JPS6238486B2 - - Google Patents

Info

Publication number
JPS6238486B2
JPS6238486B2 JP56040795A JP4079581A JPS6238486B2 JP S6238486 B2 JPS6238486 B2 JP S6238486B2 JP 56040795 A JP56040795 A JP 56040795A JP 4079581 A JP4079581 A JP 4079581A JP S6238486 B2 JPS6238486 B2 JP S6238486B2
Authority
JP
Japan
Prior art keywords
hardening
strength
mud
self
muddy water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56040795A
Other languages
Japanese (ja)
Other versions
JPS57155423A (en
Inventor
Daizo Kida
Juji Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP4079581A priority Critical patent/JPS57155423A/en
Publication of JPS57155423A publication Critical patent/JPS57155423A/en
Publication of JPS6238486B2 publication Critical patent/JPS6238486B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/18Bulkheads or similar walls made solely of concrete in situ

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は泥水固化工法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a mud water solidification method.

〔従来の技術および発明が解決すべき問題点〕[Problems to be solved by conventional technology and invention]

従来から採用されている泥水固化工法は、堀削
時に硬化性泥水を使用する工法(パナソル工
法)、堀削時は非硬化性泥水を使用し、堀削完了
後この泥水に水ガラスおよびセメントを混合し、
硬化性泥水に変換する工法(KWI法)が主な方
法である。
The conventional mud solidification method uses hardening mud during excavation (Panasol method), uses non-hardening mud during excavation, and after the excavation is completed, water glass and cement are added to this mud. mix,
The main method is to convert it into hardening mud (KWI method).

これら方法では泥水中の硬化剤の含有程度は溝
孔内でほぼ均一となるので部位(深度方向)に対
してほぼ均一な強度をもつ硬化体が形成される。
したがつて硬化体に土水圧を負担させる場合に調
合を決定するに際しては一番強度を必要とする位
置に着目した調合を採用せざるを得ず、それより
低強度でよい場合にも必要以上の強度が発現する
調合を使用することとなり不経済な施工をする欠
点を有している。さらに、硬化体の一部(孔底付
近)に支持力まで負担させる場合には、より一層
不経済となるばかりでなく、硬化体そのものの強
度では支持力を負担できない場合には適用できな
い等の欠点を有していた。
In these methods, the content of the hardening agent in the mud becomes approximately uniform within the groove, so that a hardened body having approximately uniform strength is formed over the area (in the depth direction).
Therefore, when determining the formulation when the hardened body is to bear soil water pressure, it is necessary to adopt a formulation that focuses on the position that requires the most strength, and even when a lower strength is required, it is necessary to It has the disadvantage that it requires the use of a formulation that exhibits the strength of , making the construction uneconomical. Furthermore, if a part of the hardened body (near the bottom of the hole) bears the supporting capacity, it not only becomes even more uneconomical, but also may not be applicable if the strength of the hardened body itself cannot bear the supporting capacity. It had drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の欠点をなくし経済的な施工を行
なうばかりでなく支持力の負担も可能とし、泥水
固化工法の適用範囲をさらに拡大することを目的
としたものである。
The object of the present invention is to eliminate the above-mentioned drawbacks, to not only perform economical construction, but also to bear the burden of bearing capacity, and to further expand the scope of application of the muddy water solidification method.

