JPS6238221A - Porous membrane for separation - Google Patents

Porous membrane for separation

Info

Publication number
JPS6238221A
JPS6238221A JP17828285A JP17828285A JPS6238221A JP S6238221 A JPS6238221 A JP S6238221A JP 17828285 A JP17828285 A JP 17828285A JP 17828285 A JP17828285 A JP 17828285A JP S6238221 A JPS6238221 A JP S6238221A
Authority
JP
Japan
Prior art keywords
separation
stretching
porous membrane
diffraction
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17828285A
Other languages
Japanese (ja)
Inventor
Hiroyuki Makino
広行 牧野
Junichi Terada
淳一 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17828285A priority Critical patent/JPS6238221A/en
Publication of JPS6238221A publication Critical patent/JPS6238221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain the titled membrane developing excellent separation trans missivity and also excellent in dynamical characteristics or thermal dimensional stability, by using a thermoplastic polymer wherein a crystal orientation degree is 90% or more, an X-ray dispersion half power angle of diffraction is 0.28 deg. or less and a void orientation degree is 70% or more. CONSTITUTION:In a method for continuous multistage orientation of a non- stretched thermoplastic polymer utilizing the speed ratio of rotors, neck stretching is performed by using dielectric heating in the first stage of multistage stretching divided by a tension separator and, at least in the second stage, dielectric heating and external heating are continuously used to perform stretching. By this method, a separation porous membrane comprising a thermoplastic polymer, wherein a dispersion half power angle of diffraction in the equator direction of void scattering according to an X-ray small angle scattering method is 0.28 deg. or less, a void orientation degree is 70% or more and a crystal orientation degree measured by X-ray wide angle scattering method is 90% or more, is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、優れた分離透過能と力学的性能を兼備した高
分子からなる分離用多孔膜に関する。さらに詳しくは、
熱可塑性重合体からなり、ガス分離、特に水素やヘリウ
ムなどの小さな分子からなる気体と大きな分子からなる
気体との分離に適した分離用多孔膜に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a porous separation membrane made of a polymer that has both excellent separation permeability and mechanical performance. For more details,
The present invention relates to a porous separation membrane made of a thermoplastic polymer and suitable for gas separation, particularly for separating gases consisting of small molecules such as hydrogen and helium from gases consisting of large molecules.

(従来の技術) 分離用多孔膜の性能は処理能力と分離能力をあわせ持つ
ことが必要とされている。処理能力を高めるには、いか
に多くの孔を膜中に存在せしめるかによる。一方、分離
能力を高めるには、°サイズや形を制御した均一な孔を
膜中に存在させるかにかかわってくる。したがって、従
来より分離用多孔膜の製造の際には、いかに均一な孔を
いかに多く膜中に存在せしめるかに注力され、数々の方
法が試みられている0例えば、相溶性の低い2種の物質
の相分離を利用する方法(米国特許3,133.132
など)、粉体を焼結する方法(Herr ing、C,
、J、Appff、Phys、、21.301  (1
950)など)、または除去の容易な成分を混合し、こ
れを成膜後除去する方法(スイス特許7,718,76
5など)が知られている。
(Prior Art) The performance of a porous membrane for separation is required to have both processing ability and separation ability. Increasing the throughput depends on how many pores are present in the membrane. On the other hand, increasing the separation ability depends on having uniform pores with controlled size and shape in the membrane. Therefore, in the production of porous membranes for separation, efforts have traditionally been made to ensure that as many uniform pores as possible are present in the membrane, and a number of methods have been tried. Method using phase separation of substances (U.S. Pat. No. 3,133,132)
), methods for sintering powders (Herr ing, C.,
, J. Appff, Phys., 21.301 (1
950), or a method of mixing easily removable components and removing them after film formation (Swiss Patent No. 7,718,76)
5 etc.) are known.

一方、熱可塑性重合体の力学的性能を高めることについ
ては、延伸または超延伸が古くから行なわれている手段
の一つである。ポリオキシメチレンでは、工業材料32
 (4) 、92 (1984)に誘電加熱を用いて超
延伸を可能とし、高引張弾性率および高引張強度を示す
延伸体を得た例が記載されている。また、ポリエチレン
では超高分子量のポリエチレンをゲル紡糸することによ
り、超延伸を可能とし、これにより高引張弾性率および
高引張強度を有する延伸体が得られることが記載されて
いる。
On the other hand, stretching or superstretching is one of the methods that has been used for a long time to improve the mechanical performance of thermoplastic polymers. For polyoxymethylene, industrial material 32
(4), 92 (1984) describes an example in which dielectric heating was used to enable superstretching and a stretched body exhibiting high tensile modulus and high tensile strength was obtained. It is also described that polyethylene can be ultra-stretched by gel-spinning ultra-high molecular weight polyethylene, thereby producing a stretched body having high tensile modulus and high tensile strength.

(発明が解決しようとする問題点) 近年、分離用多孔膜の用途が拡大されるにつれて、その
要求される力学的特性は厳しくなり、高圧下の使用に耐
えること、長期使用に耐えること、膜洗浄(逆洗等)に
耐えること等、もっばら膜の強さに関する要求が高まっ
ている(例えば特開昭58−223号公報)。特にガス
分離の分野においては、孔径の分布、形状に対する要求
が厳しいため、分離用多孔膜の分離能力と処理能力の両
者を同時に満足しつつ、その力学的特性を高めることは
至難の技となっている。例えば多孔膜の強度を向上させ
る目的で、特開昭52−85525号公報、特開昭52
−144416号公報などに膜の形状を中空糸にする方
法が提案されている。しかし、これらの中空糸の引張強
度は0.4 G P a以下であり、最近の分離用多孔
膜の強さに関する重要には応えられない。
(Problems to be solved by the invention) In recent years, as the uses of porous membranes for separation have expanded, the required mechanical properties have become stricter. There is an increasing demand for membrane strength such as resistance to cleaning (backwashing, etc.) (for example, Japanese Patent Laid-Open No. 58-223). Particularly in the field of gas separation, there are strict requirements regarding pore size distribution and shape, so it is extremely difficult to improve the mechanical properties of a porous membrane for separation while simultaneously satisfying both separation capacity and processing capacity. ing. For example, for the purpose of improving the strength of porous membranes, Japanese Patent Laid-Open No. 52-85525,
A method of forming a membrane into a hollow fiber is proposed in Japanese Patent No. 144416 and the like. However, the tensile strength of these hollow fibers is 0.4 GPa or less, and cannot meet the recent requirements for the strength of porous membranes for separation.

本発明の目的は、高い分離能力および処能力を有し、か
つ極めて優れた力学的特性を有する分離用多孔膜を提供
することにある。
An object of the present invention is to provide a porous membrane for separation that has high separation capacity and processing capacity, and has extremely excellent mechanical properties.

