JPS6238041B2 - - Google Patents

Info

Publication number
JPS6238041B2
JPS6238041B2 JP52144254A JP14425477A JPS6238041B2 JP S6238041 B2 JPS6238041 B2 JP S6238041B2 JP 52144254 A JP52144254 A JP 52144254A JP 14425477 A JP14425477 A JP 14425477A JP S6238041 B2 JPS6238041 B2 JP S6238041B2
Authority
JP
Japan
Prior art keywords
rolled material
rolling
width
circuit
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52144254A
Other languages
Japanese (ja)
Other versions
JPS5476467A (en
Inventor
Shigenobu Takabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14425477A priority Critical patent/JPS5476467A/en
Publication of JPS5476467A publication Critical patent/JPS5476467A/en
Publication of JPS6238041B2 publication Critical patent/JPS6238041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、厚板圧延における幅出し圧延最終パ
スの板厚演算装置に係り、特に所定の製品幅を得
るに好適な厚板圧延材の板厚演算装置に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a plate thickness calculation device for the final pass of tentering rolling in thick plate rolling, and particularly to a plate thickness calculation device for a thick plate rolled material suitable for obtaining a predetermined product width. This invention relates to a thickness calculation device.

〔従来の技術〕[Conventional technology]

一般に、厚板圧延材の圧延過程は、第1図A,
B,Cに示される3段階に分類される。第1図A
の段階は、厚板の素材である圧延材1の形状を整
えるための成形圧延であり、その圧延方向Rは製
品の長手方向とされている。この成形圧延が終了
すると、圧延材1は90゜転回されて、第1図Bに
示される幅出し圧延において、幅方向に圧延され
必要な製品幅bを得るための板幅(平均板幅Bm2
(第2図参照))にまで圧延される。この場合、一
般的に圧延材の幅形状は、幅出し圧延時に第1図
Bに示すように圧延材長手方向(この圧延の前後
方向)で非定常に変化するので後述((3)式)のよ
うに必要な製品幅bを得るよう計算された目標平
均板幅Bm2をもとにして算出された目標板厚T2
を目標にして幅出し圧延を行う。幅出し圧延の終
了時には、圧延材1は再び90゜転回されて、第1
図Cに示される仕上げ圧延によつて、長手方向に
圧延されて製品として要求される鋼板厚みにまで
圧延される。
Generally, the rolling process of thick plate rolled material is shown in Fig. 1A,
It is classified into three stages shown in B and C. Figure 1A
The step is forming rolling for adjusting the shape of the rolled material 1, which is the material of the thick plate, and the rolling direction R is the longitudinal direction of the product. When this forming rolling is completed, the rolled material 1 is turned 90 degrees and rolled in the width direction in the tentering rolling shown in FIG. 2
(See Figure 2)). In this case, the width shape of the rolled material generally changes irregularly in the longitudinal direction of the rolled material (the longitudinal direction of this rolling) as shown in FIG. The target plate thickness T 2 is calculated based on the target average plate width Bm 2 calculated to obtain the required product width b as follows.
Tenter rolling is performed with the goal of At the end of tentering rolling, the rolled material 1 is turned again by 90 degrees and
In the finish rolling shown in Figure C, the steel sheet is rolled in the longitudinal direction to a thickness required as a product.

