを送波し、被検体内部から
の超音波エコーを送信時より1個増加した4個の
振動子(No.1〜No.4)により受信する。第三の繰
り返しパルス時に、第2図Cに示すように送信時
に3個の振動子(No.1〜No.3)を同時駆動するこ
とにより超音波ビームを送波し、受信時に3個の
振動子(No.2〜No.4)を同時駆動することにより
超音波エコーを受波する。第四の繰り返しパルス
時に第2図dに示すように送信時に4個の振動子
(No.1〜No.4)を同時駆動することにより超音波
ビームを送波し、受信時に送信時に1個減少した
3個(No.2〜No.4)を同時駆動することにより超
音波エコーを受波する。以上の走査を繰り返すこ
とにより超音波走査線間隔を振動子ピツチの1/4
にすることができる。
Figure 2 shows the feed. A method of changing the number of oscillators driven simultaneously during reception is shown. As shown in Figure 2a, three oscillators (No.
1 to No. 3) are simultaneously driven to transmit an ultrasound beam, and then the ultrasound echoes from inside the object are received by the same three transducers (No. 1 to No. 3) used during transmission. do. At the time of the next repeated pulse, the three transducers (No. 1 to No. 3) are simultaneously driven to transmit an ultrasound beam as shown in Figure 2b, and the ultrasound echoes from inside the object are detected. Reception is performed using four transducers (No. 1 to No. 4), one more than when transmitting. At the time of the third repeated pulse, as shown in Figure 2C, an ultrasonic beam is transmitted by simultaneously driving three transducers (No. 1 to No. 3) during transmission, and three transducers (No. 1 to No. 3) are driven simultaneously during reception. Ultrasonic echoes are received by simultaneously driving the transducers (No. 2 to No. 4). During the fourth repeated pulse, as shown in Figure 2 d, an ultrasonic beam is transmitted by simultaneously driving four transducers (No. 1 to No. 4) during transmission, and one transducer during reception when transmitting. Ultrasonic echoes are received by simultaneously driving the reduced number of three (No. 2 to No. 4). By repeating the above scanning, the interval between ultrasonic scanning lines can be reduced to 1/4 of the transducer pitch.
It can be done.

また、深度の近距離における超音波受波ビーム
幅を細くする技術として可変口径技術と称せられ
る方法が知られている。
Furthermore, a method called variable aperture technology is known as a technology for narrowing the ultrasonic reception beam width at a short distance in depth.

この方法を第3図を用いて説明する。 This method will be explained using FIG.

第3図において、10は同時駆動振動子群の口
径D10のビームパターンを実線で示したものであ
り、20は同時駆動振動子群の口径D20(D20
D10)の超音波ビームパターンを破線で示したもの
であり、30は同時駆動振動子群の口径D30(D30
<D20)の超音波ビームパターンを一点鎖線で示し
たものである。
In FIG. 3, numeral 10 indicates the beam pattern of the aperture D 10 of the simultaneously driven transducer group, and 20 indicates the beam pattern of the aperture D 20 (D 20 <
The dashed line indicates the ultrasonic beam pattern of D 10 ), and 30 is the aperture D 30 (D 30
<D 20 ) ultrasonic beam pattern is shown by a dashed line.

この図よりわかるように、口径Dが大きいとき
は、振動子面より深い位置でビームが細くなり、
口径Dが小さくなればなるほど超音波ビームが細
くなる位置は浅い位置へ移行する。
As can be seen from this figure, when the aperture D is large, the beam becomes thinner at a position deeper than the transducer surface,
As the aperture D becomes smaller, the position where the ultrasonic beam becomes narrower shifts to a shallower position.