(問題点を解決するための手段) 本発明者らは、上記目的を達成するために、熱可塑性重
合体中のボイド(空孔)の発現機構と熱可塑性重合体中
の強度向上方法とを鋭意検討した結果、多孔膜のボイド
に関する微細構造がある特定の領域に存在するとき、気
体および液体に対する優れた分離機能および優れた力学
的特性を有する多孔膜となることを見出し本発明に到達
した。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have developed a mechanism for generating voids (vacancies) in thermoplastic polymers and a method for improving the strength in thermoplastic polymers. As a result of extensive studies, the present inventors discovered that when a porous membrane has a microstructure related to voids in a certain region, the porous membrane has excellent gas and liquid separation functions and excellent mechanical properties, and has arrived at the present invention. .

すなわち本発明は、X線小角散乱法によるボイド散乱の
赤道方向の分散半価回折角が0.28°以下、ボイド配
向度が70%以上であり、X線広角散乱法によって測定
される結晶配向度が90%以上である熱可塑性重合体よ
りなる分離用多孔膜であることを特徴とする。
That is, the present invention provides a method in which the dispersion half-value diffraction angle in the equator direction of void scattering measured by small-angle X-ray scattering is 0.28° or less, the degree of void orientation is 70% or more, and the crystal orientation measured by wide-angle X-ray scattering is The present invention is characterized in that it is a porous membrane for separation made of a thermoplastic polymer having a polycarbonate of 90% or more.

本発明においては、多孔膜を形成する重合体は熱可塑性
重合体でなければならない。熱硬化性重合体では溶融成
形での膜の製造が困難であり、また加熱、延伸し、配向
度を高めることができない。
In the present invention, the polymer forming the porous membrane must be a thermoplastic polymer. With thermosetting polymers, it is difficult to produce a film by melt molding, and the degree of orientation cannot be increased by heating and stretching.

本発明における熱可塑性重合体は、膜への成形が可能で
あれば、どのような組成でもよく、重合法も問わない。
The thermoplastic polymer in the present invention may have any composition and any polymerization method may be used as long as it can be molded into a film.

好ましい熱可塑性重合体はポリオキシメチレン、ポリエ
チレン、ポリプロピレン、ポリエステルなどの延伸、超
延伸が可能なもの、または誘電加熱法によって発熱し、
ボイドを発生する誘電性重合体、および誘電物質を含有
する非誘電性重合体である。誘電性重合体としては、ポ
リオキシメチレンなどのポリエーテル、ポリアミド、ポ
リエステル、ポリカーボネート、ポリ塩化ビニル、ポリ
メタアクリル酸エステルなどが挙げられる。誘電物質と
しては、酸化チタン、チタン酸鉛、チタン酸バリウム、
アルミナ、酸化銅、シリコーンカーバイド、硫酸バリウ
ムなどの無機系誘電物質および種々の有機系誘電物質な
どが挙げられる。
Preferred thermoplastic polymers are polyoxymethylene, polyethylene, polypropylene, polyester, etc., which can be stretched or superstretched, or those that generate heat by dielectric heating,
They are dielectric polymers that generate voids, and non-dielectric polymers that contain dielectric materials. Examples of the dielectric polymer include polyethers such as polyoxymethylene, polyamides, polyesters, polycarbonates, polyvinyl chloride, polymethacrylates, and the like. Dielectric materials include titanium oxide, lead titanate, barium titanate,
Examples include inorganic dielectric substances such as alumina, copper oxide, silicone carbide, and barium sulfate, and various organic dielectric substances.

最も好ましい熱可塑性重合体は、誘電加熱によって発熱
し、延伸または超延伸により優れた機械的性質を得るこ
とのできるポリオキシメチレンおよびポリエチレンテレ
フタレートである。
The most preferred thermoplastic polymers are polyoxymethylene and polyethylene terephthalate, which can generate heat by dielectric heating and obtain excellent mechanical properties by stretching or superstretching.

本発明の多孔膜の、特に重要な特徴は新規な微細構造を
有することにある。この微細構造について以下に論述す
る。
A particularly important feature of the porous membrane of the present invention is that it has a novel microstructure. This fine structure will be discussed below.

第1図は、本発明の多孔膜の、X線小角散乱法による、
延伸軸に対して赤道方向の回折強度分布曲線を模式的に
示す図である。この回折強度分布曲線の測定の詳細は後
述する。分散半価回折角αとは、第1図に示すように回
折角(2θ)=0.2のときの回折強度Aの半価回折強
度A/2を呈する回折角のことである。本発明において
は、この赤道方向の分散半価回折角αが0.28°以下
でなければならない。第1図の回折強度分布曲線はボイ
ド散乱による回折強度の分布を示し、回折走査方向のボ
イドの大きさの分布を意味する。αが0゜28°より大
きいと、ボイドの大きさの分布が過大になり、分離性能
および強度の低下が生じたり、多孔膜中のボイド間が非
貫通となりやすく、十分な透過流量が得られなくなる。
FIG. 1 shows the results of the small-angle X-ray scattering method of the porous membrane of the present invention.
FIG. 3 is a diagram schematically showing a diffraction intensity distribution curve in the equatorial direction with respect to the stretching axis. Details of the measurement of this diffraction intensity distribution curve will be described later. The dispersive half-value diffraction angle α is a diffraction angle that exhibits a half-value diffraction intensity A/2 of the diffraction intensity A when the diffraction angle (2θ)=0.2, as shown in FIG. In the present invention, the dispersion half-power diffraction angle α in the equator direction must be 0.28° or less. The diffraction intensity distribution curve in FIG. 1 shows the distribution of diffraction intensity due to void scattering, and means the distribution of void sizes in the diffraction scanning direction. If α is larger than 0°28°, the size distribution of voids will be excessive, resulting in a decrease in separation performance and strength, and voids in the porous membrane will likely become non-penetrating, making it difficult to obtain a sufficient permeation flow rate. It disappears.