ここで、幅出し圧延の終了時点における圧延材
平均板幅Bm2と圧延材厚みT2その長さL2は、圧
延素材としての圧延材の板幅をB0その厚みをT0
その長さをL0とし、成形圧延終了時点での圧延
材の板幅をB1、その厚みをT1その長さをL1とす
れば、 T2=B×T/Bm×L/L (1) もしくは、 T2=B×T/Bm×L/L (2) のいずれかによつて算出される。(1)式と(2)式を比
較すれば、素材時点での圧延材の厚みT0は、表
面手入れによる凹凸等によりかなり変動するのに
対して、成形圧延終了時点での圧延材の厚みT1
は成形圧延最終時点でのロールギヤツプから正確
な値を知ることができ、したがつて、幅出し終了
時点における圧延材の厚みT2は(2)式を用いる方
が信頼性が高いことが認められている。
Here, the average plate width of the rolled material Bm 2 and the thickness of the rolled material T 2 at the end of tentering rolling, and its length L 2 are the width of the rolled material as the rolled material B 0 its thickness T 0
If its length is L 0 , the width of the rolled material at the end of forming rolling is B 1 , its thickness is T 1 and its length is L 1 , then T 2 = B 0 ×T 0 /Bm 2 × It is calculated by either L 0 /L 2 (1) or T 2 =B 1 ×T 1 /Bm 2 ×L 1 /L 2 (2). Comparing equations (1) and (2), we can see that the thickness T 0 of the rolled material at the time of the raw material fluctuates considerably due to unevenness caused by surface care, whereas the thickness of the rolled material at the end of forming rolling T 1
can be determined accurately from the roll gap at the end of forming and rolling. Therefore, it is recognized that it is more reliable to calculate the thickness of the rolled material T2 at the end of tentering using equation (2). ing.

なお圧延時の幅拡がり、(圧延ロールの軸方向
の圧延材の延伸)は無視し得る程度のものである
ため、L2≒L1となり、(2)式は、 T2=B×T/Bm (2)′ となり、幅出し圧延最終パスでの目標とする板厚
T2を求められる。この目標板厚T2にもとづいて
圧延を行うことにより、目標平均板幅Bm2に近い
実際の平均板幅を得るようにしている。また、同
様の理由からB1≒B0ともなるので(2)′式のB1に代
えてB0をそのまま使用することもできる。
Note that the width expansion during rolling (stretching of the rolled material in the axial direction of the rolling rolls) is negligible, so L 2 ≒ L 1 , and equation (2) is as follows: T 2 = B 1 ×T 1 /Bm 2 (2)′, which is the target thickness of the plate in the final pass of tentering rolling.
T2 is required. By performing rolling based on this target plate thickness T 2 , an actual average plate width close to the target average plate width Bm 2 is obtained. Furthermore, for the same reason, B 1 ≒ B 0 , so B 0 can be used as is in place of B 1 in equation (2)'.

また、幅出し圧延の終了時点における圧延材平
均板幅Bm2は、第2図に示されるように、製品幅
をb、製品幅bを引出すために必要な余裕代であ
つて設備により決定される切り代を△b、製品を
切り出すのに不必要な部分(斜線部)の平均的な
幅方向量であり斜線部の面積を製品長で除した形
状不良量をcとすれば、 Bm2=b+2(△b+c) (3) によつて表わされる。
In addition, the average strip width Bm 2 of the rolled material at the end of tentering rolling is the margin necessary to draw out the product width b and the product width b, as shown in Fig. 2, and is determined by the equipment. If the cutting allowance is △b, and c is the average widthwise amount of the unnecessary part (hatched area) to cut out the product, and c is the amount of defective shape obtained by dividing the area of the shaded area by the product length, then Bm 2 =b+2(△b+c) (3)

〔従来技術の問題点〕[Problems with conventional technology]

ところで、従来の圧延材圧延過程における幅出
し圧延の終了時点における圧延材平均板幅Bm2
計算に際して、形状不良量cは、圧延材の加熱条
件、圧延条件等によつてばらつきが大きく、この
形状不良量cを圧延作業前に正確に予測すること
は非常に困難であり、かつ、圧延中にこの形状不
良量cを検出する方法がないために、統計的手法
によつて処理された予測値が採用されている。し
たがつて、従来の圧延材圧延作業においては、圧
延材平均板幅Bm2((3)式)ひいては圧延材厚み
T2((2)′式)を適切に算定することが困難であ
り、製品歩留りが悪く、製品が採取できないこと
もあるという問題点がある。
By the way, when calculating the average plate width Bm 2 of rolled material at the end of tentering rolling in the conventional rolling process of rolled material, the amount of shape defects c varies widely depending on the heating conditions of the rolled material, rolling conditions, etc. It is very difficult to accurately predict the amount of defective shape c before rolling, and there is no way to detect the amount of defective shape c during rolling. value is adopted. Therefore, in the conventional rolling work of rolled material, the average plate width of the rolled material Bm 2 (formula (3)) and the thickness of the rolled material
There are problems in that it is difficult to appropriately calculate T 2 (formula (2)′), the product yield is poor, and the product may not be able to be collected.