したがつて、繰り返しパルス間で、所定振動子
数によつて超音波を送波した後、一定周期で受波
のための同時駆動振動子数を変化させていけば、
第3図に示されたようにビームが細くなる位置が
深さ方向に変化するため全体的に解像度の良い画
像が得られる。すなわち、ビーム幅が細くなれ
ば、被検体内部で反射される超音波エコーも鋭く
なるため方位方向の解像度が向上するものであ
り、被検体内部において細いビームを広範囲に得
られれば、それだけ高解像度の画像が得られるも
のである。
Therefore, after transmitting ultrasonic waves with a predetermined number of transducers between repeated pulses, if the number of simultaneously driven transducers for wave reception is changed at a constant cycle,
As shown in FIG. 3, since the position where the beam narrows changes in the depth direction, an image with good overall resolution can be obtained. In other words, the narrower the beam width, the sharper the ultrasonic echoes reflected inside the object, which improves the resolution in the azimuth direction.The wider the narrow beam can be obtained inside the object, the higher the resolution. The image obtained is as follows.

たゞし、この場合、振動子の増減数は偶数でな
ければならず、奇数だと同時駆動の振動子群の指
向性中心がずれる。
However, in this case, the number of vibrators to be increased or decreased must be an even number; if the number is odd, the center of directivity of the group of simultaneously driven vibrators will shift.

第3図は、超音波周波数、振動子群口径、焦点
を与えられた場合、『凹面振動子による超音波ビ
ーム幅の作図法』(日本超音波医学会講演論文
集,昭和48年11月,飯沼一浩ほか)によつて求め
たものである。超音波周波数、振動子群口径D10
〔この場合D10=(振動子ピツチ)×(振動子数)で
表わされ、いま振動子数をn個とする〕焦点が与
えられたときのビームパターン10を実線で表わ
し、次に同時駆動振動子数を(n―2)個にし、
振動子群口径D20(<D10)とした場合のビームパ
ターン20を破線で表わし、更に同時駆動振動子
数を(n―4)個にし、振動子群口径D30(<
D20)とした場合のビームパターン30を一点鎖線
で表わし、それぞれ、ビームパターン10とビー
ムパターン20との交点をA、ビームパターン2
0とビームパターン30との交点をBとすれば、
振動子面から深さ方向へのB地点で同時駆動振動
子数を(n―4)個から(n―2)個に切換え、
A地点で(n―2)個からn個に切換えれば、最
も有効に各ビームパターンを組合せることができ
る。
Figure 3 shows the method for drawing ultrasonic beam width using a concave transducer, given the ultrasonic frequency, transducer group aperture, and focal point. This was calculated by Kazuhiro Iinuma et al. Ultrasonic frequency, transducer group diameter D 10
[In this case, it is expressed as D 10 = (oscillator pitch) x (number of transducers), and the number of transducers is now n.] The beam pattern 10 when a focal point is given is represented by a solid line, and then the simultaneous The number of driving oscillators is set to (n-2),
The beam pattern 20 when the transducer group diameter D 20 (<D 10 ) is represented by a broken line, and the number of simultaneously driven transducers is (n-4), and the transducer group diameter D 30 (<
D 20 ), the beam pattern 30 is represented by a dashed line, and the intersections of the beam pattern 10 and the beam pattern 20 are A and beam pattern 2, respectively.
If the intersection point of 0 and beam pattern 30 is B, then
Switch the number of simultaneously driven vibrators from (n-4) to (n-2) at point B in the depth direction from the vibrator surface,
By switching from (n-2) beam patterns to n beam patterns at point A, each beam pattern can be combined most effectively.

以上のように、超音波周波数、振動子口径、焦
点が与えられたとき超音波ビームを全般的に細く
するための最も有効的な可変口径の切換点が存在
することが判明し、またその切換点を前述の『凹
面振動子による超音波ビーム幅の作図法』により
求めることができる。
As described above, it has been found that, given the ultrasound frequency, transducer aperture, and focal point, there is the most effective variable aperture switching point for narrowing the ultrasound beam overall, and that the switching point The point can be determined by the above-mentioned "method for drawing ultrasonic beam width using a concave transducer."

