JPH01109202A - Visual sensor with parallax correction - Google Patents

Visual sensor with parallax correction

Info

Publication number
JPH01109202A
JPH01109202A JP26523787A JP26523787A JPH01109202A JP H01109202 A JPH01109202 A JP H01109202A JP 26523787 A JP26523787 A JP 26523787A JP 26523787 A JP26523787 A JP 26523787A JP H01109202 A JPH01109202 A JP H01109202A
Authority
JP
Japan
Prior art keywords
camera
reference plane
height
optical axis
reference surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26523787A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
淳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP26523787A priority Critical patent/JPH01109202A/en
Publication of JPH01109202A publication Critical patent/JPH01109202A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the visual sensor which accurately detect the position of an object by providing a parallax correcting means which finds the object of recognition on a reference surface. CONSTITUTION:A CPU 2 is provided with a frame memory 3 for storing an image of the reference surface 10 photographed by a camera 1 and a data memory 5 for storing as parameters the distance L between the reference surface 10 and camera 1 on the optical axis (a), the height H of the object P, etc., which are inputted from a manual data input device 7. Then, the intersection of the optical axis (a) of the camera 1 and an X axis (reference surface 10) is regarded as an origin (X0, Y0), the feet of the perpendiculars of the object position P to the (a) axis and X axis are denoted as P' and X, and the intersection of the straight line from the camera 1 to the position and the X axis is denoted as X'. Consequently, the object P is detected at the point X' on the camera screen, so the real position of the object on the reference surface is calculated from a specific expression. For the purpose, the distance L and height H are inputted from the device 7 and set and stored, and the object P is photographed; and the apparent positions X' and Y' of the object P are found and corrected with another specific expression and then the real object positions X and Y are found.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ロボット等の視覚として、作業対象を認識す
るために利用される視覚センサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a visual sensor that is used as a visual aid for a robot or the like to recognize a work object.

従来の技術 ロボット等の視覚として利用される視覚センサにおいて
は、カメラで踊彰した画像の中の対象は奥行きのない二
次元平面の位置で認識される。そして、従来は、カメラ
と認識対象物間の距離は常に一定にして対象物の位置を
検出するようにしている。
In conventional visual sensors used for vision in robots and the like, objects in images captured by a camera are recognized at positions on a two-dimensional plane with no depth. Conventionally, the distance between the camera and the object to be recognized is always kept constant to detect the position of the object.

発明が解決しようとする問題点 カメラで認識しようとする対象物の高さが変わると、カ
メラで撮影した画面上の対象物の位置は変動する。第6
図は対象物の高さが変ったとき、カメラが認識する対象
物の位置を説明する図で、X軸上を基準面とし、該基準
面よりHlだけ高い所、即ら、カメラ1側にある対象物
P1は、基準面上では×1の位置に存在し、カメラ1の
撮影画面にも×1の位置に画像があるべきにもかかわら
ず、カメラ1で撮影した画面にはX1’の位置に画像が
lla影されることとなる。また、カメラ1に対し、基
準面より遠い位置H2、即ち、低い所にある対象物P2
はカメラ画面上に×2の位置にあるべぎにもかかわらず
、X2’ の位置に存在することとなる。このように、
カメラ1と対象物間の距離、即ら、視差によって対象物
を認識する位置が変動する。
Problems to be Solved by the Invention When the height of the object to be recognized by the camera changes, the position of the object on the screen photographed by the camera changes. 6th
The figure explains the position of the object recognized by the camera when the height of the object changes.The reference plane is on the X-axis, and the position is Hl higher than the reference plane, that is, on the camera 1 side. A certain object P1 exists at the position x1 on the reference plane, and even though the image taken by camera 1 should also be located at the position x1, the screen taken by camera 1 shows an image of x1'. The image will be shadowed at the position. Also, with respect to the camera 1, an object P2 located at a position H2 farther from the reference plane, that is, a lower place
exists at position X2' even though it is located at position x2 on the camera screen. in this way,
The position at which the object is recognized varies depending on the distance between the camera 1 and the object, that is, the parallax.

そのため、従来は、カメラと対象物間の距離を一定に保
持して対象物の位置を検出し、対象物の高さ(カメラと
対象物間の距離)が変われば、カメラの高さ位置を変え
、所定距離にする必要があった。
Therefore, in the past, the distance between the camera and the object was kept constant to detect the position of the object, and if the height of the object (distance between the camera and the object) changed, the height position of the camera was detected. It was necessary to change the distance and set it to a specified distance.