即ち本発明の要旨とする所は非硬化性泥水を使
用して堀削された溝孔の孔底までトレミ管を挿入
し、このトレミ管を通じて先ず硬化剤含有量の少
ない低強度用自硬性泥水を送入し、孔底部の非硬
化性泥水を両泥水の比重差を利用して上方に移行
させて低強度用自硬性泥水で置換し、引続きトレ
ミ管を通じて硬化剤含有量の多い高強度用自硬性
泥水を孔底部に送入し、これにより各泥水間の比
重差を利用して低強度用自硬性泥水及び非硬化性
泥水をそのままの状態で上方に移行して孔底部を
高強度用自硬性泥水で置換して深度方向の強度分
布に応じた2段階ないしはそれ以上の多段階の強
度用自硬性泥水層を形成することを特徴とする泥
水固化工法に存するものであり、本発明の方法は
従来の施工法とは異なり堀削時は非硬化性泥水を
使用し、固化時にその泥水と自硬性安定液とを入
れ換える工法(置換工法)によつて有効に実施さ
れる。すなわち置換時にトレミ管を孔底まで挿入
し、トレミ管を使用して硬化性泥水を穴内に送り
込み硬化性泥水は孔底から順次上部に移行する形
で置換される。
That is, the gist of the present invention is to insert a tremi tube to the bottom of a trench excavated using non-hardening mud, and to first pour low-strength self-hardening mud with a low hardening agent content through the tremi tube. The non-hardening mud at the bottom of the hole is moved upward using the difference in specific gravity between the two muds, replacing it with self-hardening mud for low strength, and then passes through a tremi tube to replace it with self-hardening mud for high strength with a high hardening agent content. Self-hardening mud is sent to the bottom of the hole, and by utilizing the difference in specific gravity between each mud, the low-strength self-hardening mud and non-hardening mud are moved upward as they are, and the bottom of the hole is used for high-strength mud. The present invention resides in a mud water solidification method characterized by replacing the water with self-hardening mud to form a self-hardening mud layer with two or more stages of strength depending on the strength distribution in the depth direction. Unlike conventional construction methods, this method is effectively carried out by using non-hardening muddy water during excavation and replacing the muddy water with self-hardening stabilizing liquid during solidification (replacement method). That is, at the time of replacement, a tremor tube is inserted to the bottom of the hole, and the harden mud is sent into the hole using the tremor tube, and the harden mud is replaced from the bottom of the hole to the top.

〔作 用〕[Effect]

一般に土水圧は深い位置ほど大きくなる三角形
分布となるので、それに対応した硬化体強度発現
を得るには、上部は低強度で下部ほど高強度にす
ればよい。また硬化体強度は硬化性泥水中の硬化
剤量に対応し、硬化剤の多いものほど強度は大き
い。したがつて上記の硬化体の強度分布を置換工
法で得るには最初に低強度用の調合を(硬化剤含
有量の少ないもの)順次高強度用の調合に(硬化
剤含有量の多いもの)に変えてゆく。その際、置
換時に低強度用のものと高強度用のものが混り合
うことはない。なぜならば置換工法は比重差を利
用しているので、後から送り込まれる高強度用調
合は硬化剤量が多いため、比重が大きいためであ
る。したがつて、高強度用の調合の硬化性泥水は
常に低強度用のそれの下にくる。
In general, soil water pressure has a triangular distribution that increases as the depth increases, so in order to obtain the corresponding strength of the hardened body, the strength should be low in the upper part and high in the lower part. Furthermore, the strength of the cured product corresponds to the amount of hardening agent in the hardening mud, and the more hardening agent there is, the higher the strength is. Therefore, in order to obtain the strength distribution of the above-mentioned cured product using the substitution method, first prepare a low-strength formulation (low hardening agent content), then move on to high-strength formulation (high hardening agent content). I will change it to In this case, the low-strength materials and the high-strength materials will not be mixed during replacement. This is because the replacement method utilizes the difference in specific gravity, so the high-strength formulation that is sent in later has a large amount of curing agent and therefore has a high specific gravity. Therefore, hardening muds of high-strength formulations are always below those of low-strength formulations.

上記のように置換工法によつて深度方向に調合
の異なる(強度発現の異なる)硬化体の形成が可
能となる。
As described above, by the substitution method, it is possible to form cured bodies with different formulations (different strength expressions) in the depth direction.

さらに孔底部位置の強度を著しく大きくしたい
場合は、硬化性泥水の代りにモルタル又はコンク
リートを充填すればよい。
Furthermore, if it is desired to significantly increase the strength at the bottom of the hole, mortar or concrete may be filled instead of hardening mud.

又上記の深度方向に強度発現を異にする自硬化
性安定液の各調合は溝孔内に形成されるべき硬化
体の深度方向の強度分布に応じて2段階ないしそ
れ以上の多段階の強度用調合に夫々調整される。
In addition, each of the formulations of the self-curing stabilizing liquid that exhibits different strength in the depth direction has two or more levels of strength depending on the strength distribution in the depth direction of the hardened body to be formed in the groove. Each formulation is adjusted individually.

〔実施例および発明の効果〕[Examples and effects of the invention]

以下に本発明を図面に示す実施例によつて説明
する。
The present invention will be explained below with reference to embodiments shown in the drawings.