第4図には第3図に示したように、同時駆動振
動子数をn,(n―2),(n―4)個の3種類を
最も有効に切換えた場合、合成されたビームパタ
ーンを示してある。
Figure 4 shows the synthesized beam pattern when the number of simultaneously driven oscillators is switched between n, (n-2), and (n-4) in the most effective manner as shown in figure 3. is shown.

ところで、前述したように繰り返しパルス毎ま
たは任意一定周期毎に同時駆動振動子数を変化さ
せ超音波走査線密度を増加される方法と、広い範
囲に渡つて高解像度(特に方位方向)の画像を得
る方法を併用する場合、前記可変口径切換点を固
定してしまうと所望する最適なビームパターンを
得ることができなくなる。
By the way, as mentioned above, there is a method of increasing the ultrasonic scanning line density by changing the number of simultaneously driven transducers for each repeated pulse or any fixed period, and that it is possible to obtain high-resolution images (especially in the azimuth direction) over a wide range. When using both methods, if the variable aperture switching point is fixed, it will not be possible to obtain the desired optimal beam pattern.

本発明は超音波走査線密度を増加するために繰
り返しパルス毎または任意一定周期毎に同時駆動
する振動子数を変化させるとともに、一定周期で
受信時の駆動振動子数を可変とすることにより広
い範囲に渡り超音波ビームを細くする機能を具備
し、この場合、振動子数の増減に対応して振動子
群の口径を最適に切換える調整機能を備えた超音
波診断装置を提供することを目的とする。
In order to increase the ultrasonic scanning line density, the present invention changes the number of transducers that are driven simultaneously for each repeated pulse or for each arbitrary fixed period, and also varies the number of driven transducers during reception at a fixed period. The purpose of the present invention is to provide an ultrasonic diagnostic device that is equipped with a function to narrow an ultrasonic beam over a range, and in this case, an adjustment function that optimally switches the aperture of a group of transducers in response to an increase or decrease in the number of transducers. shall be.

例えば、超音波周波数3MHz,焦点10cm振動子
間隔1.5mmとし、繰り返しパルス毎に送信時の同
時駆動振動子数を8個,7個とし、送信時に8個
の振動子を同時駆動する場合、受信は一定周期で
4個、6個、8個に同時駆動振動子数を切換え、
送信時に7個の振動子を同時駆動する場合、受信
は一定周期で3個、5個、7個に同時駆動振動子
数を切換えるものとする。このような可変口径切
換を行なつた場合のビームパターンを第5図に示
し、40は送信時の同時駆動振動子数を8個と
し、受信時に一定周期で駆動振動子数を4個、6
個、8個とした時の合成ビームパターンを実線で
示し、50は送信時の同時駆動振動子数を3個、
5個、7個とした場合の合成ビームパターンを破
線で示してある。この場合、第5図から明らかな
ように、送信時の同時駆動振動子数を8個とした
場合、 4振動子から6振動子への切換点B1点……
………3.5cm 6振動子から8振動子への切換点A1点……
………5.2cm 送信時の同時駆動振動子数を7個とした場合、 3振動子から5振動子への切換点B2点……
………2.4cm 5振動子から7振動子への切換点A2点……
………4.4cm となる。
For example, if the ultrasonic frequency is 3 MHz, the focus is 10 cm, and the transducer spacing is 1.5 mm, and the number of simultaneously driven transducers is 8 and 7 during transmission for each repeated pulse, and when 8 transducers are simultaneously driven during transmission, the reception Switches the number of simultaneously driven vibrators from 4 to 6 to 8 at regular intervals,
When seven vibrators are simultaneously driven during transmission, the number of simultaneously driven vibrators is switched to three, five, and seven at regular intervals during reception. The beam pattern when such variable aperture switching is performed is shown in Fig. 5. 40 indicates that the number of simultaneously driven transducers is 8 during transmission, and the number of driven oscillators is 4 and 6 at fixed intervals during reception.
The solid line shows the composite beam pattern when the number of transducers is 8, and 50 indicates the number of simultaneously driven oscillators during transmission, which is 3,
The combined beam patterns in the case of 5 and 7 beams are shown by broken lines. In this case, as is clear from Figure 5, if the number of simultaneously driven oscillators during transmission is 8, there is 1 switching point B from 4 oscillators to 6 oscillators...
......3.5cm Switching point A from 6 oscillators to 8 oscillators 1 point...
………5.2cm If the number of simultaneously driven vibrators during transmission is 7, switching point B from 3 vibrators to 5 vibrators is 2 points……
………2.4cm Switching point A from 5 oscillators to 7 oscillators 2 points……
......It will be 4.4cm.

