JPS5896204A - Measuring method for size of material to be rolled - Google Patents

Measuring method for size of material to be rolled

Info

Publication number
JPS5896204A
JPS5896204A JP19544081A JP19544081A JPS5896204A JP S5896204 A JPS5896204 A JP S5896204A JP 19544081 A JP19544081 A JP 19544081A JP 19544081 A JP19544081 A JP 19544081A JP S5896204 A JPS5896204 A JP S5896204A
Authority
JP
Japan
Prior art keywords
rolled
sectional shape
image sensor
width
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19544081A
Other languages
Japanese (ja)
Inventor
Katsushi Fujioka
藤岡 克志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19544081A priority Critical patent/JPS5896204A/en
Publication of JPS5896204A publication Critical patent/JPS5896204A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/046Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring width

Abstract

PURPOSE:To obtain a size of a material to be rolled with a high precision and speed, by correcting measurements by an image sensor corresponding to the thickness of the material to be rolled and the sectional shape of the end in the direction of size measurement thereof. CONSTITUTION:In case a steel sheet 14 with a thickness (t) is detected by setting an image sensor away by a visual distance D, a width, which the image sensor 12 outputs with respective to a true width (d) of the steel sheet 14, is l, and the true width (d) in the case of the steel sheet 14 having an end in a rectangular sectional shape, the true width (d) is l+tl/D. Actually, the sectional shape of the end is little rectangular, and the true width (d') of the steel sheet corrected corresponding to the sectional shape of the end is equal to K.d, where K is a correcting coefficient corresponding to the sectional shape of the end of the steel sheet, and in case the sectional shape of the end is rectangular, it is determined as 1.

Description

【発明の詳細な説明】 本一羽は、被圧延材の寸法測定方法に係り、特に、圧延
された鋼板の平面形状をイメージセンサとiイクロコン
ビ工−タにより自動認識する−に用いるに好適な、光源
とイメージセンナの聞に被圧延材を配置し、集光レンズ
によりイメージセンナ上に結像させた被圧砥材O陰影長
さから、被圧延材の板輻尋をI[定する被圧延材の寸法
測定方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the dimensions of a rolled material, and is particularly suitable for use in automatically recognizing the planar shape of a rolled steel plate using an image sensor and an i-microcombinator. , the material to be rolled is placed between the light source and the image sensor, and the plate radius of the material to be rolled is determined by This invention relates to improvements in methods for measuring dimensions of rolled materials.

圧延された鋼板の平面形状をイメージセンナとマイクロ
コンピュータ(より自動認識する方法が実用化されてい
る。これは、菖1図に示す如く。
A method of automatically recognizing the planar shape of a rolled steel plate using an image sensor and a microcomputer has been put into practical use, as shown in Figure 1.

下部光源10とイメージセンナ120間の搬送テーブル
ローラ上に鋼板14を配置し、集光レンズ16によりイ
メージ七ン?12上に結像させた鋼板14の陰影長さか
ら、鋼板14の板幅X轡を測定するもので、鋼板14下
側の下部光1[10から光を照射し、鋼板14の陰影を
集光レンズ16を介してイメージセンナ12上に結像す
ると、イメージセンサ12の各ビットの出力は、陰影S
は’ Low’ 、光O癲九る部分は’H1gh’とな
るので、a定有効輻をW、これに対応するイメージセン
ナl2の有効検出ピット数をにビットとすれば・、鋼1
[14の陰影q検出ビット数yから、次式を用いて、鋼
板14C)板@Xが算出できるもの′Cある。
A steel plate 14 is placed on the conveying table roller between the lower light source 10 and the image sensor 120, and an image is captured by the condensing lens 16. The width of the steel plate 14 is measured from the length of the shadow of the steel plate 14 that is imaged on the steel plate 12. Light is irradiated from the lower light 1 [10] below the steel plate 14, and the shadow of the steel plate 14 is collected. When an image is formed on the image sensor 12 through the optical lens 16, the output of each bit of the image sensor 12 becomes a shadow S.
is 'Low' and the part where the light output is reduced is 'H1gh', so if the a constant effective radiation is W and the corresponding number of effective detection pits of image sensor l2 is bit, then steel 1
[There is a steel plate 14C) plate @X that can be calculated from the shadow q of 14 and the number of detected bits y using the following equation.