第1図に示されるような延伸軸方向に対し赤道方向の小
角X線回折強度分布曲線の回折角(2θ)=0.2°の
ときの回折強度Aと、同子午線方向の小角X線回折強度
分布曲線の回折角(2θ)=0.2°のときの回折強度
Bとから、ボイド配向度■0は次式 を用いて算出される。本発明においてはこの■0(%)
が70%以上でなければならない。■0が小さいほどボ
イドの形は球状に近づき、VOが大きいほど延伸軸方向
に向けて扁平化する。VOが70%未満ではガス分離ま
たは液分離の際、ボイドが変形しやすく、そのために処
理能力が低下し、実用性が損なわれる。VOの好ましい
範囲は80%以上である。
Diffraction intensity A when the diffraction angle (2θ) = 0.2° of the small-angle X-ray diffraction intensity distribution curve in the equatorial direction with respect to the stretching axis direction as shown in Figure 1, and the small-angle X-ray diffraction in the same meridian direction From the diffraction intensity B when the diffraction angle (2θ) of the intensity distribution curve is 0.2°, the void orientation degree ■0 is calculated using the following equation. In the present invention, this ■0 (%)
must be 70% or more. (2) The smaller 0 is, the more spherical the void becomes, and the larger VO is, the flatter the void is in the direction of the stretching axis. If the VO content is less than 70%, the voids are likely to deform during gas separation or liquid separation, which reduces the processing capacity and impairs practicality. The preferred range of VO is 80% or more.

本発明においては結晶配向度COが95%以上でなけれ
ばならない。coは多孔膜の力学的特性および熱的特性
に関係し、COが低いとこれらの特性が悪くなる傾向を
示し、結晶配向度が95%未満では、多孔膜は引張弾性
率が小さく、かつ降伏応力が小さいために、分離される
ガスや液体の圧力により伸びたり、熱に対する寸法安定
性が悪いために分離用モジュールを製作する際に受ける
加熱処理によって部分的に収縮したりして、分離能力の
低下を生じ、分離膜として不適当なものとなる。優れた
力学的特性および熱的特性を有するには、多孔膜の結晶
配向度COは、好ましくは98%以上でなければならな
い。
In the present invention, the degree of crystal orientation CO must be 95% or more. CO is related to the mechanical properties and thermal properties of porous membranes, and these properties tend to deteriorate when CO is low. If the degree of crystal orientation is less than 95%, the porous membrane has a small tensile modulus and a tendency to yield. Because the stress is small, it expands due to the pressure of the gas or liquid to be separated, and because of its poor dimensional stability against heat, it partially shrinks due to the heat treatment applied when manufacturing the separation module, resulting in a decrease in separation ability. This results in a decrease in the temperature of the membrane, making it unsuitable as a separation membrane. In order to have good mechanical and thermal properties, the degree of crystal orientation CO of the porous membrane should preferably be 98% or higher.

上述のような新規な微細構造を有する本発明の分離用多
孔膜の製造方法の一例としては、熱可塑性重合体の未延
伸体を回転体の速度比を利用して連続的に多段延伸する
方法において、張力分離装置によって区切られた多段延
伸で、第1段で誘電加熱を用いてネック延伸を行ない、
少なくとも第2段で、誘電加熱および外部加熱を連続し
て用い、または外部加熱を用いて延伸を行なう方法が挙
げられる。
An example of a method for producing the porous membrane for separation of the present invention having the above-mentioned novel microstructure is a method in which an unstretched body of a thermoplastic polymer is continuously stretched in multiple stages using the speed ratio of a rotating body. In multi-stage stretching separated by tension separation devices, neck stretching is performed using dielectric heating in the first stage,
Examples include a method in which dielectric heating and external heating are used successively or external heating is used to carry out stretching in at least the second stage.

第2図は、2段延伸による本発明の分離用多孔膜の製造
装置の一実施例を示す説明図である。この装置は、一対
のニップロールa%a’よりなる繰出機3と一対のニッ
プロールb、b“からなる第1引取機6との間で、その
両者の速度比を利用して第1段目の延伸を行なう第1段
延伸域と、第1引取機6とニップロールc、c“よりな
る第2引取機10との間でその両者の速度比を利用して
第2段目の延伸を行なう第2段延伸域とからなる。
FIG. 2 is an explanatory diagram showing an embodiment of the apparatus for producing a porous membrane for separation according to the present invention by two-stage stretching. This device operates between a feeder 3 consisting of a pair of nip rolls a% a' and a first take-up machine 6 consisting of a pair of nip rolls b, b'', using the speed ratio of the two to A first stage stretching area where stretching is carried out and a second pulling machine 10 consisting of a first pulling machine 6 and nip rolls c and c" in which a second stage stretching is performed using the speed ratio of both. It consists of a two-stage stretching area.

第1引取機6は張力分離装置に相当し、その両側での張
力は独立に制御される。図において、巻取ドラムlに巻
かれた熱可塑性重合体の未延伸体2は繰出ta3によっ
て第1段延伸域に送出され、そこに配置された第1段誘
電加熱炉6中で昇温され、直ちに第1段目の延伸、すな
わちネック延伸が行なわれ、張力分離装置である第1引
取機6に引き取られると同時に、第2段延伸域に送り出
され、そこに連結して配置された第2段誘電加熱炉7お
よび外部加熱炉8中で昇温され、第2段目の延伸が施さ
れる。続いて延伸後の熱可塑性重合体11は第2引取機
10に引き取られた後、巻取機12に巻き取られる。な
お、図中4および9はそれぞれ第1段および第2段張力
検出器を示す。
The first puller 6 corresponds to a tension separating device, and the tension on both sides thereof is independently controlled. In the figure, an unstretched body 2 of thermoplastic polymer wound around a winding drum 1 is sent to a first stage stretching area by a payout ta3, and is heated in a first stage dielectric heating furnace 6 disposed there. Immediately, the first stage of stretching, that is, neck stretching, is carried out, and at the same time it is taken up by the first drawing machine 6, which is a tension separation device, it is sent to the second stage stretching area, and the The temperature is raised in a two-stage dielectric heating furnace 7 and an external heating furnace 8, and a second stage of stretching is performed. Subsequently, the stretched thermoplastic polymer 11 is taken up by a second take-up machine 10 and then wound up by a take-up machine 12. Note that 4 and 9 in the figure indicate the first stage and second stage tension detectors, respectively.

上述の多段延伸する方法において、第1段でのネック延
伸倍率をいわゆる自然延伸倍率の1〜1゜5倍の範囲で
、かつ延伸応力を4.5kg/mrdより大きい値で第
1段で延伸し、さらに第2段では熱可塑性重合体の融点
より低い温度、好ましくは(融点−10)を以下の温度
で、総延伸倍率が自然延伸倍率の1.1倍から6倍、好
ましくは1.1倍から5倍になるように延伸することが
好ましい。上記の延伸条件の範囲外では、得られる多孔
膜のガス分離能力、処理能力あるいは力学的性能が損な
われ、本発明の目的を達成するできないことがある。
In the multi-stage stretching method described above, the neck stretching ratio in the first stage is in the range of 1 to 1.5 times the so-called natural stretching ratio, and the stretching stress in the first stage is set to a value greater than 4.5 kg/mrd. Furthermore, in the second stage, the total stretching ratio is 1.1 to 6 times the natural stretching ratio, preferably 1. It is preferable to stretch the film by 1 to 5 times. If the stretching conditions are outside the above range, the gas separation ability, processing ability, or mechanical performance of the resulting porous membrane may be impaired, and the object of the present invention may not be achieved.