以下、図面を参照しながら本発明の実施例を説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第6図において、60は繰り返しパルス発生
器、61は駆動振動子を制御する制御回路、62
は送信用電子フオーカシング回路、63は振動子
を駆動するパルスを発生する回路、64は超音波
プローブ、65は超音波エコーを増幅する増幅
器、66は受信用電子フオーカシング回路67は
受波振動子からの超音波エコーを選択し口径を変
化させる可変口径スイツチング回路、68は可変
口径スイツチング回路67のスイツチング時間を
制御する回路、69は複数の振動子群で得られた
超音波エコーが加算される加算器、70は受信エ
コー信号を増幅、検波する増幅、検波回路、71
は増幅、検波回路70からの信号を用いて輝度変
調し被検体内部のBモードを表示するCRT等の
表示部である。
In FIG. 6, 60 is a repetitive pulse generator, 61 is a control circuit that controls the drive vibrator, and 62
63 is a transmitting electronic focusing circuit, 63 is a circuit that generates a pulse to drive the transducer, 64 is an ultrasonic probe, 65 is an amplifier that amplifies the ultrasonic echo, 66 is a receiving electronic focusing circuit 67 is a receiving transducer. 68 is a circuit that controls the switching time of the variable aperture switching circuit 67, and 69 is an addition circuit that adds the ultrasonic echoes obtained from a plurality of transducer groups. 70 is an amplification and detection circuit for amplifying and detecting the received echo signal, 71
is a display section such as a CRT that modulates the brightness using the signal from the amplification/detection circuit 70 and displays the B mode inside the object.

次に第7図により可変口径スイツチング回路6
7、及びスイツチング時間制御回路68の具体的
構成を示す。この場合、送信時の最初に同時駆動
される振動子数を8個、7個と繰り返しパルス毎
に変化させる場合について説明する。
Next, according to FIG. 7, the variable diameter switching circuit 6
7 and the specific configuration of the switching time control circuit 68. In this case, a case will be described in which the number of vibrators driven simultaneously at the beginning during transmission is changed from 8 to 7 for each repeated pulse.

