JPS6238624B2 - - Google Patents

Info

Publication number
JPS6238624B2
JPS6238624B2 JP12754879A JP12754879A JPS6238624B2 JP S6238624 B2 JPS6238624 B2 JP S6238624B2 JP 12754879 A JP12754879 A JP 12754879A JP 12754879 A JP12754879 A JP 12754879A JP S6238624 B2 JPS6238624 B2 JP S6238624B2
Authority
JP
Japan
Prior art keywords
refrigerant gas
condenser
cooler
cooled
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12754879A
Other languages
Japanese (ja)
Other versions
JPS5653349A (en
Inventor
Hironori Emoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12754879A priority Critical patent/JPS5653349A/en
Publication of JPS5653349A publication Critical patent/JPS5653349A/en
Publication of JPS6238624B2 publication Critical patent/JPS6238624B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は冷媒圧縮機駆動用電動機の冷却効果
を上げて、装置の小型軽量化を図るための冷凍装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration system for increasing the cooling effect of a motor for driving a refrigerant compressor and reducing the size and weight of the system.

〔従来の技術〕[Conventional technology]

従来この種の冷凍装置として第2図に示すもの
があつた。図において、1は冷媒ガスを圧縮する
圧縮機、2はこの圧縮機1で圧縮された冷媒ガス
を吐出する吐出管、3は上記圧縮機1で圧縮され
た冷媒ガスを冷却液化する凝縮器、4はこの凝縮
器3に内蔵された冷却管、5はこの冷却管4へ冷
却水を循環させる冷却水出入口管、6は膨張弁、
7は蒸発器、8はこの蒸発器7で蒸発した冷媒ガ
スを電動機内部へ吸入する吸入管、9は上記圧縮
機1に直結された圧縮機駆動用の電動機、10は
上記圧縮機1の冷媒ガス吸入口である。なお、冷
媒ガスの流れを図中に矢印で示している。
A conventional refrigeration system of this type is shown in FIG. In the figure, 1 is a compressor that compresses refrigerant gas, 2 is a discharge pipe that discharges the refrigerant gas compressed by the compressor 1, 3 is a condenser that cools and liquefies the refrigerant gas compressed by the compressor 1, 4 is a cooling pipe built into this condenser 3; 5 is a cooling water inlet/outlet pipe for circulating cooling water to this cooling pipe 4; 6 is an expansion valve;
7 is an evaporator; 8 is a suction pipe that sucks the refrigerant gas evaporated in the evaporator 7 into the motor; 9 is a motor for driving the compressor that is directly connected to the compressor 1; 10 is a refrigerant for the compressor 1; It is a gas inlet. Note that the flow of refrigerant gas is indicated by arrows in the figure.

次に動作について説明する。圧縮機1によつて
圧縮された冷媒ガスは、吐出管2を通り凝縮器3
へ送り込まれる。この凝縮器3の内部には、上記
圧縮機1によつて圧縮され、上記吐出管2から吐
出された高温、高圧の冷媒ガスを冷却、液化させ
るための冷却管4が内蔵されている。そしてこの
冷却管4へは冷却水の出入口管5によつて冷却水
の循環が行なわれているので、凝縮器3へ送り込
まれた冷媒ガスは、この凝縮器3へ内蔵されてい
る冷却管4との熱交換により冷却され、そして液
化される。この液化された冷媒ガスは、膨張弁6
により減圧されて蒸発器7へ入る。この蒸発器7
の中で蒸発した冷媒ガスは吸入管8を通つて電動
機9に入る。電動機9に入つた冷媒ガスは内部の
コイルおよび鉄心などを冷却し、吸入口10より
圧縮機1に吸入される。このようにして冷媒ガス
は循環している。
Next, the operation will be explained. The refrigerant gas compressed by the compressor 1 passes through the discharge pipe 2 and enters the condenser 3.
sent to. A cooling pipe 4 is built into the condenser 3 for cooling and liquefying the high-temperature, high-pressure refrigerant gas compressed by the compressor 1 and discharged from the discharge pipe 2. Since the cooling water is circulated to the cooling pipe 4 through the cooling water inlet/outlet pipe 5, the refrigerant gas sent to the condenser 3 is transferred to the cooling pipe 4 built into the condenser 3. It is cooled by heat exchange with and liquefied. This liquefied refrigerant gas is transferred to the expansion valve 6
The pressure is reduced by the evaporator 7. This evaporator 7
The refrigerant gas evaporated therein enters the electric motor 9 through the suction pipe 8. The refrigerant gas that has entered the electric motor 9 cools the internal coil, iron core, etc., and is then sucked into the compressor 1 through the suction port 10. In this way, the refrigerant gas is circulated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の冷凍装置は以上のように電動機9の冷却
を、蒸発器7で発生した冷媒ガスを使つて行なつ
ている。したがつてこの蒸発器7部での冷却能力
を少し落して、それを電動機9の冷却のためにま
わすと冷凍装置の冷却能力が低下することにな
り、一方蒸発器7部での冷却能力の低下を抑える
と、電動機9の冷却において、蒸発器7で冷却に
使用し温度が上つた冷媒ガスをこの電動機9の冷
却にまわすため、電動機の冷却効果が少なく、そ
のため電動機が大型化するという問題点があつ
た。
As described above, the conventional refrigeration system cools the electric motor 9 using the refrigerant gas generated in the evaporator 7. Therefore, if the cooling capacity of this evaporator 7 section is reduced a little and it is used to cool the electric motor 9, the cooling capacity of the refrigeration system will be reduced, and on the other hand, the cooling capacity of the evaporator 7 section will be reduced. If the drop is suppressed, the refrigerant gas, which has been used for cooling in the evaporator 7 and has risen in temperature, is used to cool the motor 9, which reduces the cooling effect of the motor, resulting in an increase in the size of the motor. The dot was hot.