本発明は、上記従来の問題点に鑑みなされたも
のであつて、圧延状況に応じて変動する形状不良
量Cを圧延中に実測し、これにより最適の目標平
均板幅Bm2を計算し((3)式)、ひいては最適の目
標板厚T2を算出し((2)′式)、この目標板厚T2
もとずくその後の圧延によつて目標平均板幅Bm2
により近い実際の平均板幅を得、さらにて所定の
製品幅bを得ることができ、製品歩留りを向上さ
せることができる厚板圧延における幅出し圧延最
終パスの板厚演算装置を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned conventional problems.The present invention actually measures the shape defect amount C, which varies depending on the rolling conditions, during rolling, and calculates the optimum target average sheet width Bm2 from this. Equation (3)), and finally the optimum target plate thickness T 2 is calculated (Equation (2)′), and the target average plate width Bm 2 is calculated by subsequent rolling based on this target plate thickness T 2 .
It is an object of the present invention to provide a plate thickness calculating device for the final pass of tentering rolling in thick plate rolling, which can obtain a closer actual average plate width, furthermore obtain a predetermined product width b, and improve product yield. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る厚板圧延における幅出し圧延最終
パスの板厚演算装置は、圧延材にビーム(レーザ
ビーム)をあてて形状不良量Cの値をより正確に
得ようとするものである。すなわち、幅出し圧延
最終パス前段階の圧延材に多数のビームを投射す
るビーム投射装置と、ビーム投射時の圧延材速度
を検出する圧延材速度検出装置と、各ビーム位置
毎にビームが遮蔽された時間で圧延材速度を積分
して各ビーム位置での圧延材板幅を計算する積分
回路と、積分回路により算出された圧延材板幅か
ら圧延材形状を決定する回路と、この形状から形
状不良量cを求める回路と、製品幅b並びに前記
形状不良量cから求まる((3)式参照)幅出し圧延
終了時の目標平均板幅Bm2と成形圧延終了後の圧
延材板幅B1と板厚T1とに基づき幅出し圧延最終
パスの目標板厚T2を演算する((2)′式参照)演算
回路と、を有するようにしたものである。
The plate thickness calculating device for the final pass of tentering rolling in thick plate rolling according to the present invention aims to more accurately obtain the value of the shape defect amount C by applying a beam (laser beam) to the rolled material. In other words, there is a beam projection device that projects a large number of beams onto the rolled material before the final pass of tentering rolling, a rolled material speed detection device that detects the speed of the rolled material at the time of beam projection, and a beam shielding system for each beam position. an integral circuit that calculates the width of the rolled material at each beam position by integrating the speed of the rolled material over time; a circuit that determines the shape of the rolled material from the width of the rolled material calculated by the integration circuit; and a circuit that determines the shape of the rolled material from this shape. The circuit for determining the amount of defects c, the product width b, and the amount of shape defects c determined from the above (see formula (3)) Target average strip width Bm 2 at the end of tentering rolling and rolled material strip width B 1 after finishing forming rolling and a calculation circuit that calculates the target plate thickness T 2 of the final pass of tentering rolling based on the plate thickness T 1 and the plate thickness T 1 (see formula (2)′).