受信時駆動の振動子8個のそれぞれの振動子か
らの受信信号e1〜e8が各々の入力線72〜79に
入力される。入力線72〜79にはそれぞれ遅延
線80〜87が接続されており、更に、各入力線
72〜79と加算器69との間にスイツチ素子8
8〜95が接続されており、このスイツチ素子8
8〜95により入力信号e1〜e8の加算器69への
送信をオン.オフ制御するものである。スイツチ
素子88〜95はそれぞれスイツチング時期を制
御する制御回路96〜103が接続されている。
各スイツチング時期を制御する制御回路96〜1
03には、それぞれ繰り返しパルス毎に同時駆動
される振動子数(本実施例では8個、7個それぞ
れの場合)に応じた前記スイツチ素子88〜95
のスイツチング時期を決定するための時定数を選
択するための時定数切換手段104〜111が並
列に接続されている。本実施例では、8個、7個
の2種類についてであるが、更に繰り返しパルス
毎に切換る振動子数が多種に渡る場合には、その
種類に応じた数の時定数切換手段を設ける必要が
ある。各スイツチング時期を制御する制御回路9
6〜103は前記駆動振動子を制御する制御回路
61からの制御信号がそれぞれ信号線104によ
り入力される。
Reception signals e 1 to e 8 from each of the eight transducers driven during reception are input to input lines 72 to 79, respectively. Delay lines 80 to 87 are connected to the input lines 72 to 79, respectively, and a switch element 8 is connected between each input line 72 to 79 and the adder 69.
8 to 95 are connected, and this switch element 8
8 to 95 turn on the transmission of input signals e 1 to e 8 to the adder 69. This is for off control. Switch elements 88-95 are connected to control circuits 96-103, respectively, which control switching timing.
Control circuits 96 to 1 that control each switching timing
03, the switch elements 88 to 95 correspond to the number of vibrators (8 and 7 in this embodiment, respectively) that are simultaneously driven for each repetitive pulse.
Time constant switching means 104 to 111 are connected in parallel for selecting a time constant for determining the switching timing. In this example, two types of oscillators, 8 and 7, are used, but if the number of oscillators to be switched for each repeated pulse is various, it is necessary to provide a number of time constant switching means corresponding to the types. There is. Control circuit 9 that controls each switching timing
Control signals 6 to 103 from a control circuit 61 for controlling the drive vibrator are inputted through signal lines 104, respectively.

第8図において、aは繰り返しパルス信号であ
り、bはスイツチ素子88(S1),95(S8)への
制御信号であり、Cはスイツチ素子89(S2),
94(S7)への制御信号である。
In FIG. 8, a is a repetitive pulse signal, b is a control signal to switch elements 88 (S 1 ), 95 (S 8 ), and C is a control signal to switch elements 89 (S 2 ),
94 (S 7 ).

スイツチ素子89(S2),94(S7)は時刻TB1
でオフ状態からオン状態に切換え、スイツチ素子
88(S1),95(S8)は時刻TA1でオフ状態から
オン状態とする。ただし、TB1>TA1とし、この
場合、超音波が送波されてから時刻TB1までは
S1,S2,S7,S8がオフ状態となるため、振動子4
個(No.3〜No.6)からの信号のみ加算器69に入
力され、この場合振動子口径は4振動子分とな
る。
Switch elements 89 (S 2 ) and 94 (S 7 ) are at time TB 1
The switch elements 88 (S 1 ) and 95 (S 8 ) are switched from the OFF state to the ON state at time TA 1 . However, if TB 1 > TA 1 , in this case, from the time the ultrasound is transmitted until time TB 1
Since S 1 , S 2 , S 7 , and S 8 are in the off state, the oscillator 4
Only the signals from the four transducers (No. 3 to No. 6) are input to the adder 69, and in this case, the vibrator diameter is equal to four vibrators.

次に、時刻TB1〜TA1の間はスイツチ素子88
(S1),95(S8)はオフ状態となり、スイツチ素
子89(S2),94(S7)はオン状態となるため、
同時駆動振動子群は6素子分となり振動子6個
(No.2〜No.7)からの信号のみ加算器69に入力
される。
Next, between time TB 1 and TA 1 , the switch element 88
(S 1 ), 95 (S 8 ) are in the off state, and switch elements 89 (S 2 ), 94 (S 7 ) are in the on state,
The group of simultaneously driven vibrators consists of six elements, and only the signals from the six vibrators (No. 2 to No. 7) are input to the adder 69.

更にTA1以降はスイツチ素子88(S1),95
(S8)もオン状態となるから同時駆動振動子群は8
素子分となり、振動子8個(No.1〜No.8)からの
信号のみ加算器69に入力される。
Furthermore, after TA 1 , switch elements 88 (S 1 ), 95
(S 8 ) is also turned on, so the number of simultaneously driven oscillators is 8.
Only the signals from eight transducers (No. 1 to No. 8) are input to the adder 69.