また、この装置とは別に電動機の冷却方法とし
て、吐出しの高圧冷媒ガスにより直接電動機を冷
却する方法(図示せず)も従来あつたが、これは
吐出の冷媒ガスの温度が高いため、これまた電動
機の冷却効果が少なく、そのため電動機が大型化
するという問題点があつた。
In addition to this device, there was also a conventional method (not shown) in which the motor was directly cooled by the discharged high-pressure refrigerant gas, but this was not possible because the temperature of the discharged refrigerant gas was high. Additionally, there was a problem in that the cooling effect of the electric motor was small, resulting in an increase in the size of the electric motor.

この発明は上記のような従来のものの問題点を
解決するためになされたもので、本来の冷凍装置
の冷凍能力を低下させることなく電動機内部の冷
却能力を増大させて、電動機を小型軽量化できる
とともに、製作が容易でコンパクトな凝縮器を備
えた冷凍装置を得ることを目的する。
This invention was made in order to solve the above-mentioned problems with the conventional ones, and it is possible to increase the cooling capacity inside the electric motor without reducing the original refrigeration capacity of the refrigeration system, thereby making the electric motor smaller and lighter. Another object of the present invention is to obtain a refrigeration system equipped with a compact condenser that is easy to manufacture.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷凍装置は、圧縮機により冷媒
ガスを圧縮し、冷却器により、該圧縮機によつて
圧縮された冷媒ガスを飽和ガスに近くなるまで冷
却し、この冷却器で冷却された冷媒ガスによつ
て、圧縮機駆動用電動機の内部を冷却し、凝縮器
により、上記電動機内部を冷却した後の冷媒ガス
を冷却液化し、蒸発器により、上記凝縮器で冷却
液化された後の冷媒ガスを蒸発させるとともに、
上記冷却器と凝縮器とを、仕切板により区画され
た単一器体から形成し、かつ上記冷却器下辺と凝
縮器流出側下辺とを仕切板を迂回した抵抗管によ
つて接続したものである。
The refrigeration system according to the present invention compresses refrigerant gas using a compressor, cools the refrigerant gas compressed by the compressor until it becomes close to saturated gas using the cooler, and cools the refrigerant gas cooled by the cooler. The inside of the electric motor for driving the compressor is cooled by the gas, the refrigerant gas after cooling the inside of the motor is cooled and liquefied by the condenser, and the refrigerant after being liquefied by the condenser is cooled by the evaporator. As well as evaporating the gas,
The cooler and condenser are formed from a single body divided by a partition plate, and the lower side of the cooler and the lower side of the condenser outlet side are connected by a resistance pipe that bypasses the partition plate. be.