〔作用〕[Effect]

形状不良量Cは、従来の統計的手法による予測
値よりも正確なものを得ることができる。よつ
て、より適した目標平均板幅Bm2を計算でき、従
つてより適した目標板厚T2を算出できる。この
結果、この目標板厚T2を目標とした幅出し圧延
最終パスをおこない、目標平均板幅Bm2により近
い実際の平均板幅を得ることができ、所定の製品
幅bを得ることができる。
The shape defect amount C can be more accurate than the predicted value using conventional statistical methods. Therefore, a more suitable target average plate width Bm 2 can be calculated, and therefore a more suitable target plate thickness T 2 can be calculated. As a result, the final pass of tentering rolling is performed with this target plate thickness T 2 as the target, and it is possible to obtain an actual average plate width that is closer to the target average plate width Bm 2 and obtain a predetermined product width b. .

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して具体的
に説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

第3図は、本発明に係る厚板圧延における幅出
し圧延最終パスの板厚演算装置を構成するビーム
投射装置10と、圧延材速度検出装置としてのパ
イロツトジエネレータ20とを示す説明図であ
る。圧延ロール2によつて圧延された圧延材1
は、幅出し圧延最終パスの1パス前において、ロ
ーラーテーブル3によつてビーム投射装置10の
内部に搬入されるようになつている。ビーム投射
装置10は、ローラーテーブル3の上下に相互に
対向して配列されている多数のレーザー発信器1
1とレーザー受信器12とからなり、多数のレー
ザービーム13が、ライン幅方向にて高速でスキ
ヤンされている。圧延材1がこのビーム投射装置
10を通過すると、圧延材1はレーザービーム1
3を遮蔽することになり、レーザービーム13が
遮蔽される時間は圧延材1の幅形状の変化に従つ
て各レーザービーム13の位置毎に異なることに
なる。一方、圧延材1を搬送しているローラーテ
ーブル3の端部に取り付けられているパイロツト
ジエネレータ20によつて、レーザービーム13
が投射されている際の圧延材1の速度が検出され
る。この圧延材速度を各レーザービーム13の投
射位置毎に、レーザービーム13が遮蔽された時
間から遮蔽が終了される時間までの時間によつて
積分することによつて、各レーザービーム13の
投射位置における圧延材1の板幅が測定される。
FIG. 3 is an explanatory diagram showing a beam projection device 10 constituting a plate thickness calculating device for the final pass of tentering rolling in thick plate rolling according to the present invention, and a pilot generator 20 as a rolled material speed detecting device. . Rolled material 1 rolled by rolling roll 2
is carried into the beam projection device 10 by the roller table 3 one pass before the final pass of tentering rolling. The beam projection device 10 includes a large number of laser transmitters 1 arranged above and below a roller table 3 and facing each other.
1 and a laser receiver 12, and a large number of laser beams 13 are scanned at high speed in the line width direction. When the rolled material 1 passes through this beam projection device 10, the rolled material 1 is exposed to the laser beam 1.
3, and the time during which the laser beam 13 is blocked differs depending on the position of each laser beam 13 according to the change in the width shape of the rolled material 1. On the other hand, the laser beam 13 is controlled by a pilot generator 20 attached to the end of the roller table 3 that is conveying the rolled material 1.
The speed of the rolled material 1 while it is being projected is detected. By integrating this rolling material speed for each projection position of each laser beam 13 by the time from the time when the laser beam 13 is shielded to the time when the shielding is finished, the projection position of each laser beam 13 is determined. The plate width of the rolled material 1 at is measured.

第4図は、このような圧延材1の速度v(t)
と遮蔽時間との関係を示す説明図であり、パイロ
ツトジエネレータ20によつて検出された圧延材
1の速度v(t)は時間tによつて変化してい
る。レーザービーム13は、高速でスキヤンされ
ており、t1〜tnは各スキヤン時刻を示している。
スキヤンビツチを△tとすれば、 △t=t2−t1=t3−t2=tn−tn− (4) となり、例えば、レーザービーム13の投射位置
(1)においてt1からtnの間遮蔽されていたとすれ
ば、投射位置(1)における圧延材1の板幅w1は、 となり、レーザービーム13の投射位置(K)に
おける圧延材1の板幅は、一般的に、 によつて表わされる。
FIG. 4 shows the speed v(t) of such a rolled material 1.
FIG. 3 is an explanatory diagram showing the relationship between and shielding time, in which the speed v(t) of the rolled material 1 detected by the pilot generator 20 changes depending on the time t. The laser beam 13 is scanned at high speed, and t 1 to tn indicate each scan time.
If the scan bit is △t, then △t=t 2 −t 1 =t 3 −t 2 =tn−tn− 1 (4), and for example, the projection position of the laser beam 13 is
If it is shielded from t 1 to tn in (1), the plate width w 1 of the rolled material 1 at the projection position (1) is Therefore, the width of the rolled material 1 at the projection position (K) of the laser beam 13 is generally It is represented by.