このようにして、受信時の同時駆動振動子数を
4,6,8個と切換変化させ、その時の切換時間
を、 TB1……深さ3.5cm相当の時刻 TA1……深さ5.2cm相当の時刻 となるよう、前記スイツチング時期を制御する制
御回路96〜103を作動するものである。
In this way, the number of simultaneously driven transducers during reception is switched between 4, 6, and 8, and the switching time at that time is: TB 1 ... time equivalent to depth 3.5 cm TA 1 ... depth 5.2 cm The control circuits 96 to 103 that control the switching timing are operated so that the switching timing is at the appropriate time.

次の繰り返しパルス時には、前記時定数切換手
段104〜111を前記振動子8個の場合と異な
る端子に切換、送波振動子数を7個とし、受信時
の駆動振動子数を3個,5個,7個にそれぞれ
TB2,TA2(TB2<TA2)のタイミングで初換を行
なうものである。この場合、切換時期は、 TB2……深さ2.4cm相当の時刻 TA2……深さ4.4cm相当の時刻 となるように、前記スイツチング時期を制御する
制御回路96〜103を作動させるものである。
At the time of the next repeated pulse, the time constant switching means 104 to 111 are switched to different terminals from those in the case of eight transducers, the number of transmitting transducers is set to seven, and the number of driving transducers at the time of reception is set to three and five. and 7 pieces respectively.
The first exchange is performed at the timing of TB 2 and TA 2 (TB 2 < TA 2 ). In this case, the control circuits 96 to 103 that control the switching timing are activated so that the switching timing is TB 2 ...the time corresponding to a depth of 2.4 cm and TA 2 ...the time corresponding to a depth of 4.4 cm. be.

この様に、超音波ビーム送波時はn+1個或い
はn個の振動子を一群として駆動し、エコーの受
波時は超音波ビームの中心軸に対して左右対称に
受波に供する振動子の数を順次増加させるもので
ある。尚、上述のnは正数である。
In this way, when transmitting an ultrasound beam, n+1 or n transducers are driven as a group, and when receiving an echo, the transducers used for receiving the ultrasound beam are symmetrically driven with respect to the central axis of the ultrasound beam. The number will be increased sequentially. Note that n mentioned above is a positive number.

スイツチング時期を制御する制御回路96〜1
03としては、マルチバイブレータを使用すれば
良い。
Control circuit 96-1 for controlling switching timing
As 03, a multivibrator may be used.