そこで、本発明の目的は、認識対象物の高さが変り、カ
メラの視差が変っても、視差補正を行って対象物の位置
を正確に検出できる視覚センサを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a visual sensor that can perform parallax correction and accurately detect the position of a recognition target even if the height of the recognition target changes and the camera parallax changes.

問題点を解決するための手段 第1図は、本発明が上記問題点を解決するために採用し
た手段のブロック図で、本発明は、カメラから基準面ま
での光軸距離及び認識対象物の基準面からの高さを入力
設定するための入力手段と、該入力手段から入力された
設定値を記憶する記憶手段と、カメラが撮影した認識対
象物の両僅位置及び上記記憶手段に記憶する上記光軸距
離、対象物の基準面からの高さより認識対象物の基準面
平面における位置を求める視差補正手段とを設けること
によって視差を補正して認識対象物の位置を検出し、上
記問題点を解決した。
Means for Solving the Problems FIG. 1 is a block diagram of the means adopted by the present invention to solve the above problems. an input means for inputting and setting the height from the reference plane; a storage means for storing the setting value inputted from the input means; and a storage means for storing the position of the recognition target photographed by the camera and in the storage means. By providing a parallax correction means that calculates the position of the recognition target on the reference surface plane from the optical axis distance and the height of the target from the reference plane, the position of the recognition target can be detected by correcting the parallax, and the above problem can be solved. solved.

作  用 第2図、第3図は、本発明の原理作用を説明する説明図
で、第2図において、X軸上を基準面とし、基準面より
Hだけ高い所(カメラ側)に対象物Pが存在するとする
。カメラ1の基準面からの距離がし、カメラの光軸とX
軸(基準面)との交点を原点とし、対象物位faPから
光軸及びX軸に下ろした垂線の光軸、X軸との交点をp
’ 、x。
Operation Figures 2 and 3 are explanatory diagrams explaining the principle operation of the present invention. In Figure 2, the reference plane is on the Suppose that P exists. The distance from the reference plane of camera 1 is
The point of intersection with the axis (reference plane) is the origin, and the point of intersection with the optical axis and the X-axis of a perpendicular line drawn from the object position faP to the optical axis and the X-axis is p.
', x.

及びカメラから対象物位置Pを通る直線のX軸との交点
をX′とすると、カメラ1が対象物Pを撮影したときカ
メラ画面には、対象物PはX′の位置にあるものとして
検出される。そこで、真の対象物Pの基準面位tiff
Xは三角形 LP’Pと三角形LOX’が相似であるから、上記第(
1)式によって求められる。
And if the intersection point of the straight line passing from the camera through the object position P with the be done. Therefore, the reference plane position tiff of the true object P
Since triangle LP'P and triangle LOX' are similar to X, the above (
1) It is determined by the formula.

また、第3図に示すように、対象物Pが基準面より低い
位置(カメラ1より遠い位置)にあると、カメラ1が検
出する対象物Pの位置はX′の位置であり、この場合の
対象物Pの真の位置Xは三角形LX’ Oと三角形px
’ xが相似であることから となる。そこで、基準面よりカメラ1に近い側に対象物
Pがあるときは、その位置を基準面との距1II(高さ
)Hをプラスで、また、遠い側にあるときの基準面と対
象物8間の距離Hをマイナスで設定すると、対象物Pの
真の基準面上の位置Xは第(1)式で求まることとなる
Furthermore, as shown in Fig. 3, when the object P is located at a lower position than the reference plane (farther than the camera 1), the position of the object P detected by the camera 1 is the position X', and in this case The true position X of the object P is the triangle LX' O and the triangle px
' This is because x is similar. Therefore, when the object P is on the side closer to camera 1 than the reference plane, its position is set by adding the distance 1II (height) H from the reference plane, and when it is on the far side, the distance between the reference plane and the object If the distance H between 8 and 8 is set as a negative value, the true position X of the object P on the reference plane can be found by equation (1).

また同様に、基準面のY軸座標位置も求められ、結局、
対象物Pの基準面上の位置は として求められることとなる。
Similarly, the Y-axis coordinate position of the reference plane is also found, and eventually,
The position of the object P on the reference plane is determined as follows.