すなわち、(6)式に基づき、各レーザービーム1
3の投射位置毎に、レーザービーム13が遮蔽さ
れた時間で圧延材速度を積分する積分回路によつ
て、幅出し圧延最終パスの1パス前における各投
射位置での圧延材1の板幅を計算することができ
る。
That is, based on equation (6), each laser beam 1
For each projection position of 3, the width of the rolled material 1 at each projection position one pass before the final pass of tentering rolling is calculated by an integrating circuit that integrates the speed of the rolled material by the time when the laser beam 13 is blocked. can be calculated.

次に、積分回路により算出された圧延材板幅に
基づき、演算回路によつて圧延材形状および形状
不良量ならびに幅出し圧延最終パスにおける圧延
材厚みが計算される。すなわち、当初予想された
圧延材1の板幅形状は、第5図Aの1点鎖線で示
されるように、 Bm2=b+2(△b+c) (7) であつたのに対して、前述のように積分回路によ
つて実測された各レーザービーム13の投射位置
における圧延材1の板幅を集積して示せば第5図
Aの実線で示されるようになつており、この場合
には、所定の切り代△bが確保できないばかり
か、所定の製品幅bを採取することも不可能とな
つている。
Next, based on the rolled material plate width calculated by the integral circuit, the arithmetic circuit calculates the shape of the rolled material, the amount of defective shape, and the thickness of the rolled material in the final pass of tentering rolling. That is, the width shape of the rolled material 1 that was originally expected was Bm 2 = b + 2 (△b + c) (7) as shown by the dashed line in Fig. 5A, but If the width of the rolled material 1 at the projection position of each laser beam 13 measured by the integrating circuit is integrated and shown as shown by the solid line in FIG. 5A, in this case, Not only is it not possible to secure a predetermined cutting allowance Δb, but it is also impossible to sample a predetermined product width b.

そこで、このような場合には、圧延材1に与え
られている実際の形状不良量c′を、前記積分回路
により算出された各レーザービーム13の投射位
置毎における圧延材1の板幅w1〜wnを用いて算
出し、圧延材1の必要な製品幅を得るための最適
な目標平均板Bm2′を計算する。すなわち、圧延
材1の実際の板幅w1〜wnの中で最小値をw
minとし、レーザービーム13のビームピツチを
△xとし製品長をlとすれば、この場合の形状不
良量c′は、 となり、この場合の圧延材の目標平均板幅
Bm2′は、 Bm2′=b+2(△b+c′) (9) となる。したがつて、幅出し圧延の最終パスにお
ける目標圧延材厚みT2′を、 T2′=B×T/Bm′ (10) によつて算出し、この目標板厚にもとづき幅出し
圧延の最終パスを実施することとすれば所定の製
品幅bを備えた圧延材を得ることができる。
Therefore, in such a case, the actual shape defect amount c' given to the rolled material 1 is calculated by the plate width w 1 of the rolled material 1 at each projection position of each laser beam 13 calculated by the integrating circuit. ~wn to calculate the optimal target average plate Bm 2 ' to obtain the required product width of the rolled material 1. In other words, the minimum value among the actual plate widths w 1 to wn of the rolled material 1 is w
min, the beam pitch of the laser beam 13 is △x, and the product length is l, then the shape defect amount c' in this case is: In this case, the target average plate width of the rolled material is
Bm 2 ′ becomes Bm 2 ′=b+2(△b+c′) (9). Therefore, the target thickness of the rolled material T 2 ′ in the final pass of tentering rolling is calculated as T 2 ′=B 1 ×T 1 /Bm 2 ′ (10), and tentering is performed based on this target thickness. If the final pass of rolling is performed, a rolled material with a predetermined product width b can be obtained.