以上のように本発明によれば、複数個の振動子
を一列に配置し、そのうち同時に使用する振動子
数を繰り返しパルス毎、または任意一定周期毎に
変化させ、超音波走査線密度を向上させるととも
に、受信時の同時駆動振動子数を偶数個ずつ変化
させる可変口径機能を具備させ超音波ビームを広
い範囲に渡つて細くさせ、その部分の解像度を向
上させる場合、各振動子群を駆動時期を制御する
ことにより、有効なビームパターンを得るもので
ある。
As described above, according to the present invention, a plurality of transducers are arranged in a line, and the number of transducers used at the same time is changed for each repeated pulse or for each arbitrary fixed period, thereby improving the ultrasonic scanning line density. In addition, it is equipped with a variable aperture function that changes the number of simultaneously driven transducers during reception in increments of an even number to narrow the ultrasonic beam over a wide range and improve resolution in that area. By controlling this, an effective beam pattern can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は繰り返しパルス毎に送信時の駆動振動
子数を可変とする走査線密度増加方法の説明図、
第2図は送信、受信時の同時駆動振動子数を可変
とする走査線密度増加方法の説明図、第3図は同
時駆動振動子群の口径を変化させた場合のビーム
パターンを示した図、第4図は受信時の同時駆動
振動子数を変化させた場合の実際のビームパター
ンを示した図、第5図は送信時の同時駆動振動子
数を8個,7個とし、受信時に可変口径技術を採
用した場合のビームパターンを示した図、第6図
は本発明の一実施例の構成を示すブロツク図、第
7図は、第6図に示されたスイツチング回路及び
スイツチング時期制御回路の具体的構成図、第8
図は本発明の超音波診断装置の一実施例のタイム
チヤートを示した図である。 60……繰り返しパルス発生器、61……駆動
振動子を制御する制御回路、62……送信用電子
フオーカシング回路、63……振動子を駆動する
パルスを発生する回路、64……超音波プロー
ブ、65……超音波エコーを増幅する増幅器、6
6……受信用電子フオーカシング回路、67……
受波振動子からの超音波エコーを選択し、口径を
変化させる可変口径スイツチング回路、68……
スイツチング回路のスイツチング時期を制御する
回路、69……加算器、70……増幅、検波回
路、71……表示部。
Figure 1 is an explanatory diagram of a scanning line density increasing method in which the number of drive transducers during transmission is varied for each repetitive pulse;
Figure 2 is an explanatory diagram of a method for increasing the scanning line density by varying the number of simultaneously driven transducers during transmission and reception, and Figure 3 is a diagram showing the beam pattern when the aperture of the simultaneously driven transducer group is varied. , Figure 4 shows the actual beam pattern when changing the number of simultaneously driven transducers during reception, and Figure 5 shows the actual beam pattern when the number of simultaneously driven transducers during transmission is 8 and 7, and when receiving A diagram showing a beam pattern when variable aperture technology is adopted, FIG. 6 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. 7 is a diagram showing the switching circuit and switching timing control shown in FIG. 6. Specific configuration diagram of the circuit, No. 8
The figure is a diagram showing a time chart of an embodiment of the ultrasonic diagnostic apparatus of the present invention. 60...Repetitive pulse generator, 61...Control circuit for controlling the driving transducer, 62...Electronic focusing circuit for transmission, 63...Circuit for generating pulses to drive the transducer, 64...Ultrasonic probe, 65...Amplifier for amplifying ultrasonic echoes, 6
6...Electronic focusing circuit for reception, 67...
Variable aperture switching circuit that selects the ultrasonic echo from the receiving transducer and changes the aperture, 68...
A circuit for controlling the switching timing of the switching circuit, 69...Adder, 70...Amplification and detection circuit, 71...Display unit.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の振動子を一列に配列し、この複数の振
動子中、一組として送波または受波を行なう振動
子群を順次選択することにより超音波ビームの走
査を行なう超音波装置において、前記振動子群を
構成する振動子の個数がn+1個である第1の振
動子群或いはn個である第2の振動子群のいずれ
かを順次選択して駆動し超音波ビーム送波する超
音波ビーム送波手段と、この送波手段から順次送
波される超音波ビームによるエコーの受波に供す
る振動子の数を、前記各振動子群から送波される
超音波ビームの中心軸に対して対称関係に順次増
加させる超音波ビーム受波手段とを具備し、この
受波手段はさらに、前記第1の振動子群から送波
された超音波ビームによるエコーに対しては周期
T1で受波に供する振動子の数を順次増加させる
第1の切換手段と、前記第2の振動子群から送波
された超音波ビームによるエコーに対しては周期
T2(但し、T1>T2)で受波に供する振動子
の数を順次増加させる第2の切換手段とを有する
ことを特徴とする超音波診断装置。
1. In an ultrasonic device that scans an ultrasound beam by arranging a plurality of transducers in a line and sequentially selecting a group of transducers that transmit or receive waves as a set from among the plurality of transducers, Ultrasonic waves are transmitted by sequentially selecting and driving either a first transducer group in which the number of transducers constituting the transducer group is n+1 or a second transducer group in which the number of transducers is n+1. The number of beam transmitting means and the number of transducers used to receive echoes from the ultrasonic beams sequentially transmitted from the transmitting means, relative to the central axis of the ultrasonic beams transmitted from each transducer group. and ultrasonic beam receiving means for increasing the number of ultrasonic beams sequentially in a symmetrical relationship, and the receiving means further receives echoes of the ultrasonic beam transmitted from the first transducer group at a period T1. a first switching means for sequentially increasing the number of transducers provided to the wave; and a first switching means for receiving echoes from the ultrasonic beam transmitted from the second transducer group at a period T2 (however, T1>T2); An ultrasonic diagnostic apparatus comprising: second switching means for sequentially increasing the number of transducers exposed to waves.
JP8806379A 1979-07-13 1979-07-13 Ultrasonic diagnosing device Granted JPS5613935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8806379A JPS5613935A (en) 1979-07-13 1979-07-13 Ultrasonic diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8806379A JPS5613935A (en) 1979-07-13 1979-07-13 Ultrasonic diagnosing device