第1図に示すように非硬化性泥水3を使用して
堀削された溝孔1の孔底までトレミ管2を挿入
し、このトレミ管2を通じて先ず低強度用自硬性
泥水4を挿入し、孔底部の非硬化性泥水3を上方
に移行させて低強度用自硬性泥水4で置換する。
As shown in Fig. 1, a tremor tube 2 is inserted up to the bottom of a trench hole 1 that has been excavated using non-hardening mud 3, and through this tremor tube 2, a low-strength self-hardening mud 4 is first inserted. , the non-hardening muddy water 3 at the bottom of the hole is moved upward and replaced with self-hardening muddy water 4 for low strength.

引続いて第2図に示すように上記のトレミ管2
を通じて高強度用自硬性泥水5を孔底部に挿入す
るが、これにより低強度用自硬性泥水4及び非硬
化性泥水3はそのままの状態で上方に移行し孔底
部は高強度用自硬性泥水5で置換される。
Subsequently, as shown in FIG.
The self-hardening muddy water 5 for high strength is inserted into the bottom of the hole through the hole.As a result, the self-hardening muddy water 5 for low strength and the non-hardening muddy water 3 move upward as they are, and the self-hardening muddy water 5 for high strength is inserted into the bottom of the hole. will be replaced with

最後に第3図に示すように当該トレミ管2を通
じてモルタル又はコンクリート6を孔底部に挿入
置換することにより溝孔部の根固めを行う。
Finally, as shown in FIG. 3, mortar or concrete 6 is inserted into the bottom of the hole through the tremor pipe 2 to solidify the roots of the groove.

このようにして溝孔1内の非硬化性安定液3は
その孔底側より強度発現を異にするモルタル又は
コンクリート6の層、高強度用自硬性泥水5の
層、低強度用自硬化性泥水4の層で置換され、か
くて深度方向に強度の異る硬化体が形成される。
In this way, the non-hardening stabilizing liquid 3 in the groove hole 1 is formed from the bottom side of the hole: a layer of mortar or concrete 6 with different strength expressions, a layer of self-hardening muddy water 5 for high strength, and a layer of self-hardening mud for low strength. This is replaced by a layer of muddy water 4, thus forming a hardened body with different strengths in the depth direction.

その際、低強度用自硬化性泥水4、高強度用自
硬化性泥水5及びモルタル又はコンクリート6の
順にその比重が順次大きくなつているので各置換
層4,5,6は混り合うことなく孔底に向つて順
次強度の大きくなる層状の硬化体に形成される。
At that time, since the specific gravity of the low-strength self-hardening mud 4, high-strength self-hardening mud 5, and mortar or concrete 6 increases in this order, the replacement layers 4, 5, and 6 do not mix together. It is formed into a layered hardened body whose strength gradually increases toward the bottom of the hole.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例を示し、第1図
は低強度用自硬化性泥水で孔底部を置換している
状態図、第2図は高強度用自硬化性泥水で孔底部
を置換している状態図、第3図はモルタル又はコ
ンクリートで孔底部を置換している状態図であ
る。 1…溝孔、2…トレミ管、3…非硬化性泥水、
4…低強度用自硬化性泥水、5…高強度用自硬化
性泥水、6…モルタル又はコンクリート。
The drawings all show examples of the present invention, and Fig. 1 is a state diagram in which the bottom of the hole is replaced with self-hardening muddy water for low strength, and Fig. 2 is a state diagram in which the bottom of the hole is replaced with self-hardening muddy water for high strength. Fig. 3 shows a state diagram in which the bottom of the hole is replaced with mortar or concrete. 1... Groove, 2... Tremi pipe, 3... Non-hardening mud water,
4... Self-hardening muddy water for low strength, 5... Self-hardening muddy water for high strength, 6... Mortar or concrete.

Claims (1)