第6図は、本発明に係る厚板圧延における幅出
し圧延最終パスの板厚演算装置の一実施例を示す
回路系統図であり、前述のビーム投射装置10に
おける各レーザービーム13の遮蔽時間を積分回
路40に伝達する遮蔽信号発生装置30、ビーム
投射時の圧延材速度を検出し積分回路40に伝達
するパイロツトジエネレータ20とを備え、積分
回路40においてはこれらの遮蔽時間と圧延材速
度とを入力としてビームの各投射位置における圧
延材板幅を計算するようになつている。積分回路
40の出力は形状演算回路50に伝達され、形状
演算回路50において圧延材の実際の板幅形状が
決定されるようになつている。この形状演算回路
50の出力は形状不良量演算回路60に伝達さ
れ、圧延材の実際の形状不良量が計算されて、形
状不良量演算回路60の出力はさらに厚み演算回
路70に伝達され幅出し圧延終了時点での平均板
幅が演算され、この平均板幅と成形パス終了時の
圧延材板幅と板厚に基づいて、幅出し圧延最終パ
スにおける圧延材厚みが計算されるようになつて
いる。
FIG. 6 is a circuit diagram showing an embodiment of the plate thickness calculation device for the final pass of tentering rolling in thick plate rolling according to the present invention, and shows the shielding time of each laser beam 13 in the beam projection device 10 described above. It is equipped with a shielding signal generator 30 that transmits the shielding signal to the integrating circuit 40, and a pilot generator 20 that detects the speed of the rolled material during beam projection and transmits it to the integrating circuit 40. The width of the rolled material plate at each projection position of the beam is calculated using the following as input. The output of the integrating circuit 40 is transmitted to a shape calculation circuit 50, and the shape calculation circuit 50 determines the actual width shape of the rolled material. The output of the shape defect calculation circuit 50 is transmitted to the shape defect amount calculation circuit 60, which calculates the actual shape defect amount of the rolled material, and the output of the shape defect amount calculation circuit 60 is further transmitted to the thickness calculation circuit 70 for width adjustment. The average strip width at the end of rolling is calculated, and the thickness of the rolled material in the final pass of tentering rolling is calculated based on this average strip width and the rolled material strip width and thickness at the end of the forming pass. There is.

上記演算結果は、圧延機のオペレータ、あるい
は圧延機圧下制御用コンピユータに伝達され、幅
出し圧延最終パスにフイードフオワードされて必
要な製品幅を得るために当初決定されていた幅出
し最終パスにおける圧延材厚みを修正するように
なつており、圧延中の圧延状況に応じて圧延作業
を調整し、所定の板幅を有する製品を適切に得る
ことができることとなる。
The above calculation results are transmitted to the rolling mill operator or the rolling mill reduction control computer, and are fed forward to the final pass of tentering rolling, which is the final pass of tentering that was originally determined to obtain the required product width. By adjusting the thickness of the rolled material during rolling, it is possible to adjust the rolling operation according to the rolling conditions during rolling, and to appropriately obtain a product having a predetermined width.

なお上記実施例において、ビーム投射装置から
発信されるビームは、レーザービームとしたの
で、圧延機周辺の水蒸気の覆い雰囲気等において
も、その非発散性および高透過性等の良好な性質
によつて、圧延材による遮蔽時間を正確に検出す
ることができる。しかしながら、本発明を構成す
るビーム投射装置が発信するビームは、レーザー
ビームに限定されず、白色光もしくは圧延機周辺
の雰囲気中において減衰されにくい単色光等を用
いてもよい。
In the above embodiment, the beam emitted from the beam projection device is a laser beam, so it can be used even in a steam-filled atmosphere around the rolling mill due to its good properties such as non-divergence and high transparency. , it is possible to accurately detect the shielding time by the rolled material. However, the beam emitted by the beam projection device constituting the present invention is not limited to a laser beam, and white light or monochromatic light that is difficult to attenuate in the atmosphere around the rolling mill may be used.