そこで、上記入力手段よりカメラ1から基準面までの光
軸距離し、対象物Pの基準面からの距離(高さ)Hを入
力設定し、記憶手段に記憶させておき、カメラ1で対象
物Pを撮影し、対象物の見かけ上の位1(X’ 、Y’
 )を求めて上記第(1)式、第(2)式の演算を視差
補正手段で行い、真の対象物位置を求めるこ−とができ
る。
Therefore, the optical axis distance from the camera 1 to the reference plane is input and set using the input means, and the distance (height) H of the object P from the reference plane is input and set in the storage means. P, and the apparent order of the object (X', Y'
) and calculate the above equations (1) and (2) using the parallax correction means, thereby making it possible to find the true position of the object.

実施例 第4図は、本発明の一実施例の視覚センサの要部ブロッ
ク図である。
Embodiment FIG. 4 is a block diagram of essential parts of a visual sensor according to an embodiment of the present invention.

図中1は基準面10の上方に配設されたカメラ、Pは認
識対象物を表わす、2は中央処理装置(以下、CPUと
いう)で、3はカメラインターフェイス4を介して入力
されたカメラ1が撮影した基準面10の画像を記憶する
フレームメモリ、5はデータメモリで、後述するように
、手動データ入力装置7から入力される基準va10と
カメラ1間の光軸上の距離L1及びW1識対象物の高さ
H等をパラメータとして記憶するものである。また、6
はプログラムメモリで、CPU2が実行するi制御プロ
グラムを記憶するものである。なお、8はバスである。
In the figure, 1 is a camera disposed above the reference plane 10, P represents a recognition target, 2 is a central processing unit (hereinafter referred to as CPU), and 3 is a camera 1 input via the camera interface 4. 5 is a data memory that stores the image of the reference surface 10 photographed by the camera 1, and 5 is a data memory that stores the distances L1 and W1 on the optical axis between the reference va10 input from the manual data input device 7 and the camera 1. The height H of the object and the like are stored as parameters. Also, 6
is a program memory that stores the i control program executed by the CPU 2. Note that 8 is a bus.

以上のような構成において、カメラ1から基準面10ま
での光軸距離りを測定し、手動データ入力装置より該光
軸距離りを入力し、データメモリ5内に記憶させてお(
。さらに、i[しようとする各対象物の基準面10から
の距離(高さ)Hも手動データ入力装置7より入力し、
データメモリ5内にパラメータとして記憶させるが、こ
の場合、対象物Pの上面が基準WJ10より突出し、高
い場合は、基準面と対象物Pの上面間の距離(高さ)H
をプラスの値で設定する(通常この場合が多い)。また
、対象物Pの上面位置が基準面10よりもカメラ1から
遠い場合には、基準面と対象物Pの上面位置間の距離H
を高さとしてマイナス符号で設定する。
In the above configuration, the optical axis distance from the camera 1 to the reference plane 10 is measured, the optical axis distance is inputted from the manual data input device, and is stored in the data memory 5 (
. Furthermore, the distance (height) H of each target object from the reference plane 10 is also input from the manual data input device 7,
It is stored as a parameter in the data memory 5. In this case, if the top surface of the object P protrudes and is higher than the reference WJ10, the distance (height) between the reference surface and the top surface of the object P
Set to a positive value (usually this is the case). In addition, if the top surface position of the object P is farther from the camera 1 than the reference plane 10, the distance H between the reference surface and the top surface position of the object P
Set as the height with a minus sign.

そこで、検出しようとする対象物Pの高さHを手動デー
タ入力装置7で選択設定した後、該視覚センサを稼動さ
せてカメラ1より画像をカメラインターフェイス4を介
してフレームメモリ3内に取込む。フレームメモリ3中
のカメラ画面の対象物Pの画像が第5図に示すように画
素位置(X′。
Therefore, after selecting and setting the height H of the object P to be detected using the manual data input device 7, the visual sensor is activated to capture an image from the camera 1 into the frame memory 3 via the camera interface 4. . The image of the object P on the camera screen in the frame memory 3 is located at the pixel position (X') as shown in FIG.

Y’ )で検出されたとすると、該検出位置(X’。If it is detected at the detection position (X').

Y’ )より真の対象物Pの位置(X、Y)を求めるこ
ととなるが、フレームメモリ3中のカメラ画面の光軸位
置、即ち、カメラ画面の中心位置を(XO、YO’)と
すれば、CPU2はこのカメラ画面中心位II (XO
、YO)とデータメモリ5に設定記憶され、選択された
^さH9光軸距111L及び検出された画像位置(X’
 、Y’ )より、次の第(4)式、第(5)式の演算
を行って真の座標位置(X、Y)を求める。
The true position (X, Y) of the object P is determined from (X, Y'), but the optical axis position of the camera screen in the frame memory 3, that is, the center position of the camera screen is determined as (XO, YO'). Then, CPU2 will move to the center of this camera screen II (XO
, YO) are set and stored in the data memory 5, and the selected ^^ optical axis distance 111L and the detected image position (X'
, Y'), calculate the following equations (4) and (5) to find the true coordinate position (X, Y).