【特許請求の範囲】 1 非硬化性泥水を使用して堀削された溝孔の孔
底までトレミ管を挿入し、このトレミ管を通じて
先ず硬化剤含有量の少ない低強度用自硬性泥水を
送入し、孔底部の非硬化性泥水を両泥水の比重差
を利用して上方に移行させて低強度用自硬性泥水
で置換し、引続きトレミ管を通じて硬化剤含有量
の多い高強度用自硬性泥水を孔底部に送入し、こ
れにより各泥水間の比重差を利用して低強度用自
硬性泥水及び非硬化性泥水をそのままの状態で上
方に移行して孔底部を高強度用自硬性泥水で置換
して深度方向の強度分布に応じた2段階ないしは
それ以上の多段階の強度用自硬性泥水層を形成す
ることを特徴とする泥水固化工法。 2 最後にトレミ管を通じてモルタル又はコンク
リートを孔底部に送入置換することにより溝孔部
の根固めを行うことを特徴とする特許請求の範囲
第1項記載の泥水固化工法。
[Scope of Claims] 1. A tremor tube is inserted to the bottom of a trench excavated using non-hardening mud, and through this tremor tube, low-strength self-hardening mud with a low hardening agent content is first fed. The non-hardening mud at the bottom of the hole is moved upward using the difference in specific gravity between the two muds, replacing it with low-strength self-hardening mud, and then passed through the tremi tube to high-strength self-hardening mud with a high hardening agent content. The muddy water is sent to the bottom of the hole, and by utilizing the difference in specific gravity between each muddy water, the self-hardening muddy water for low strength and the non-hardening muddy water move upward as they are, and the bottom of the hole becomes self-hardening muddy water for high strength. A mud water solidification method characterized by replacing mud with mud to form a self-hardening mud water layer with two or more stages of strength depending on the strength distribution in the depth direction. 2. The muddy water solidification method according to claim 1, wherein finally, mortar or concrete is introduced into the bottom of the hole through a tremi pipe to solidify the roots of the groove.
JP4079581A 1981-03-20 1981-03-20 Method of construction of solidification of muddy water Granted JPS57155423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4079581A JPS57155423A (en) 1981-03-20 1981-03-20 Method of construction of solidification of muddy water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4079581A JPS57155423A (en) 1981-03-20 1981-03-20 Method of construction of solidification of muddy water

Publications (2)

Publication Number Publication Date
JPS57155423A JPS57155423A (en) 1982-09-25
JPS6238486B2 true JPS6238486B2 (en) 1987-08-18

Family

ID=12590546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4079581A Granted JPS57155423A (en) 1981-03-20 1981-03-20 Method of construction of solidification of muddy water

Country Status (1)

Country Link
JP (1) JPS57155423A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105707A (en) * 1983-11-14 1985-06-11 Taisei Corp Construction method for cut-off wall
JPH0611997B2 (en) * 1985-06-17 1994-02-16 株式会社大林組 Construction method of underground wall or cast-in-place pile
JP4576768B2 (en) * 2001-07-31 2010-11-10 株式会社大林組 Composite type underground continuous wall and construction method of the same wall

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149507A (en) * 1974-10-28 1976-04-28 Kumagai Gumi Co Ltd
JPS5161119A (en) * 1974-10-26 1976-05-27 Kumagai Gumi Co Ltd
JPS543322A (en) * 1977-06-09 1979-01-11 Mitsui Constr Method of constructing underground structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161119A (en) * 1974-10-26 1976-05-27 Kumagai Gumi Co Ltd
JPS5149507A (en) * 1974-10-28 1976-04-28 Kumagai Gumi Co Ltd
JPS543322A (en) * 1977-06-09 1979-01-11 Mitsui Constr Method of constructing underground structure

Also Published As

Publication number Publication date
JPS57155423A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
SE448735B (en) PROCEDURE AND COMPOSITION FOR IMPROVING THE STRUCTURAL TEMPORARILY OF SOFT SOIL CONTAINING ORGANIC INGREDIENTS
JPS6238486B2 (en)
CN106917402A (en) A kind of CFG pile precast piles head and CFG pile construction methods
CN106836034A (en) A kind of high roadbed slab culvert flexibility off-load system and construction method
JP3214809B2 (en) Ground treatment method in slope construction
CN106917396A (en) A kind of taper foundation reinforcement method
JP2004225453A (en) Construction method of civil engineering structure
JPH0452327A (en) Stabilized soil and construction method using this soil
JPH0341605B2 (en)
JPS6047413B2 (en) Construction method for constructing a new structure underground below an existing structure and filling material used therein
JP2004124452A (en) Foundation pile structure in bearing ground and working method of foundation pile
JPH0528320B2 (en)
JPH10140155A (en) Flowable refilling material and its production
US932717A (en) Method of constructing foundations.
JPH07100822A (en) Manufacture of hydraulic material
JPS5822609B2 (en) How to build a tank foundation
CN105862865A (en) Grouting riprap concrete preparation method
JPS609172B2 (en) How to build underground structures
US2337378A (en) Method of making piers
JPH0464372B2 (en)
JP2711029B2 (en) Soil improvement method of pile formation hollow moat
JPH01318615A (en) Method of construction for after treatment temporary work using steel sheet pile
JP2022032978A (en) Construction formation method
JPS6240488B2 (en)
JPH0612012B2 (en) Tsukishima construction method