〔作用〕[Effect]

この発明においては、冷媒ガスを冷却する熱交
換器を単一器体とし、かつ仕切板を設けて区画し
たから、上記仕切板で区画された一方を冷却器と
して用い、この冷却器で冷却された冷媒ガスによ
り、まず、電動機を冷却し、次いで電動機内で熱
交換により暖められた冷媒ガスを、上記仕切板で
区画された他方の凝縮器内に導いてここで冷却液
化させることができる。
In this invention, since the heat exchanger for cooling the refrigerant gas is made into a single body and is partitioned by partition plates, one side partitioned by the partition plate is used as a cooler, and the heat exchanger for cooling the refrigerant gas is used as a cooler. The electric motor is first cooled by the refrigerant gas, and then the refrigerant gas warmed by heat exchange within the electric motor is guided into the other condenser partitioned by the partition plate, where it is cooled and liquefied.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。第1図において、11は圧縮機1と電動機9
を気密に仕切るための軸封装置、12は上記圧縮
機1で圧縮された冷媒ガスを飽和ガスに近くなる
まで冷却する冷却器で、従来の凝縮器を2つの部
分に分割したその一方の区画で構成されている。
13はこの冷却器12で冷却された冷媒ガスを電
動機9へ導く導通管、14は凝縮器であつて、従
来の凝縮器を2つの部分に分割したその他方の区
画で構成されている。15は電動機9を冷却した
後の冷媒ガスを凝縮器14へ導く導通管、16は
冷却器12と凝縮器14を仕切る仕切板で、この
仕切られた2つの部分を完全に遮断して気密にし
ている。したがつて、冷却器12と凝縮器14と
はこの仕切板16により区画された単一器体から
形成されている。なお、吸入管8は、従来の例の
第2図においては、電動機9を介して圧縮機1に
通ずる吸入口10へつながつていたが、この発明
の第1図では電動機9を介さずに、直接圧縮機1
へ通ずる吸入口10に接続されている。17は冷
却器12の下辺と凝縮器14流出側の下辺とを仕
切板16を迂回して接続する抵抗管であり、この
抵抗管17には、もし冷却器12において冷媒ガ
スが液化した場合に、冷却器12内の液化ガスを
凝縮器14に送り込むための適当な流れ抵抗をも
たしている。なお、第2図と同様に、冷媒ガスの
流れを第1図中に矢印で示している。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 11 is the compressor 1 and the electric motor 9.
12 is a cooler that cools the refrigerant gas compressed by the compressor 1 until it becomes close to saturated gas, and one section of the conventional condenser is divided into two parts. It consists of
Reference numeral 13 is a conduit for guiding the refrigerant gas cooled by the cooler 12 to the electric motor 9, and 14 is a condenser, which is the other section of a conventional condenser divided into two parts. 15 is a conduit pipe that guides the refrigerant gas after cooling the electric motor 9 to the condenser 14, and 16 is a partition plate that partitions the cooler 12 and the condenser 14, completely blocking these two partitioned parts to make them airtight. ing. Therefore, the cooler 12 and the condenser 14 are formed from a single body separated by the partition plate 16. In addition, in the conventional example shown in FIG. 2, the suction pipe 8 is connected to the suction port 10 leading to the compressor 1 via an electric motor 9, but in FIG. , direct compressor 1
It is connected to an inlet 10 that leads to. Reference numeral 17 denotes a resistance pipe that connects the lower side of the cooler 12 and the lower side of the outflow side of the condenser 14, bypassing the partition plate 16. , providing suitable flow resistance for directing the liquefied gas in the cooler 12 to the condenser 14. Note that, similarly to FIG. 2, the flow of refrigerant gas is indicated by arrows in FIG.

次に動作について説明する。圧縮機1により圧
縮された冷媒ガスは、吐出管2を通つて冷却器1
2へ入り、過熱ガスから飽和ガスに近くなるまで
十分冷却された後、導通管13を通つて圧縮機駆
動用電動機9の内部に送り込まれ、電動機9内の
コイル、鉄心等による発熱分を冷却した後、導通
管15を通つて凝縮器14へ送られ冷却液化され
る。なお、冷却器12内の冷媒ガスのうち、該冷
却器12内で液化した一部の冷媒ガスは抵抗管1
7を通過して直接凝縮器14内に導かれる。
Next, the operation will be explained. The refrigerant gas compressed by the compressor 1 passes through the discharge pipe 2 to the cooler 1.
2, and after being sufficiently cooled from superheated gas to close to saturated gas, it is sent into the compressor drive electric motor 9 through the conduction pipe 13 to cool off the heat generated by the coils, iron core, etc. inside the electric motor 9. After that, it is sent to the condenser 14 through the conduit pipe 15, where it is cooled and liquefied. Note that some of the refrigerant gas in the cooler 12 that has been liquefied in the cooler 12 is transferred to the resistance tube 1.
7 and is led directly into the condenser 14.