本発明の分離用多孔膜の形態は、平膜形態でも中空線条
形態でもよ(、その膜厚は0.5 mm以下であること
が好ましい。中空線条形態の場合は、全断面積に対する
中空部断面積の割合が0.1以上で、全長にわたり形伏
および大きさの均一な中空部を有する線条体であること
が好ましい。中空部断面積の全断面積に対する割合が0
.1未満、または膜厚が0.5 wより大きくなると、
ガスや液体の単位時間当たりの処理量が少なくなったり
、境膜抵抗が増大することによる透過量低下をもたらし
たりするため、多孔膜の分離透過能が損なわれることが
ある。また、中空部の形状および大きさが不均一な多孔
膜は、分離透過能の不均一化をもたらすばかりか、分離
や逆洗の際の耐圧性にも問題を生じ、分離用多孔膜とし
て好適とはいえない。中空部の断面積が全断面積に対し
0.3以上、膜厚が0゜1fl以下であることがさらに
好ましい。
The porous membrane for separation of the present invention may be in the form of a flat membrane or in the form of hollow filaments (the membrane thickness is preferably 0.5 mm or less. In the case of the membrane thickness in the form of hollow filaments, the It is preferable that the striated body has a hollow part having a uniform shape and size over the entire length, with a ratio of the cross-sectional area of the hollow part being 0.1 or more.The ratio of the cross-sectional area of the hollow part to the total cross-sectional area is 0.
.. When the film thickness is less than 1 or greater than 0.5 w,
The separation and permeability of the porous membrane may be impaired because the amount of gas or liquid processed per unit time may be reduced, or the amount of permeation may be reduced due to an increase in membrane resistance. In addition, porous membranes whose hollow parts are uneven in shape and size not only result in uneven separation permeability, but also pose problems in pressure resistance during separation and backwashing, making them unsuitable as porous membranes for separation. I can't say that. More preferably, the cross-sectional area of the hollow portion is 0.3 or more with respect to the total cross-sectional area, and the film thickness is 0°1 fl or less.

本発明における、微細構造の測定方法および諸物性の測
定方法を以下に述べる。
A method for measuring a microstructure and a method for measuring various physical properties in the present invention will be described below.

(1)分散半価回折角α X線小角散乱法による。X線小角回折強度曲線は理学電
気社製超強力X線回折装置(ガイガーフレックス RA
D−γA)、位置敏感形検出器(PSPC−10) 、
位置分析回路、マルチチャンネルアナライザーを用い、
ニッケルフィルタで単色化したCuKα線(λ=1.5
418人)で測定した。
(1) Dispersion half-value diffraction angle α Based on small-angle X-ray scattering method. The X-ray small-angle diffraction intensity curve was measured using an ultra-powerful X-ray diffractometer (Geigerflex RA) manufactured by Rigaku Denki Co., Ltd.
D-γA), position sensitive detector (PSPC-10),
Using position analysis circuit and multi-channel analyzer,
CuKα rays made monochromatic with a nickel filter (λ=1.5
418 people).

30KV、180mAでX線発生装置を運転し、第1ピ
ンホールスリット0,2璽鳳φ、第2ピンホールスリッ
ト0.2朋φ、第1ピンホールスリツトから第2ピンホ
ールスリツトまでの距離を122富■、第2ピンホール
スリツトから試料までの距離を40龍、試料から位置敏
感形検出器までの距離を4001mとし、位置敏感形ヰ
★出器の手前5mmで回折角(2θ)=0°の位置に、
幅1.5鶴のラインビームストッパーの中心が一致する
ようにラインビームストッパーを設置した。
The X-ray generator was operated at 30 KV and 180 mA, and the first pinhole slit was 0.2 mm in diameter, the second pinhole slit was 0.2 mm in diameter, and from the first pinhole slit to the second pinhole slit. The distance from the second pinhole slit to the sample is 40 m, the distance from the sample to the position-sensitive detector is 4001 m, and the diffraction angle (2θ )=0° position,
The line beam stopper was installed so that the centers of the line beam stoppers with a width of 1.5 cranes coincided with each other.

多孔膜の延伸軸の延伸軸がX線回折面に対して垂直とな
るように多孔膜を設置し、延伸軸に対し赤道方向の小角
X線回折強度を測定した。試料の厚みは約1.0 am
で、多孔膜の延伸軸をそろえて設置した。得られた強度
曲線を模式的に第1図に示した。試料を装着して測定し
たときの強度から、試料を装着せずに測定して得られる
強度曲線、すなわちベースラインの強度を差し引くこと
によって得られる強度が、試料の真のX線小角回折強度
である。第1図において、回折角(2θ)=0.2゜の
ときの真の回折強度Aの半価回折強度A/2−t−とる
回折角を分散半価回折角αとする。
The porous membrane was installed so that the stretching axis of the porous membrane was perpendicular to the X-ray diffraction plane, and the small-angle X-ray diffraction intensity in the equator direction with respect to the stretching axis was measured. The thickness of the sample is approximately 1.0 am
Then, the porous membrane was installed with its stretching axes aligned. The intensity curve obtained is schematically shown in FIG. The intensity obtained by subtracting the intensity curve obtained by measuring without a sample, that is, the baseline intensity, from the intensity measured with the sample attached is the true X-ray small-angle diffraction intensity of the sample. be. In FIG. 1, the diffraction angle at which the half-value diffraction intensity A/2-t- of the true diffraction intensity A when the diffraction angle (2θ)=0.2° is taken as the dispersive half-value diffraction angle α.

(2)ボイド配向度■0 分散半価回折角αの測定と同様の条件で測定する。ただ
し、試料の延伸軸が、X線回折面に対して平行となるよ
うに多孔膜を設置する。したがって得られる強度曲線は
、延伸軸に対し子午線方向の小角X線回折強度曲線にな
る。この強度曲線において、回折角(2θ)=0.2°
のときの回折強度をBとする。ボイド配向度■Oは前述
の回折強度Aおよび上述の回折強度Bを用いて、次式で
定義される。
(2) Void orientation degree ■0 Measured under the same conditions as the measurement of the dispersion half-value diffraction angle α. However, the porous membrane is installed so that the stretching axis of the sample is parallel to the X-ray diffraction surface. The intensity curve obtained is therefore a small-angle X-ray diffraction intensity curve in the meridian direction with respect to the stretching axis. In this intensity curve, diffraction angle (2θ) = 0.2°
Let B be the diffraction intensity when . The degree of void orientation ■O is defined by the following equation using the above-mentioned diffraction intensity A and the above-mentioned diffraction intensity B.