Publications (2)

Publication Number Publication Date
JPS5613935A JPS5613935A (en) 1981-02-10
JPS6238984B2 true JPS6238984B2 (en) 1987-08-20

Family

ID=13932383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8806379A Granted JPS5613935A (en) 1979-07-13 1979-07-13 Ultrasonic diagnosing device

Country Status (1)

Country Link
JP (1) JPS5613935A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166148A (en) * 1981-04-03 1982-10-13 Tokyo Shibaura Electric Co Ultrasonic diagnostic apparatus
JPS59214438A (en) * 1983-05-19 1984-12-04 株式会社日立メデイコ Electronic scanning type ultrasonic tomographic apparatus
JPS60158845A (en) * 1984-01-28 1985-08-20 株式会社島津製作所 Scanning method of ultrasonic beam in ultrasonic diagnostic apparatus
JPS60160950A (en) * 1984-01-31 1985-08-22 株式会社島津製作所 Scanning method of ultrasonic beam in ultrasonic diagnostic apparatus
JPH0223285Y2 (en) * 1985-02-12 1990-06-25

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434580A (en) * 1977-08-22 1979-03-14 Aloka Co Ltd Ultrasonic wave diagnosing device
JPS5438694A (en) * 1977-09-02 1979-03-23 Hitachi Medical Corp Ultrasonic wave photgraphing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434580A (en) * 1977-08-22 1979-03-14 Aloka Co Ltd Ultrasonic wave diagnosing device
JPS5438694A (en) * 1977-09-02 1979-03-23 Hitachi Medical Corp Ultrasonic wave photgraphing method

Also Published As

Publication number Publication date
JPS5613935A (en) 1981-02-10

Similar Documents

Publication Publication Date Title
US5329930A (en) Phased array sector scanner with multiplexed acoustic transducer elements
US4319489A (en) Ultrasonic diagnostic method and apparatus
US4541435A (en) Ultrasonic imaging apparatus
CA1145839A (en) Ultrasonic diagnosis apparatus
JP2004290249A (en) Ultrasonic imaging apparatus and ultrasonic imaging method
JP2002336246A (en) Ultrasonic imaging method and ultrasonic imaging device
EP0396761B1 (en) Ultrasonic wave inspecting apparatus
JPS6238984B2 (en)
US4665924A (en) Ultrasonic imaging apparatus
JPH06237930A (en) Ultrasonic diagnostic device
US20050075570A1 (en) Ultrasonic diagnosing apparatus
JP2723464B2 (en) Ultrasound diagnostic equipment
JPS6223829B2 (en)
JPH0254096B2 (en)
JP2004286680A (en) Ultrasonic transceiver
JPS6145791B2 (en)
JPH02228952A (en) Ultrasonic diagnostic apparatus
JPH0616784B2 (en) Ultrasonic diagnostic equipment
JPS6124012B2 (en)
JP2610653B2 (en) Ultrasonic beam scanning device
JPH08229034A (en) Ultrasonic diagnostic device
JPS6337665B2 (en)
JPS59222139A (en) Ultrasonic diagnostic apparatus
KR840001818B1 (en) Ultrasonic diagnosis apparatus
JP2763140B2 (en) Ultrasound diagnostic equipment