そして、この凝縮器14内で冷却液化された冷
媒ガスは、膨張弁6で減圧されて蒸発器7へ入
り、この蒸発器7内で蒸発されて冷凍装置の機能
を果たした後、吸入管8を介して吸入口10より
再び圧縮器1内に送り込まれる。
The refrigerant gas cooled and liquefied in the condenser 14 is depressurized by the expansion valve 6 and enters the evaporator 7, where it is evaporated and functions as a refrigeration system. The air is fed into the compressor 1 again through the suction port 10.

このようにすることにより、冷却器12で十分
冷却された冷媒ガスの大部分を電動機9の冷却に
使用することができるので、従来よりも電動機9
を冷却する能力は大幅に向上するし、同じ出力を
出すのも、電動機9の形状を小型軽量化すること
ができる。
By doing this, most of the refrigerant gas that has been sufficiently cooled by the cooler 12 can be used for cooling the electric motor 9.
The ability to cool the motor 9 is greatly improved, and the electric motor 9 can be made smaller and lighter to produce the same output.

一方上記で述べたように、電動機9を冷却した
後の冷媒ガスは、凝縮器14、膨張弁6、蒸発器
7と所定の循環サイクルで移動するので、蒸発器
7へ移つた冷媒ガスはその後電動機9の冷却をす
る必要がなく、すべて冷凍装置の冷却に使用され
ることとなり、冷凍装置の能力もさらに向上す
る。
On the other hand, as mentioned above, the refrigerant gas after cooling the electric motor 9 moves through the condenser 14, the expansion valve 6, and the evaporator 7 in a predetermined circulation cycle, so the refrigerant gas that has moved to the evaporator 7 is There is no need to cool the electric motor 9, and all of it is used to cool the refrigeration system, further improving the capacity of the refrigeration system.

なお、上記実施例では水冷式の冷却器12およ
び凝縮器14について述べたが、冷却水を冷却管
4に通す水冷式の代りに、空冷式、その他の方式
として、冷却管4に通す冷却媒体を変えても上記
実施例と同様の効果を奏する。
In the above embodiment, a water-cooled cooler 12 and a condenser 14 have been described, but instead of a water-cooled type in which cooling water is passed through the cooling pipe 4, an air-cooled type or other method may be used in which a cooling medium is passed through the cooling pipe 4. Even if the values are changed, the same effect as in the above embodiment can be obtained.