! wa 7 x−M−・・・・・・・・・・・・・・
・(り従って、圧延された鋼4[14の平面形状を自動
認識する一KFi、前記のよう#Cしてイメージセンサ
13により鋼1[14C)先後端クロップ形状と板幅を
検出すると共虻、メジャリングロールにより長さ方角O
検出を行ない、この2つの検出情報を組み舎せてマイク
ロコンピュータで形状tW識するよ5Kしていゐ。
! wa 7 x-M-・・・・・・・・・・・・・・・
・(Accordingly, the planar shape of rolled steel 4 [14] is automatically recognized by KFi, and the front and rear end crop shapes and plate widths of steel 1 [14C] are detected by the image sensor 13 using #C as described above. , length direction O by measuring roll
Detection is performed, these two pieces of detection information are combined, and the shape is recognized using a microcomputer.

しかしながら、前記のような、鋼板の板幅をその陰影長
さから検出する方法においては、鋼板の板厚或いは板一
方向端部断面形状が変化するとイメージセン10視距離
が変化してしまうため、従来は、精to良い板幅を検出
することが困麹でめった。
However, in the above-mentioned method of detecting the width of a steel plate from its shadow length, if the thickness of the steel plate or the cross-sectional shape of the edge in one direction changes, the viewing distance of the image sensor 10 changes. In the past, it was difficult to accurately detect the board width.

本斃@は、前記従来の欠点を解消するべくなされえもO
て、被圧延材の板厚或いは寸法測定方向端部断面形状の
変化による寸法検出誤差を防止することができ、従って
、被圧延材の寸法を、高精度で、且つ、迅速に求めるこ
とができる被圧延材の寸法一定方性を提供するととを目
的とする。
This is an attempt to overcome the drawbacks of the conventional technology.
Therefore, it is possible to prevent dimension detection errors due to changes in the plate thickness of the rolled material or the end cross-sectional shape in the dimension measurement direction, and therefore, the dimensions of the rolled material can be determined with high accuracy and quickly. The purpose is to provide dimensional uniformity of rolled material.

本発明Fi、光源とイメージセンナの間KIl[圧延材
を配置し、集光レンズによりイメージセンナ上に結儂さ
せた被圧延材の陰影長さから、被圧砥材の板幅等を測定
する被圧砥材O寸法測定方法において、前記イメージセ
ンサによる測定値を、被圧砥材の板厚及び寸法測定方向
端部断面形状に応じて補正して、被圧延材の寸法を求め
るようにして、前記目的を達、成したものである。
In the present invention, KIl is placed between the light source and the image senna [the rolled material is placed, and the plate width of the pressed abrasive material is measured from the shadow length of the rolled material condensed on the image senna by a condensing lens. In the pressure abrasive material O dimension measurement method, the measurement value by the image sensor is corrected according to the plate thickness of the pressure abrasive material and the cross-sectional shape of the end in the dimension measurement direction to determine the dimensions of the rolled material. , the above objectives have been achieved.

又、前記イメージセンサによる測定値を、まず。Also, first, let's look at the measured values by the image sensor.

被圧延材の板厚に応じて補正し、次いで、被圧延材の寸
法測定方向端部断面形状の予測或は認識パターンに応じ
て作成した補正係数を乗じて補正するよ5Kしたもので
ある。
5K is calculated by correcting according to the thickness of the material to be rolled, and then multiplying by a correction coefficient created according to a predicted or recognized pattern of the end cross-sectional shape of the material to be rolled in the dimension measurement direction.