なお、第(4)式、第(5)式と第(1)式、第(3)
式と相違する点は、第(1)式、第(3)式においては
、光軸座標位置が第2図、第3図に示すように原点とし
ていたが、この光軸座標位置が第5図に示すように、(
XO,YO)にシフトしている関係から座標変換を行う
ためである。
In addition, equations (4), (5), equations (1), and (3)
The difference from the formula is that in formulas (1) and (3), the optical axis coordinate position is the origin as shown in Figures 2 and 3, but this optical axis coordinate position is the origin as shown in Figures 2 and 3. As shown in the figure, (
This is to perform coordinate transformation based on the relationship shifted to (XO, YO).

こうして、CPU2は第(4)式、第(5)式の演算を
行って対象物Pの真の位1(X、Y)を求めることがで
き、求められた位II(X、Y)をロボット等に出力す
ればよいこととなる。
In this way, the CPU 2 can calculate the true digit 1 (X, Y) of the object P by calculating the equations (4) and (5), and the obtained digit II (X, Y). All you have to do is output it to a robot or the like.

発明の効果 本発明は、視覚センサが視差補正を行うため、高さの異
なる対象物に対しても、簡単に、かつ、正確にその位置
を検出することができる。
Effects of the Invention In the present invention, since the visual sensor performs parallax correction, the position of objects of different heights can be detected easily and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明が従来技術の問題点を解決するために
採用した手段のブロック図、第2図、第3図は、本発明
の原理9作用を説明する説明図、第4図は、本発明の一
実施例の要部ブロック図、第5図は、同実施例における
フレームメモリ上のカメラ画面の説明図、第6図は、従
来の視覚センサが検出する高さが異なる対象物の位置の
説明図である。 1・・・カメラ、2・・・中央処理装置(CPU)、3
・・・フレームメモリ、4・・・カメラインターフェイ
ス、5軸・データメモリ、6軸・プログラムメモリ、7
・・・手動データ入力装置、8・・・パス、9・・・対
象物、10・・・基準面、し・・・カメラから基準面ま
での光軸距離、トド・・対家物高さ。 第 1 口 第 3図   第2囚
FIG. 1 is a block diagram of the means adopted by the present invention to solve the problems of the prior art, FIGS. 2 and 3 are explanatory diagrams explaining the principle 9 operation of the present invention, and FIG. , a main part block diagram of an embodiment of the present invention, FIG. 5 is an explanatory diagram of a camera screen on a frame memory in the same embodiment, and FIG. 6 is an illustration of objects of different heights detected by a conventional visual sensor. It is an explanatory view of the position of. 1... Camera, 2... Central processing unit (CPU), 3
...Frame memory, 4...Camera interface, 5 axes/data memory, 6 axes/program memory, 7
...Manual data input device, 8...Path, 9...Target, 10...Reference plane, Shi...Optical axis distance from camera to reference plane, Sea lion...Height relative to house . 1st mouth 3rd prisoner 2nd prisoner

Claims (2)

【特許請求の範囲】[Claims] (1)カメラから基準面までの光軸距離及び認識対象物
の基準面からの高さを入力設定するための入力手段と、
該入力手段から入力された設定値を記憶する記憶手段と
、カメラが撮影した認識対象物の画像位置及び上記記憶
手段に記憶する上記光軸距離、対象物の基準面からの高
さより認識対象物の基準面平面における位置を求める視
差補正手段とを有し、視差を補正して認識対象物の位置
を検出するようにした視差補正付視覚センサ。
(1) input means for inputting and setting the optical axis distance from the camera to the reference plane and the height of the recognition target from the reference plane;
a storage means for storing the setting values inputted from the input means; and a storage means for storing the setting values input from the input means, and a recognition target based on the image position of the recognition target taken by the camera, the optical axis distance stored in the storage means, and the height of the target from the reference plane. 1. A visual sensor with parallax correction which detects the position of a recognition target by correcting the parallax.
(2)カメラから基準面までの光軸距離L、認識対象物
の基準面からの高さH、カメラ撮影画面の中心座標位置
を(X0、Y0)、対象物のカメラ撮影画面の画像位置
を(X′、Y′)とすると、上記視差補正手段は次式の
演算を行って、 X=(L−H)/L・(X′−X0)+X0Y=(L−
H)/L・(Y′−Y0))+Y0基準面平面における
対象物の座標位置(X、Y)を求める特許請求の範囲第
1項記載の視差補正付視覚センサ。
(2) The optical axis distance L from the camera to the reference plane, the height H of the object to be recognized from the reference plane, the center coordinate position of the camera shooting screen (X0, Y0), and the image position of the object on the camera shooting screen. (X', Y'), the parallax correction means calculates the following formula to obtain X=(L-H)/L・(X'-X0)+X0Y=(L-
A visual sensor with parallax correction according to claim 1, which determines the coordinate position (X, Y) of an object on a reference surface plane.
JP26523787A 1987-10-22 1987-10-22 Visual sensor with parallax correction Pending JPH01109202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26523787A JPH01109202A (en) 1987-10-22 1987-10-22 Visual sensor with parallax correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26523787A JPH01109202A (en) 1987-10-22 1987-10-22 Visual sensor with parallax correction