(3)結晶配向度CO X線広角回折法による。多孔膜の結晶配向度の測定は、
理学電気社製超強力X線回折装置(ガイガーフレックス
 RAD−γA)、繊維試料測定装置(FS−3)ゴニ
オメータ(SG−9)、計[にはシンナレーションカウ
ンター、計数部には波高分析器を用い、ニッケルフィル
タで単色化したCuKα線(λ=1.5418人)で測
定する。
(3) Crystal orientation degree CO Based on X-ray wide-angle diffraction method. Measuring the degree of crystal orientation of porous membranes is
Rigaku Denki's ultra-strong X-ray diffraction device (Geigerflex RAD-γA), fiber sample measuring device (FS-3), goniometer (SG-9), a synnarration counter in the meter, and a pulse height analyzer in the counting section. The measurement is performed using CuKα rays (λ=1.5418), which are made monochromatic with a nickel filter.

本発明の多孔膜の熱可塑性重合体は、延伸軸方向に対し
赤道方向の回折角(2θ)が10〜40゜の範囲におい
て、各々特徴的な回折強度を有する。
The thermoplastic polymers of the porous film of the present invention each have a characteristic diffraction intensity in the range of a diffraction angle (2θ) of 10 to 40° in the equator direction with respect to the stretching axis direction.

その回折強度曲線中の反射で最も低角度の20を有する
反射を使用する。使用される反射の2θは赤道線方向の
回折強度曲線から決定される。
The reflection with the lowest angle of 20 in its diffraction intensity curve is used. The 2θ reflection used is determined from the equatorial diffraction intensity curve.

X線発生装置は30KV、180mAで運転する。繊維
試料測定装置に試料を単糸どうしが互いに平行となるよ
うにそろえて取りつける。試料の厚さが0.5111 
<らいになるようにするのが適当である。赤道方向の回
折強度曲線から決定される2θ値にゴニオメータをセッ
トする。対称透過法を用いて、方位角方向を一30°〜
+30゛走査し、方位角方向の回折強度を記録する。さ
らに−180°と+180°の方位角方向の回折強度を
記録する。このとき、スキャニング速度4°/ 811
、チャート速度10龍/11.タイムコンスタント1秒
、コリメータ2重層φ、レシービングスリットw幅t。
The X-ray generator operates at 30KV and 180mA. Attach the sample to the fiber sample measuring device so that the single yarns are parallel to each other. The thickness of the sample is 0.5111
<It is appropriate to make it leprosy. The goniometer is set to the 2θ value determined from the equatorial diffraction intensity curve. Using the symmetrical transmission method, the azimuth direction is set to -30°~
Scan +30° and record the diffraction intensity in the azimuthal direction. Furthermore, the diffraction intensities in the azimuth directions of −180° and +180° are recorded. At this time, the scanning speed is 4°/811
, chart speed 10 dragon/11. Time constant 1 second, collimator double layer φ, receiving slit w width t.

911、横幅3.51である。911, and the width is 3.51.

得られた方位角方向の回折強度曲線から結晶配向度CO
を求めるには、±180’で得られる回折強度の平均値
をとり、水平線を引き基線とする。
From the obtained diffraction intensity curve in the azimuthal direction, the degree of crystal orientation CO
To obtain this, take the average value of the diffraction intensities obtained at ±180', draw a horizontal line, and use it as a base line.

ピークの頂点から基線に垂線を下し、その高さの中点を
求める。中点を通る水平線を引き、この水平線と回折強
度曲線の交点間の距離を測定し、この値を角度(°)に
換算した値を配向角Hとする。
Draw a perpendicular line from the top of the peak to the baseline and find the midpoint of its height. A horizontal line passing through the midpoint is drawn, the distance between the intersection of this horizontal line and the diffraction intensity curve is measured, and the value obtained by converting this value into an angle (°) is defined as the orientation angle H.

結晶配向度は次式 %式% によって与えられる。The degree of crystal orientation is expressed by the following formula %formula% given by.

(4)膜厚d 多孔膜が平膜のときは、従来公知であるマイクロメータ
を用いて測定する。また、多孔膜が中空線条体であると
きは、中空線条体を断面方向に従来公知のミクロトーム
で割断し、光学顕微鏡視野下においてその膜厚を測定す
る。
(4) Film thickness d When the porous film is a flat film, it is measured using a conventionally known micrometer. Further, when the porous membrane is a hollow filament, the hollow filament is cut in the cross-sectional direction using a conventionally known microtome, and the film thickness is measured under the field of view of an optical microscope.

(5)強度 通常の引張試験機に、つかみ長10cmで試料を設置し
、引張速度10cmZ分で引張試験を行なう。
(5) Strength: Place the sample in a normal tensile testing machine with a grip length of 10 cm, and perform a tensile test at a tensile speed of 10 cm.

試料が切断するときの強力を試料の断面積で割り、その
値を強度とする。
Divide the force with which the sample is cut by the cross-sectional area of the sample and use that value as the strength.

(6)ガス透過係数 多孔膜の透過係数を測定する際に、多孔膜を装着した状
態を模式的に示したのが第3図(a)および(b)であ
る。多孔膜の形態が平膜形態であるときは、第3図のC
a’)のように、また中空線条体形態であるときは第3
図の(b)のように、多孔膜21をステンレス管22に
エポキシ樹脂23で装着する。特に中空線条体形態の場
合は、試料の片末端をエポキシ樹脂で封鎖する。温度2
0℃、高圧側圧カフ6coaHg、低圧側圧力IQc+
nl(gで、透過ガス(水素または窒素)を透過させる
(6) Gas Permeability Coefficient FIGS. 3(a) and 3(b) schematically show the state in which the porous membrane is attached when measuring the permeability coefficient of the porous membrane. When the porous membrane is a flat membrane, C in Figure 3
a'), and when it is in the form of a hollow striatum, the third
As shown in (b) of the figure, the porous membrane 21 is attached to the stainless steel tube 22 with epoxy resin 23. Particularly in the case of a hollow filament form, one end of the sample is sealed with epoxy resin. temperature 2
0℃, high pressure side pressure cuff 6coaHg, low pressure side pressure IQc+
Permeate the permeate gas (hydrogen or nitrogen) at nl (g).

そのときの透過ガス流量から、ガス透過係数Pを次式よ
り算出する。
From the permeated gas flow rate at that time, the gas permeability coefficient P is calculated from the following equation.

(7)分離係数S 上述のガス透過係数の比を分離係数Sとし、下式で定義
する。
(7) Separation coefficient S The ratio of the above gas permeability coefficients is defined as separation coefficient S, which is defined by the following formula.