以上のように、本発明に係る厚板圧延における
幅出し圧延最終パスの板厚演算装置は、幅出し圧
延最終パス前段階の圧延材に多数のビームを投射
するビーム投射装置と、ビーム投射時の圧延材速
度を検出する圧延材速度検出装置と、各ビーム位
置毎にビームが遮蔽された時間で圧延材速度を積
分して各ビーム位置での圧延材板幅を計算する積
分回路と、積分回路により算出された圧延材板幅
から圧延材形状を決定する回路と、この形状から
形状不良量を求める回路と、製品幅並びに前記形
状不良量から求まる幅出し圧延終了時の平均板幅
と成形圧延終了後の圧延材板幅と板厚とに基づき
幅出し圧延最終パスの板厚を演算する演算回路
と、を有するようにしたので、圧延状況に応じて
変動する圧延材の形状不良量を圧延中に正確に実
測し、その後の圧延によつて所定の製品板幅を得
ることができ、製品歩留りを向上させることがで
きるという効果を有する。
As described above, the plate thickness calculation device for the final pass of tentering rolling in thick plate rolling according to the present invention includes a beam projection device that projects a large number of beams onto the rolled material before the final pass of tentering rolling, and a rolled material speed detection device that detects the rolled material speed at each beam position, an integral circuit that integrates the rolled material speed at each beam position by the time when the beam is blocked, and calculates the rolled material plate width at each beam position; A circuit that determines the shape of the rolled material from the width of the rolled material sheet calculated by the circuit, a circuit that calculates the amount of shape defect from this shape, and a circuit that determines the product width and the average sheet width at the end of tentering rolling determined from the amount of shape defects and forming. Since it has a calculation circuit that calculates the plate thickness of the final pass of tentering rolling based on the width and thickness of the rolled material after rolling, it is possible to reduce the amount of shape defects in the rolled material that vary depending on the rolling conditions. This method has the advantage of being able to accurately measure during rolling and obtain a predetermined product sheet width through subsequent rolling, thereby improving product yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Cは一般の圧延材圧延過程を示す斜
視図、第2図は一般の圧延材平面形状を示す平面
図、第3図は本発明に係る厚板圧延における幅出
し圧延最終パスの板厚演算装置の一実施例に採用
されるビーム投射装置および速度検出装置を示す
斜視図、第4図は圧延材速度とビーム遮蔽時間と
の関係を示す線図、第5図AおよびBは圧延材平
面形状を示す平面図、第6図は本発明に係る圧延
材の板幅制御装置の一実施例を示す回路系統図で
ある。 10……ビーム投射装置、20……パイロツト
ジエネレータ、30……遮蔽信号発生装置、40
……積分回路、50……形状演算回路、60……
形状不良量演算回路、70……厚み演算回路。
1A to 1C are perspective views showing the rolling process of a general rolled material, FIG. 2 is a plan view showing the planar shape of a general rolled material, and FIG. 3 is the final pass of tentering rolling in thick plate rolling according to the present invention. FIG. 4 is a diagram showing the relationship between rolling material speed and beam shielding time; FIGS. 5A and B 6 is a plan view showing the planar shape of a rolled material, and FIG. 6 is a circuit diagram showing an embodiment of a width control device for a rolled material according to the present invention. 10...Beam projection device, 20...Pilot generator, 30...Shielding signal generator, 40
...Integrator circuit, 50...Shape calculation circuit, 60...
Shape defect amount calculation circuit, 70...Thickness calculation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 幅出し圧延最終パス前段階の圧延材に多数の
ビームを投射するビーム投射装置と、ビーム投射
時の圧延材速度を検出する圧延材速度検出装置
と、各ビーム位置毎にビームが遮蔽された時間で
圧延材速度を積分して各ビーム位置での圧延材板
幅を計算する積分回路と、積分回路により算出さ
れた圧延材板幅から圧延材形状を決定する回路
と、この形状から形状不良量を求める回路と、製
品幅並びに前記形状不良量から求まる幅出し圧延
終了時の目標平均板幅と成形圧延終了後の圧延材
板幅と板厚とに基づき幅出し圧延最終パスの目標
板厚を演算する演算回路と、を有する厚板圧延に
おける幅出し圧延最終パスの板厚演算装置。
1. A beam projection device that projects multiple beams onto the rolled material before the final pass of tentering rolling, a rolled material speed detection device that detects the speed of the rolled material during beam projection, and a beam shielding system for each beam position. An integral circuit that calculates the width of the rolled material at each beam position by integrating the speed of the rolled material over time, a circuit that determines the shape of the rolled material from the width of the rolled material calculated by the integration circuit, and a circuit that determines the shape of the rolled material from this shape. The target plate thickness for the final pass of tentering rolling based on the circuit for calculating the quantity, the target average plate width at the end of tentering rolling determined from the product width and the amount of shape defects, and the rolled material plate width and plate thickness after finishing forming rolling. An arithmetic circuit for calculating the plate thickness for a final pass of tentering rolling in thick plate rolling.
JP14425477A 1977-11-30 1977-11-30 Controller for width of rolling materials Granted JPS5476467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14425477A JPS5476467A (en) 1977-11-30 1977-11-30 Controller for width of rolling materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14425477A JPS5476467A (en) 1977-11-30 1977-11-30 Controller for width of rolling materials