Publications (1)

Publication Number Publication Date
JPH01109202A true JPH01109202A (en) 1989-04-26

Family

ID=17414427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26523787A Pending JPH01109202A (en) 1987-10-22 1987-10-22 Visual sensor with parallax correction

Country Status (1)

Country Link
JP (1) JPH01109202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392712A (en) * 1989-09-05 1991-04-17 Fanuc Ltd Three-dimensional position recognition by use of image processing device and distance measuring sensor
JP2011007872A (en) * 2009-06-23 2011-01-13 Olympus Corp Observation device and magnification correction method
JP2019098409A (en) * 2017-11-28 2019-06-24 東芝機械株式会社 Robot system and calibration method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896204A (en) * 1981-12-04 1983-06-08 Kawasaki Steel Corp Measuring method for size of material to be rolled
JPS6110708A (en) * 1984-06-25 1986-01-18 Kawasaki Steel Corp Size measuring device using measuring camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896204A (en) * 1981-12-04 1983-06-08 Kawasaki Steel Corp Measuring method for size of material to be rolled
JPS6110708A (en) * 1984-06-25 1986-01-18 Kawasaki Steel Corp Size measuring device using measuring camera

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392712A (en) * 1989-09-05 1991-04-17 Fanuc Ltd Three-dimensional position recognition by use of image processing device and distance measuring sensor
JP2011007872A (en) * 2009-06-23 2011-01-13 Olympus Corp Observation device and magnification correction method
JP2019098409A (en) * 2017-11-28 2019-06-24 東芝機械株式会社 Robot system and calibration method

Similar Documents

Publication Publication Date Title
US11625842B2 (en) Image processing apparatus and image processing method
KR900002509B1 (en) Apparatus for recognizing three demensional object
KR101379787B1 (en) An apparatus and a method for calibration of camera and laser range finder using a structure with a triangular hole
JP3842988B2 (en) Image processing apparatus for measuring three-dimensional information of an object by binocular stereoscopic vision, and a method for recording the same, or a recording medium recording the measurement program
Li et al. A calibration algorithm of the structured light vision for the arc welding robot
JP2730457B2 (en) Three-dimensional position and posture recognition method based on vision and three-dimensional position and posture recognition device based on vision
JP2018173882A (en) Information processing device, method, and program
JPH01109202A (en) Visual sensor with parallax correction
KR100773271B1 (en) Method for localization of mobile robot with a single camera
KR101438514B1 (en) Robot localization detecting system using a multi-view image and method thereof
JPH02183102A (en) Automatic calibration adjusting system for visual sensor
CN113733078B (en) Method for interpreting fine control quantity of mechanical arm and computer-readable storage medium
Brandt et al. Controlled active exploration of uncalibrated environments
WO2021145304A1 (en) Image processing system
JPH09329440A (en) Coordinating method for measuring points on plural images
JPH04269194A (en) Plane measuring method
CN115205129A (en) Depth camera based on structured light and method of use
CN113324538A (en) Cooperative target remote high-precision six-degree-of-freedom pose measurement method
JPH06214622A (en) Work position sensor
JPH06258028A (en) Method and system for visually recognizing three dimensional position and attitude
JPH05337785A (en) Grinding path correcting device of grinder robot
JPS60183509A (en) Visual sense device
KR100784734B1 (en) Error compensation method for the elliptical trajectory of industrial robot
TW448289B (en) Image aided 3D curved surface re-establishment and curved surface area measuring system
JPH0731536B2 (en) Teaching data correction robot