以下図面を参照して、本発明0@縮例を詳細に説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS A reduced example of the present invention will be described in detail below with reference to the drawings.

イメージセンサ罠よる鋼板等の被圧延材の平面形状認識
では、板厚或いは寸法測定方向端部断面形状が変化する
と、イメージセンナの視距離が変化するため、被圧延材
の陰影長さ、即ち、イメージセンナ出力が変化する0例
えば、第2図に示す如く、被圧延材1例えば鋼板14の
寸法測定方向端部断面形状が剪断後の状態、即ち矩形で
ある場合KFi、イメージセンナ12を視距離(基準距
離)DIeけ離して設定して板厚tの鋼板14を検出す
る場合、鋼板14(DXC)[幅dK対し、イメージセ
ンサ12が出力する板幅(以下見かけの板幅と称する)
Fijとな9゛、鋼板14の端部断面形状が矩形である
場合の真の板幅dは次式で示される如くとなる。
When recognizing the planar shape of a rolled material such as a steel plate using an image sensor trap, if the thickness of the plate or the cross-sectional shape of the end in the dimension measurement direction changes, the visual distance of the image sensor changes. For example, as shown in FIG. 2, when the end cross-sectional shape in the dimension measurement direction of the rolled material 1, for example, a steel plate 14, is in the state after shearing, that is, it is rectangular, KFi, the image sensor 12 is set at a viewing distance. (Reference distance) When detecting a steel plate 14 with a thickness t by setting DIe apart, the steel plate 14 (DXC) [The plate width output by the image sensor 12 (hereinafter referred to as apparent plate width) with respect to the width dK]
Fij=9゛, and when the end cross-sectional shape of the steel plate 14 is rectangular, the true plate width d is as shown by the following equation.

CD−t)・l d=   D   ・・・・・・・・・・・・(2)し
かしながら、実際には鋼板14の端部断面形状が矩形で
あることは殆んどなく、圧延過程の条件によp種々様々
な形状をしているため、端部断面形状Kiじて補正され
た鋼板の真の板幅d′は次式で示す如くとなる。
CD-t)・l d= D (2) However, in reality, the end cross-sectional shape of the steel plate 14 is almost never rectangular, and the rolling process Since P has various shapes depending on the conditions, the true width d' of the steel plate corrected by the end cross-sectional shape Ki is as shown in the following equation.

d’=に−d   ・・・・・・・・・・・・・・・(
3)ここでKは、鋼板の端部断III形状に応じて作成
した補正係数であり、端部断面形状が矩形である時は、
lとする。
d'=to-d ・・・・・・・・・・・・・・・(
3) Here, K is a correction coefficient created according to the end cross-sectional shape of the steel plate, and when the end cross-sectional shape is rectangular,
Let it be l.

鋼板の端部断面形状は圧延過110条件により変化する
ため、前記補正係数Xも変化する。従って、本発明にお
いては、例えばlIF5図(4)及びCB)K示すよう
な2種のパターンを想定する。命、ll31EI(A)
K示すような端部断面形状をパターン人と称し、第3W
A@IK示すような断[形状をパターンBと称すること
に丁れば、パターン人の場合、実際の板厚tK対して、
イメージセンt12が出力する見かけO板幅IFi、真
の板幅d′より大となる。従って、実際の板厚tの代り
に、他の板厚tlを補正に用いれば、求められる板幅F
id“となり、誤差を非常に小さくすることができる。
Since the end cross-sectional shape of the steel plate changes depending on the rolling conditions, the correction coefficient X also changes. Therefore, in the present invention, two types of patterns are assumed, for example, as shown in FIG. 5(4) and CB)K. Life, ll31EI(A)
The cross-sectional shape of the end as shown in K is called a pattern person, and the 3rd W
A@IK [If the shape is referred to as pattern B, in the case of a pattern person, for the actual plate thickness tK,
The apparent O plate width IFi output by the image center t12 is larger than the true plate width d'. Therefore, if another plate thickness tl is used for correction instead of the actual plate thickness t, the obtained plate width F
id", and the error can be made very small.