S A/B =PA /PB S A/B :ガス成分Bに対するガス成分Aの分離係
数 PA  :ガス成分Aの透過係数 PB  : 〃  B  〃 (実施例) 実施例1 熱可塑性重合体としてポリオキシメチレン(旭化成工業
(株)テナック(登録商標)3010)を選び、これよ
り構成される未延伸フィルムを第2図に示した2段延伸
装置を用いて種々の条件で延伸し、最終延伸倍率28倍
のポリオキシメチレン延伸フィルムからなる分離用多孔
膜を得た。延伸条件を第1表に示す。
S A/B = PA /PB S A/B : Separation coefficient of gas component A with respect to gas component B PA : Permeability coefficient of gas component A PB : 〃 B 〃 (Example) Example 1 Polyoxy as a thermoplastic polymer Methylene (Tenac (registered trademark) 3010, manufactured by Asahi Kasei Industries, Ltd.) was selected, and an unstretched film made of this was stretched under various conditions using the two-stage stretching device shown in Figure 2, and the final stretching ratio was 28. A porous membrane for separation consisting of a stretched polyoxymethylene film was obtained. The stretching conditions are shown in Table 1.

以下余白 第   1   表 1“ 魔 1暦 鴎 ト− ポリオキシメチレン延伸フィルムからなる分離用多孔膜
は平膜形態であり、その厚さ、微細構造を表わす各パラ
メータ、および機械強度として引張強度、初期引張弾性
率を第2表に示す。
Table 1: The porous separation membrane made of stretched polyoxymethylene film is in the form of a flat membrane, and its thickness, parameters representing the microstructure, and mechanical strength such as tensile strength and initial The tensile modulus is shown in Table 2.

第   2   表 本ポリオキシメチレン平膜形態分離用多孔膜を用いて、
N2およびN2ガスをそれぞれ透過させた。透過方法、
条件は前述したとおりである。各試料の透過係数および
分離係数を第3表に示す。
Table 2 Using the present polyoxymethylene flat membrane type porous membrane for separation,
N2 and N2 gas were permeated respectively. Transmission method,
The conditions are as described above. The permeability coefficient and separation coefficient of each sample are shown in Table 3.

第   3   表 第2表から明らかなように、本発明の分離用多孔膜は、
優れた機械的特性を備え、かつ、第3表に示したごとく
優れたガス分離処理能力を有することがわかる。
Table 3 As is clear from Table 2, the porous membrane for separation of the present invention has the following properties:
It can be seen that it has excellent mechanical properties and excellent gas separation processing ability as shown in Table 3.

実施例2 熱可塑性重合体として、実施例1と同様のポリオキシメ
チレンを選び、これより構成される外径4顛、厚さ0.
75nの中空状未延伸チューブを実施例1と同一の延伸
装置を用いて延伸した。延伸条件を第4表に示した。
Example 2 As the thermoplastic polymer, the same polyoxymethylene as in Example 1 was selected, and a 4-frame outer diameter and 0.0 mm thickness was constructed from it.
A 75-n hollow unstretched tube was stretched using the same stretching device as in Example 1. The stretching conditions are shown in Table 4.

第4表 得られたポリオキシメチレン延伸チューブは、最終延伸
倍率が、試料11h4、N115、隘6が各々、20.
25.28倍で、いずれも均一貫通孔を有する中空線条
体形態を有していた。各試料の外径、厚さ、微細構造を
表わす各パラメータ、および弓張強度、初期引張弾性率
を第5表に示す。
Table 4 The polyoxymethylene stretched tubes obtained had a final stretching ratio of 20.
At a magnification of 25.28 times, all of them had the form of hollow striae with uniform through holes. Table 5 shows the outer diameter, thickness, parameters representing the microstructure, bow tensile strength, and initial tensile modulus of each sample.

本ポリオキシメチレン中空線条体形態分離用多孔膜の透
過性能を前述した方法、条件に従って調べた。その結果
を第6表に示す。
The permeation performance of the present porous membrane for polyoxymethylene hollow filament type separation was investigated according to the method and conditions described above. The results are shown in Table 6.

本発明による中空線条体形態の分離用多孔膜は、第5表
に示すように優れた機械強度を有し、しかも分離用素材
として要求される耐圧性の面でも極めて優れており、ま
た、第6表かられかるように、ガス分離処理能力におい
ても優れた性能を発現している。
The porous membrane for separation in the form of hollow filaments according to the present invention has excellent mechanical strength as shown in Table 5, and is also extremely excellent in terms of pressure resistance required as a material for separation. As can be seen from Table 6, excellent performance is exhibited in terms of gas separation processing capacity.

実施例3 外径3fl、厚さ0.251mのポリオキシメチレン中
空状未延伸チューブを用いた以外は、実施例2と同様な
方法で分離用多孔膜を得た。延伸条件および試料の外径
、厚さ、微細構造を表わすパランータ、機械的強度を第
7表および第8表に示す。
Example 3 A porous membrane for separation was obtained in the same manner as in Example 2, except that a hollow unstretched polyoxymethylene tube having an outer diameter of 3 fl and a thickness of 0.251 m was used. Tables 7 and 8 show the stretching conditions, the outer diameter, thickness, microstructure, and mechanical strength of the samples.

第7表 第8表 第8表が示すごとく、試料の厚さがわずか0.095鶴
であっても、該試料の機械的強度は優れた性能を保持し
ていることがわかる。第9表に透過性能を示したが、透
過係数、分離係数いずれも優れていた。また、膜厚を薄
くしたことによって分離処理能力が著しく増大した。
As shown in Table 7, Table 8, and Table 8, it can be seen that even if the thickness of the sample is only 0.095 mm, the mechanical strength of the sample maintains excellent performance. Table 9 shows the permeability performance, and both the permeability coefficient and separation coefficient were excellent. Furthermore, by reducing the membrane thickness, the separation processing capacity was significantly increased.

第   9   表 比較例1 実施例2で用いたものと同一のポリオキシメチレン未延
伸チューブを、実施例1と同一の延伸装置で延伸した。
Table 9 Comparative Example 1 The same unstretched polyoxymethylene tube as used in Example 2 was stretched using the same stretching device as in Example 1.

延伸条件を第10表に示す。The stretching conditions are shown in Table 10.

第  10   表 第10表において試料隘8は、表中の条件で延伸したた
め、外径、厚さは延伸方向に対して不均一であった。こ
のため、分離用素材としては極めて不適なものでしかな
かった。
Table 10 In Table 10, Sample No. 8 was stretched under the conditions listed in the table, so its outer diameter and thickness were non-uniform in the stretching direction. For this reason, it was extremely unsuitable as a separation material.