また、電動機9の冷却効果を更に改善するため
に、電動機9内部に冷媒ガス循環用の送風機を設
けることも可能である。
Further, in order to further improve the cooling effect of the electric motor 9, it is also possible to provide a blower for circulating refrigerant gas inside the electric motor 9.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、電動機の冷却
循環系統を変更し電動機の冷却を圧縮機から送り
出されて冷却器で冷却された冷媒ガスにて冷却さ
せるように構成したので、本来の冷凍装置の冷凍
能力を減少させることなく、電動機内部の冷却能
力が増大して電動機を小型軽量化できるととも
に、冷却器と凝縮器とを仕切板により区画された
単一器体から形成し、かつ冷却器下辺と凝縮器流
出側下辺とを、仕切板を迂回した抵抗管によつて
接続したことから、冷却器と凝縮器とがコンパク
トになり、かつ同一の冷却水を共用できて製作が
容易となつて製作費が削減でき、しかも抵抗管が
適当な流れ抵抗を有しているから、冷却器内で一
部液化した冷媒ガスの液化分のみを直接凝縮器に
送つて有効に利用できて、冷却能力をさらに増大
させることができるという効果がある。
As described above, according to the present invention, the cooling circulation system of the electric motor is changed so that the electric motor is cooled by the refrigerant gas sent out from the compressor and cooled by the cooler. The cooling capacity inside the motor increases without reducing the cooling capacity of the motor, making it possible to reduce the size and weight of the motor. Since the lower side and the lower side of the condenser outflow side are connected by a resistance pipe that bypasses the partition plate, the cooler and condenser are compact and can share the same cooling water, making manufacturing easier. In addition, since the resistance tube has an appropriate flow resistance, only the liquefied part of the refrigerant gas that is partially liquefied in the cooler can be sent directly to the condenser and used effectively, resulting in cooling. It has the effect of further increasing abilities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す系統図、第
2図は従来の冷凍装置を示す系統図であつて第1
図相当図である。 図において、1…圧縮機、7…蒸発器、9…電
動機、12…冷却器、14…凝縮器、16…仕切
板、17…抵抗管。なお、各図中同一符号は同一
又は相当部分を示す。
FIG. 1 is a system diagram showing an embodiment of the present invention, and FIG. 2 is a system diagram showing a conventional refrigeration system.
It is a figure equivalent figure. In the figure, 1... Compressor, 7... Evaporator, 9... Electric motor, 12... Cooler, 14... Condenser, 16... Partition plate, 17... Resistance tube. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 冷媒ガスを圧縮する圧縮機と、この圧縮機に
よつて圧縮された冷媒ガスを飽和ガスに近くなる
まで冷却する冷却器と、この冷却器で冷却された
上記冷媒ガスによつて内部を冷却される圧縮機駆
動用の電動機と、この電動機の内部を冷却した冷
媒ガスを冷却液化する凝縮器と、この凝縮器で冷
却液化された冷媒ガスを蒸発させるための蒸発器
とを備え、上記冷却器と凝縮器とは仕切板により
区画された単一器体から形成され、かつ上記冷却
器下辺と凝縮器流出側下辺とを仕切板を迂回した
抵抗管によつて接続したことを特徴とする冷凍装
置。
1. A compressor that compresses refrigerant gas, a cooler that cools the refrigerant gas compressed by this compressor until it becomes close to saturated gas, and the interior is cooled by the refrigerant gas cooled by this cooler. a condenser that cools and liquefies the refrigerant gas that has cooled the inside of the motor; and an evaporator that evaporates the liquefied refrigerant gas that has been cooled by the condenser. The container and the condenser are formed from a single container body divided by a partition plate, and the lower side of the cooler and the lower side of the condenser outlet side are connected by a resistance pipe that bypasses the partition plate. Refrigeration equipment.
JP12754879A 1979-10-01 1979-10-01 Refrigerating system Granted JPS5653349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12754879A JPS5653349A (en) 1979-10-01 1979-10-01 Refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12754879A JPS5653349A (en) 1979-10-01 1979-10-01 Refrigerating system

Publications (2)

Publication Number Publication Date
JPS5653349A JPS5653349A (en) 1981-05-12
JPS6238624B2 true JPS6238624B2 (en) 1987-08-19

Family

ID=14962723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12754879A Granted JPS5653349A (en) 1979-10-01 1979-10-01 Refrigerating system

Country Status (1)

Country Link
JP (1) JPS5653349A (en)

Also Published As

Publication number Publication date
JPS5653349A (en) 1981-05-12

Similar Documents

Publication Publication Date Title
CN105437909B (en) Automobile air regulating system
JP2014076792A (en) Air conditioning system for vehicle
CN105299939B (en) Frequency converter cooling and dehumidifying system, inverter compressor group and refrigeration plant
JP2000508753A (en) Pre-cooled steam-liquid refrigeration cycle
CN103375863B (en) Unitary HP AC and plate heat exchanger
US4141708A (en) Dual flash and thermal economized refrigeration system
JPH0192598A (en) Gas-compressor
US4248059A (en) Reversible-cycle closed-circuit refrigeration systems
JPS6238624B2 (en)
KR101658223B1 (en) Cooling-Storage System
JPH02229521A (en) Entrapped air dryer
JPS63159123A (en) Air-conditioning device
SU1499064A2 (en) Air conditioner
CN109442786A (en) A kind of control method of Two-stage refrigerating system and Two-stage refrigerating system
JPH03193525A (en) Cooling device for automobile
JPH04203388A (en) Dryer integral type air-cooled compressor
JPS6195424U (en)
JPH08145496A (en) Refrigerator
JPH0539410Y2 (en)
JPS5755213A (en) Air conditioner
US2047053A (en) Refrigerating machine
JPS6226114A (en) Engine-cooling type car air conditioner
SU1460546A2 (en) Air-conditioner
JP2951122B2 (en) Cryogenic refrigeration equipment
JPH0391663A (en) Refrigeration cycling device