Publications (2)

Publication Number Publication Date
JPS5476467A JPS5476467A (en) 1979-06-19
JPS6238041B2 true JPS6238041B2 (en) 1987-08-15

Family

ID=15357814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14425477A Granted JPS5476467A (en) 1977-11-30 1977-11-30 Controller for width of rolling materials

Country Status (1)

Country Link
JP (1) JPS5476467A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113102A (en) * 1987-10-27 1989-05-01 Sumitomo Metal Ind Ltd Method for edging thick steel plate

Also Published As

Publication number Publication date
JPS5476467A (en) 1979-06-19

Similar Documents

Publication Publication Date Title
US4497192A (en) Process for cropping the head of self-luminous rolled material, especially metal strips and system for cropping the head
AT513245A4 (en) Flatness measurement and measurement of residual stresses for a metallic flat product
CN105229413A (en) The manufacture method of the flatness assay method of sheet material, the flatness determinator of sheet material and steel plate
KR100856276B1 (en) Detecting device for thickness of rolled material
JPS6238041B2 (en)
JP2966681B2 (en) A method of detecting the position of a plate using a TV camera
JPH0289757A (en) Method for adjusting meandering of band material
JP4686924B2 (en) Thickness measuring method, thickness measuring device and thickness control method for hot rolled steel sheet
JP2706355B2 (en) Meandering control method during plate rolling
JPH06201347A (en) Shape detection for traveling strip, its device and rolling device
JPH02212015A (en) End cutting method in hot billet rolling
JP2577456B2 (en) Thickness measuring device
JPH04270908A (en) Method for measuring planar shape of hot rolled steel plate
JPS62137114A (en) Plate width control method for thick plate
JP3300202B2 (en) Rolling force control method in temper rolling of steel strip
JPS5896204A (en) Measuring method for size of material to be rolled
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JPH01210810A (en) Band plate shape detecting device
JPS60158910A (en) Control method of rolling in sheet width direction
KR101657783B1 (en) Apparatus and method of controlling tension of wire rod
JPS5875009A (en) Shape detection for end part of plate material
JPH01292208A (en) Strip shape detector
JPH0890030A (en) Method for controlling width of rolling stock
JPH05107047A (en) Measuring apparatus of thickness
JPH01224615A (en) Plate curvature detecting device