又、パターンBの場合は、更に端部断面形状が複雑とな
るため、板厚t、を補正に用いるだけでなく、上側端部
と下側端sO央出長さos’b1両看O見込角e等を用
いることにより、補正精度を上げることができる。
In the case of pattern B, the cross-sectional shape of the end is even more complicated, so in addition to using the plate thickness t for correction, the estimated length of the upper and lower ends sO center length os'b1 By using the angle e etc., the correction accuracy can be improved.

なお前記パターンAとパターンBC)判定は、圧延工@
に$Pける圧延条件、スラブ条件等により。
Note that the above pattern A and pattern BC) are determined by rolling mill@
Depending on rolling conditions, slab conditions, etc.

皺蟲被圧延材一枚毎に1次の予測式により決定すること
ができる。
It can be determined for each sheet of wrinkle-rolled material using a first-order prediction formula.

Ymas+atHp+atHa+asHpm〒+aaH
nv  ・・−”・  (4)ここで、 Hpは製品板
厚、Haはスラブ厚さ、HDBテは成形終了時の厚さ、
HnvFi幅出し終了時の厚さ% agb l1%ay
s as、aa 11定数である。具体的には前出(4
)式の左辺の値yt算出し、Yの値が正である場合には
、パターンAであると予測判定し、例えばに−0,5と
し、Yの値が負である場合KFi、パターンBであると
予測判定し1例えばに富0.3〜0.8とする。
Ymas+atHp+atHa+asHpm〒+aaH
nv ・-”・ (4) Here, Hp is the product plate thickness, Ha is the slab thickness, HDBte is the thickness at the end of molding,
HnvFi Thickness at the end of tentering %agb l1%ay
s as, aa 11 constants. Specifically, the above (4)
) Calculate the value yt on the left side of the equation, and if the value of Y is positive, it is predicted to be pattern A, for example -0,5, and if the value of Y is negative, KFi, pattern B. For example, it is predicted that the value is 0.3 to 0.8.

本発明に係る被圧延材の寸法測定方法のフローを第4図
に示す、即ち、tず、イメージ輿ンサ12の出力から、
見かけの板幅11に求め、この見かけの板幅ノと予め設
定されている視距@D及び板厚tを用いて、前出(2)
弐により被圧延材の端部断面形状が矩形であると仮定し
た場合の板幅dを求める。更に、前出(4)弐尋を用い
て予め予測判定された被圧延材の端部断面形状のパター
ンに応じて、補正用板厚tl、tt、突出長さの差す、
見込み負0尋のパラメータを用いて補正係数Kを作成し
、前出(3)式により真の板@d′を得るものである。
The flow of the method for measuring dimensions of a rolled material according to the present invention is shown in FIG. 4, namely, from the output of the image sensor 12,
Obtain the apparent board width 11, and use the apparent board width, the preset sight distance @D, and the board thickness t, as described in (2) above.
2, the plate width d is determined assuming that the end cross-sectional shape of the rolled material is rectangular. Furthermore, according to the pattern of the end cross-sectional shape of the rolled material that has been predicted and determined in advance using the above-mentioned (4) Nihiro, the correction plate thicknesses tl and tt, and the protrusion length are added,
A correction coefficient K is created using the parameter of a negative prospect of 0 fathoms, and the true plate @d' is obtained by the above-mentioned equation (3).

1配の補正Fi、例えば、マイクロコンピュータ内のソ
フト処理で行なうことができる。
The correction Fi can be performed by, for example, software processing in a microcomputer.