一方、試料階9、寛10は最終延伸倍率が共に28倍の
ポリオキシメチレン延伸チューブで、外径、厚さ、微細
構造パラメータ、および引張強度、初期引張弾性率は第
11表のとおりであった。
On the other hand, Samples 9 and 10 are polyoxymethylene stretched tubes with a final stretching ratio of 28 times, and the outer diameter, thickness, microstructural parameters, tensile strength, and initial tensile modulus are as shown in Table 11. Ta.

第  11   表 上表より、試料11h9、阻10は共に分散半価回折角
が0.28°より大きく、またボイド配向度が70%よ
りはるかに小さく、結晶配向度も95%未満であり、本
発明の範囲外にあることがわかる。
Table 11 From the above table, both Samples 11h9 and 10 have dispersion half-value diffraction angles larger than 0.28°, void orientation degrees are much smaller than 70%, and crystal orientation degrees are also less than 95%. It turns out that it is outside the scope of the invention.

また、機械的強度もやや低下している。試料患9.10
を用いて、実施例2と同様にH2、N2ガスをそれぞれ
透過させたところ、両ガスとも透過係数は著しく減少し
、ガス分離処理能力は低下していた。
In addition, the mechanical strength is also slightly reduced. Sample disease 9.10
When H2 and N2 gases were permeated using the same method as in Example 2, the permeation coefficients of both gases decreased significantly, and the gas separation processing ability decreased.

実施例4 熱可塑性重合体として、ポリエチレンテレフタレートを
選び、これより構成される外径3.5 n+、厚さl、
Qmmの中空状未延伸チューブを、実施例1と同一の延
伸装置を用いて、第12表の条件で延伸した。
Example 4 Polyethylene terephthalate was selected as the thermoplastic polymer, and a material made of it had an outer diameter of 3.5 n+, a thickness of l,
A hollow unstretched tube of Q mm was stretched using the same stretching apparatus as in Example 1 under the conditions shown in Table 12.

第   12   表 得られたポリエチレンテレフタレート延伸チューブは、
最終延伸倍率が7.8倍で、均一貫通孔を有する中空線
条体形態を有していた。また、該延伸チューブの断面を
走査型電子顕微鏡で観察したところ、表層は緻密層から
なっており、内層は多孔状であることがわかった。第1
3表に試料の外径、厚さ、微細構造を表わすパラメータ
、および引張強度、初期引張弾性率を示した。
Table 12 The polyethylene terephthalate stretched tube obtained is as follows:
The final stretching ratio was 7.8 times, and the film had a hollow filament shape with uniform through holes. Further, when the cross section of the stretched tube was observed with a scanning electron microscope, it was found that the surface layer was composed of a dense layer and the inner layer was porous. 1st
Table 3 shows the outer diameter, thickness, parameters representing the microstructure, tensile strength, and initial tensile modulus of the sample.

第  13   表 本ポリエチレンテレフタレート中空線条体形態分離用多
孔膜の透過性情を第14表に示す。
Table 13 Table 14 shows the permeability of the polyethylene terephthalate hollow filament type porous membrane for separation.

第   14    表 当該中空線条体形態分離用多孔膜は、第13表のごとく
機械的特性に優れ、かつ第14表かられかるようにガス
分離処理能力も優れている。
Table 14 The porous membrane for separation of hollow filaments has excellent mechanical properties as shown in Table 13, and excellent gas separation processing ability as shown in Table 14.

比較例2 特開昭52−85525号公報記載の方法に従ってセル
ロースアセテートからなる中空線条体形態の多孔膜を作
製し、その強度を測定したところ0、3 G P a以
下であった。本発明の分離用多孔膜の強度と比較すると
、その機械強度がかなり劣っていることは明らかである
。また、分離用多孔膜として要求される機械強度に照ら
し合わせてみても、十分満足できる値ではない。
Comparative Example 2 A porous membrane in the form of hollow filaments made of cellulose acetate was prepared according to the method described in JP-A-52-85525, and its strength was measured and found to be 0.3 GPa or less. When compared with the strength of the porous separation membrane of the present invention, it is clear that its mechanical strength is considerably inferior. Moreover, even when compared with the mechanical strength required for a porous membrane for separation, the value is not sufficiently satisfactory.

(発明の効果) 本発明の新規な微細構造を有する熱可塑性重合体からな
る分離用多孔膜は、その形態によらず、その特有の微細
構造を反映し、優れた分離透過能を発現するだけでなく
、分離用多孔膜として要求される力学的特性も極めて優
れたものである。このことは、分離用膜素材の性能面で
好適であることばかりでなく、熱的寸法安定性を合わせ
持っているために、分離用モジュール作製の際の加熱処
理に対する安定性、さらには透過の際の耐圧性、逆洗に
対する耐久性といった加工性、ハンドリング性、耐久性
にも優れ、コスト面でも有利となる。
(Effects of the Invention) The porous membrane for separation made of a thermoplastic polymer having a novel microstructure of the present invention reflects its unique microstructure and exhibits excellent separation permeability, regardless of its form. Moreover, it also has extremely excellent mechanical properties required for a porous membrane for separation. This is not only favorable in terms of performance of the separation membrane material, but also has thermal dimensional stability, which improves stability against heat treatment during separation module fabrication, and even reduces permeation. It also has excellent processability, handling properties, and durability, such as pressure resistance and durability against backwashing, and is also advantageous in terms of cost.