なお前記実施例においては、被圧延材の寸法−1定方向
端部断面形状のパターンを、被圧延材の圧延工1!にお
ける圧延条件、スラブ条件等により、各被圧延材毎に予
測判定するようKしていたが、端部断面形状のパターン
を判定する方法はこれに限定されず1例えば、被圧延材
の端部断面形状を検出する検出器を配設し、該検出器に
より被圧延材毎に実際の端部断面形状を検出し、その結
果を第4図のフローで用いたり、或いは勿論目視によっ
ても端部断面形状を判定して、I(ターンA、 Bを決
定することも可能である。
In the above embodiments, the pattern of the cross-sectional shape of the end portion in a constant direction of dimension -1 of the material to be rolled is used in the rolling process 1! of the material to be rolled. However, the method for determining the pattern of the end cross-sectional shape is not limited to this, and for example, A detector is installed to detect the cross-sectional shape, and the detector detects the actual end cross-sectional shape for each rolled material, and the result can be used in the flow shown in Figure 4, or of course, the end shape can also be visually inspected. It is also possible to determine I (turns A and B) by determining the cross-sectional shape.

以上説明した通り、本発明によれば、被圧延材の板厚或
いは寸法測定方向端部断面形状の変化による寸法測定誤
差を解消することができ、被圧延材の寸法を、高精1で
、且つ、迅速に得ることができる。従って、イメージセ
ンサによる鋼板醇の平面形状の自動認識を高精縦で行な
うことができるようになるという優れた効果を有する。
As explained above, according to the present invention, it is possible to eliminate dimensional measurement errors due to changes in the plate thickness of the rolled material or the end cross-sectional shape in the dimension measurement direction, and to measure the dimensions of the rolled material with high precision. Moreover, it can be obtained quickly. Therefore, it has the excellent effect that the image sensor can automatically recognize the planar shape of the steel plate with high accuracy and vertically.

【図面の簡単な説明】[Brief explanation of drawings]

菖1図は、イメージセンサを用いた寸法測定方法の厘m
t示す断面図、第2図は、本発明の原理を説−するため
の、端部断面形状が矩形である被圧延材における見かけ
の板幅と真の板幅の関係を示す断面図、第3図囚、(6
)は、同じく本発明の詳細な説明する丸めの、被圧延材
の端部断面形状の各パターンを示す断面図、第4図は、
本発明に係る被EEW材の寸法測定方法のフローを示す
流れ図である。 lO・・・下部光源、12・・・イメージセンサ。 14・・・鋼板、16・・・集光レンズ。 代理人  高 矢    論 (ほか1名)
Diagram 1 shows the method for measuring dimensions using an image sensor.
2 is a cross-sectional view showing the relationship between the apparent width of a rolled material and the true width of a rolled material having a rectangular end cross-sectional shape, for explaining the principle of the present invention. 3 prisoners, (6
) is a cross-sectional view showing each pattern of the rounded end cross-sectional shape of the rolled material, which also explains the present invention in detail, and FIG.
1 is a flowchart showing a flow of a method for measuring dimensions of an EEW material according to the present invention. lO: Lower light source, 12: Image sensor. 14... Steel plate, 16... Condensing lens. Agent Takaya Ron (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)  光源とイメージセンナの間に被圧延材を配置
し、集光レンズによりイメージセンナ上に結像させた被
圧砥材の陰影長さから、被圧延材の板幅等を一定する被
圧延材の寸法測定方法において。 前記イメージセンサによる測定値を、被圧延材の板厚及
び寸法一定方一端部断面形状に応じて補正して、被圧砥
材の寸法を求めるよ5tCしたことを特徴とする被圧砥
材O寸法測定方法。 偵) 前記イメージセンナによる測定値を、まず被圧延
材の板厚に応じて補正し1次いで、被圧延#O寸寸法測
定方法部断I形状の予測或いは認識バーーンに応じて作
成した補正係数を乗じて補正するよ5KL′#−特許請
求の範l!l第1項に記載の被圧延材の寸法測定方法。
(1) A material to be rolled is placed between a light source and an image sensor, and from the shadow length of the abrasive material imaged on the image sensor by a condensing lens, it is possible to determine the width of the material to be rolled, etc. In a method for measuring dimensions of rolled materials. A pressurized abrasive material O characterized in that the measured value by the image sensor is corrected according to the plate thickness and dimension constant of the rolled material and the cross-sectional shape of one end portion to determine the dimensions of the pressurized abrasive material. Dimension measurement method. First, the measured value by the image sensor is corrected according to the thickness of the material to be rolled, and then a correction coefficient created according to the prediction or recognition burn of the rolled #O dimension measurement method section is calculated. Multiply and correct 5KL'#-Claims l! 1. The method for measuring dimensions of a rolled material according to item 1.
JP19544081A 1981-12-04 1981-12-04 Measuring method for size of material to be rolled Pending JPS5896204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19544081A JPS5896204A (en) 1981-12-04 1981-12-04 Measuring method for size of material to be rolled

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19544081A JPS5896204A (en) 1981-12-04 1981-12-04 Measuring method for size of material to be rolled

Publications (1)

Publication Number Publication Date
JPS5896204A true JPS5896204A (en) 1983-06-08

Family

ID=16341090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19544081A Pending JPS5896204A (en) 1981-12-04 1981-12-04 Measuring method for size of material to be rolled

Country Status (1)

Country Link
JP (1) JPS5896204A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109202A (en) * 1987-10-22 1989-04-26 Fanuc Ltd Visual sensor with parallax correction
JPH01116401A (en) * 1987-10-30 1989-05-09 Fanuc Ltd Parallax correction system for visual sensor
JP2009175147A (en) * 2008-01-21 2009-08-06 Texmag Gmbh Vertriebsgesellschaft Calibration element for calibrating image-forming magnification of camera, and calibration method for camera
CN108398088A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of strip width measure in vibration error bearing calibration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109202A (en) * 1987-10-22 1989-04-26 Fanuc Ltd Visual sensor with parallax correction
JPH01116401A (en) * 1987-10-30 1989-05-09 Fanuc Ltd Parallax correction system for visual sensor
JP2009175147A (en) * 2008-01-21 2009-08-06 Texmag Gmbh Vertriebsgesellschaft Calibration element for calibrating image-forming magnification of camera, and calibration method for camera
CN108398088A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of strip width measure in vibration error bearing calibration

Similar Documents

Publication Publication Date Title
CN102667400B (en) Method of measuring flatness of plate and method of manufacturing steel plate using same
US4982600A (en) Method of measuring the period of surface defects
KR101647208B1 (en) Apparatus and method for measuring camber in hot rolling process
EP0483362B1 (en) System for measuring length of sheet
JPS5896204A (en) Measuring method for size of material to be rolled
KR20010015565A (en) Process and installation for rolling a metal strip
JPH04143608A (en) Device for measuring flatness of steel plate
JP2536668B2 (en) Steel plate flatness measuring device
JP5294891B2 (en) Image processing method for extracting uneven characters
JPH04270908A (en) Method for measuring planar shape of hot rolled steel plate
JPH08285550A (en) Instrument for measuring-steel plate displacement
JP3145296B2 (en) Defect detection method
JPH0634360A (en) Steel plate shape measuring method
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JP3073374B2 (en) Dimension measuring device for shaped steel
JP2988645B2 (en) Measurement method of sheet material distortion shape
JPS5926366B2 (en) Plate camber control device for thick plate rolling
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JPH0428416A (en) Method for detecting welded point in continuous rolling and method for welding material to be rolled
JP2021179414A (en) Hot rolled steel strip meandering rate measuring apparatus and hot rolled steel strip meandering rate measuring method
JPS6254109A (en) Width and meandering measuring instrument for band-shaped body
KR100423424B1 (en) Method For Widthwide Rolling Steel Plate
JPH01292208A (en) Strip shape detector
JP2016140911A (en) Plate thickness measuring method of checkered steel plate
JP6245144B2 (en) Shape detection device