本発明の分離用多孔膜は気体分離のみならず、液体分離
およびいわゆる濾過用分離用多孔膜として広範囲に使用
することができる。
The porous separation membrane of the present invention can be widely used not only for gas separation but also as a separation porous membrane for liquid separation and so-called filtration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の多孔膜のX線小角散乱法による、延
伸軸に対し赤道方向の回折強度分布曲線を示す模式図、
第2図は、本発明に用いる延伸装置の一実施例を示す説
明図、第3図(a)、(b)は、多孔膜の透過係数を測
定するときの試料装着状態を示す説明図である。 1・・・未延伸体巻取ドラム、2・・・未延伸体、3・
・・繰出機、4・・・第1段張力検出器、5・・・第1
段外部加熱炉、6・・・第1引取機、7・・・第2段誘
電加熱炉、8・・・外部加熱炉、9・・・第2段張力検
出器、10・・・第2引取機、11・・・延伸体、12
・・・巻取機、13・・・マイクロ波発振機、14・・
・結合導波管、15・・・アプリケータ、16・・・誘
電加熱炉入口、17・・・誘電加熱炉出口、18・・・
マイクロ波反射調節器。 代理人 弁理士  川 北 武 長 (a)             (b)23ニエポキ
シ樹脂 手続補正春− 昭和61年11月 7日 1、事件の表示 昭和60年 特 許 願 第178282号2、発明の
名称 分離用多孔膜 3、補正をする者 事件との関係 特許出願人 住 所 大阪府大阪市北区堂島浜1丁目2番6号名 称
 (003)旭化成工業株式会社代表者世古真臣 4、代理人〒103 住 所 東京都中央区日本橋茅場町−丁目11番8号6
、?li正の対象 明細書の図面の簡単な説明の(圀。 7、補正の内容 (1)明細書第28頁第11行目の「巻取機、」を「巻
取機。」に改める。 (1)明細書第28頁第11〜14行の「13・・・・
・・マイクロ波反射調節器。」を削る。 以上
FIG. 1 is a schematic diagram showing a diffraction intensity distribution curve in the equatorial direction with respect to the stretching axis, obtained by small-angle X-ray scattering of the porous membrane of the present invention;
FIG. 2 is an explanatory diagram showing one embodiment of the stretching device used in the present invention, and FIGS. 3(a) and (b) are explanatory diagrams showing the state in which a sample is attached when measuring the permeability coefficient of a porous membrane. be. 1... Unstretched body winding drum, 2... Unstretched body, 3.
... Feeding machine, 4... First stage tension detector, 5... First
Stage external heating furnace, 6... First take-up machine, 7... Second stage dielectric heating furnace, 8... External heating furnace, 9... Second stage tension detector, 10... Second stage Pulling machine, 11...stretched body, 12
... Winder, 13... Microwave oscillator, 14...
- Coupling waveguide, 15... Applicator, 16... Dielectric heating furnace inlet, 17... Dielectric heating furnace outlet, 18...
Microwave reflection conditioner. Agent Patent Attorney Takeshi Kawakita (a) (b) 23 Nepoxy Resin Procedural Amendment Spring - November 7, 1985 1. Case description 1985 Patent Application No. 178282 2. Title of invention Separating pores Membrane 3, Relationship with the case of the person making the amendment Patent applicant address 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka Name (003) Asahi Kasei Industries Co., Ltd. Representative Masaomi Seko 4, Agent Address 103 Nihombashi Kayabacho-chome 11-8-6, Chuo-ku, Tokyo
,? 7. Contents of the amendment (1) In the brief explanation of the drawings in the specification (1) on page 28, line 11 of the specification, "winding machine" is changed to "winding machine." (1) “13...” on page 28, lines 11-14 of the specification
...Microwave reflection adjuster. ”. that's all

Claims (1)

【特許請求の範囲】[Claims] (1)熱可塑性重合体からなり、X線小角散乱法によっ
て測定されるボイド散乱の赤道方向の分散半価回折角が
0.28°以下、ボイド配向度が70%以上、およびX
線広角散乱法によって測定される結晶配向度が95%以
上であることを特徴とする分離用多孔膜。
(1) Made of a thermoplastic polymer, the dispersion half-value diffraction angle in the equator direction of void scattering measured by small-angle X-ray scattering is 0.28° or less, the degree of void orientation is 70% or more, and
A porous membrane for separation, characterized in that the degree of crystal orientation measured by wide-angle line scattering is 95% or more.
JP17828285A 1985-08-13 1985-08-13 Porous membrane for separation Pending JPS6238221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17828285A JPS6238221A (en) 1985-08-13 1985-08-13 Porous membrane for separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17828285A JPS6238221A (en) 1985-08-13 1985-08-13 Porous membrane for separation

Publications (1)

Publication Number Publication Date
JPS6238221A true JPS6238221A (en) 1987-02-19

Family

ID=16045742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17828285A Pending JPS6238221A (en) 1985-08-13 1985-08-13 Porous membrane for separation

Country Status (1)

Country Link
JP (1) JPS6238221A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551450U (en) * 1991-12-20 1993-07-09 株式会社明光商会 shredder
US5701148A (en) * 1994-03-21 1997-12-23 Spectra, Inc. Deaerator for simplified ink jet head
JP2013039530A (en) * 2011-08-17 2013-02-28 Toray Ind Inc Polyacetal-based porous hollow fiber membrane and method for manufacturing the same
JP2013188738A (en) * 2012-02-13 2013-09-26 Mitsubishi Paper Mills Ltd Semipermeable membrane support and method for manufacturing semipermeable membrane support

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551450U (en) * 1991-12-20 1993-07-09 株式会社明光商会 shredder
US5701148A (en) * 1994-03-21 1997-12-23 Spectra, Inc. Deaerator for simplified ink jet head
JP2013039530A (en) * 2011-08-17 2013-02-28 Toray Ind Inc Polyacetal-based porous hollow fiber membrane and method for manufacturing the same
JP2013188738A (en) * 2012-02-13 2013-09-26 Mitsubishi Paper Mills Ltd Semipermeable membrane support and method for manufacturing semipermeable membrane support

Similar Documents

Publication Publication Date Title
US4405688A (en) Microporous hollow fiber and process and apparatus for preparing such fiber
US5674919A (en) Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface-modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same
JP6222083B2 (en) Polyethylene microporous membrane and method for producing the same
US5061561A (en) Yarn article comprising a tetrafluoroethylene polymer and a process for producing the same
Aggarwal et al. Orientation in extruded polyethylene films
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
US20070116871A1 (en) Braid-reinforced hollow fiber membrane
US7364659B2 (en) Preparation of asymmetric polyethylene hollow fiber membrane
GB2041821A (en) Process for Preparing Hollow Microporous Polypropylene Fibers
Pelzer et al. Melt spinning and characterization of hollow fibers from poly (4‐methyl‐1‐pentene)
JPS6238221A (en) Porous membrane for separation
JPS6279806A (en) Porous separation membrane and its production
JPH0588B2 (en)
JPS62227404A (en) Hollow filament material for separation
DE2726415C2 (en)
WO2004078831A1 (en) Porous polytetrafluoroethylene resin body and process for producing the same
WO2017115799A1 (en) Polyolefin microporous membrane and method for producing same, method for evaluating laminated polyolefin microporous membrane, roll, and polyolefin microporous membrane
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JPS6097835A (en) Monoaxially stretched crystalline high-molecular film or sheet with super coefficient of elasticity and manufacture thereof
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JPS591710A (en) Poly(p-phenylene terephthalamide) fiber of novel structure and its preparation
Sakaoku et al. Plastic deformation of nylon 6 single crystals and thin membranes
JPS61215709A (en) Hollow fiber and production thereof
KR0140295B1 (en) Process for preparing biaxially oriented polyester film
JPH02182938A (en) Apparatus for drawing hollow fiber and production thereof