JPS6237717A - Controller for photovoltaic power generation - Google Patents

Controller for photovoltaic power generation

Info

Publication number
JPS6237717A
JPS6237717A JP17569185A JP17569185A JPS6237717A JP S6237717 A JPS6237717 A JP S6237717A JP 17569185 A JP17569185 A JP 17569185A JP 17569185 A JP17569185 A JP 17569185A JP S6237717 A JPS6237717 A JP S6237717A
Authority
JP
Japan
Prior art keywords
converter
circuit
control circuit
power
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17569185A
Other languages
Japanese (ja)
Other versions
JPH0625944B2 (en
Inventor
Noboru Yazaki
矢崎 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17569185A priority Critical patent/JPH0625944B2/en
Publication of JPS6237717A publication Critical patent/JPS6237717A/en
Publication of JPH0625944B2 publication Critical patent/JPH0625944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To attain the control of a load pattern with high efficiency by using a maximum power controller with controls a DC converter for supply of the maximum power and a discharge control circuit which delivers the open/close commands of an accumulator. CONSTITUTION:The electric power generated by a solar cell 1 is branched through a blocking diode 7 and a DC/DC converter 2. The branching circuit at one side is supplied to a load 5 through a DC/DC converter 4. While the branching circuit at the other side is supplied to an accumulator 3 via a blocking diode 8. A contactor 9 functions to lead the electric power of the accumulator 3 to the converter 4. Here the converter 2 is controlled by a maximum power control circuit 10 and the contactor 9 is controlled by a discharge control circuit 11. The circuit 10 controls a point where the product of the output current and the voltage of the cell 1 is maximum. Furthermore, the circuit 11 decides that the electric power of the cell 1 is smaller than the electric power needed for the load 5 at a certain time point and delivers a command for application of the contactor 9 by a command given from the circuit 10.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はソーラーセルからとシ出し得る電力を利用する
太陽光発電制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solar power generation control device that utilizes electric power that can be extracted from solar cells.

1、発明の技術的背景、とその問題点〕太陽光発電シス
テムのゴネルギー利用方法としてはソーラーセル(以下
PVセルと15)より取9出1.六M15力を−tグ)
1寸蛸費(電力連系の場合け送電)する方法と一旦蓄電
池等のエネルギー貯蔵設備に蓄える方法に大別される。
1. Technical background of the invention and its problems] As a method of utilizing gonergy in a photovoltaic power generation system, there are 9 examples from solar cells (hereinafter referred to as PV cells) 1. 6M15 force-tg)
It can be roughly divided into two methods: a method of transmitting electricity directly (in the case of grid connection) and a method of temporarily storing it in energy storage equipment such as storage batteries.

それぞれの利用方法においてPVセルから電力を最大限
に利用する技術は確立されているが両者を組合せたシス
テムにおいては運用方法を模索している段階である。
Although the technology for maximizing the use of power from PV cells has been established in each usage method, we are still at the stage of searching for an operating method for a system that combines the two.

例えば、Pvセルから発生した電力をDo/D。For example, the power generated from the Pv cell is Do/D.

コンバータで安定化して蓄電池を充電すると同時にD 
O/D Oコンバータで再び安定化し、負荷の必要とす
る電圧に変換して供給する方法がめる。一方でPVセル
よシの電力供給のない時(夜間等)は蓄電池よシの電力
をDC!/Doコンバータに供給することで負荷に電力
を供給することができる。
The converter stabilizes the storage battery and at the same time D
A method is proposed to stabilize the voltage again using an O/DO converter, convert it to the voltage required by the load, and supply it. On the other hand, when there is no power supply from the PV cell (such as at night), the power from the storage battery is converted to DC! /Do converter, power can be supplied to the load.

しかし、この方法の欠点はPVセルからの電力を負荷に
供給する迄に2台のDo/Doコンバータを経由しなけ
ればならず、システムの効率が低下するということでろ
る。
However, the disadvantage of this method is that the power from the PV cells must pass through two Do/Do converters before being supplied to the load, reducing system efficiency.

又、別の方法では、PVセルよ〕の電力はDC/Doコ
ンバータのみを経由して負荷に供給し得るという点で高
効率化を計ることができるものがある。この場合、蓄電
池に対してはPVセルよシの電力を双方向性(即ち電流
の向きは両方向)のDo/Doコンバータを介して充t
tたは放電の制御を行わせる。ところが、このシステム
においても蓄電池の電力を使用する際には双方向性のD
C/DCコンバータおよびDo/DCコンバータヲ経由
するため、高効率化のためには同様に難点があった。特
にPvセルが電力を供給し得る時間が7〜8時間である
ことを考慮すると、1日のうちで16〜17時間も2台
のDo/Doコンバータを経由して低効率のまま給電す
る時間が長いという欠点があった。
In another method, high efficiency can be achieved in that the power from the PV cell can be supplied to the load via only the DC/Do converter. In this case, the storage battery is charged with power from the PV cell through a bidirectional (i.e., current flows in both directions) Do/Do converter.
or discharge control. However, even in this system, when using the power from the storage battery, the bidirectional D
Since it passes through a C/DC converter and a Do/DC converter, there is also a difficulty in achieving high efficiency. Especially considering that a Pv cell can supply power for 7 to 8 hours, it is 16 to 17 hours a day to supply power via two Do/Do converters with low efficiency. The disadvantage was that it was long.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前述の欠点を補い、高効率なシステムを
提供するものである。
The object of the invention is to compensate for the aforementioned drawbacks and provide a highly efficient system.

〔発明の概要〕[Summary of the invention]

本発明はソーラーセルの直流回路に接続されて直流電圧
を制御するDo/Doコンバータと、このD O/D 
Oコンバータ出力回路から分岐され蓄電池の充放電電流
を計測する変流4と、この変流器に直列に接続され、蓄
電池からの直流電流がDC/DCコンバータに逆流する
ことを諌止するブロッキングダイオード及びこのブロッ
キングダイオードをバイパスするコンタクタの並列回路
と、DC/Doコンバータ出力回路からの他の分岐回路
に接続され負荷への電流を計測するための変流器と、こ
の変流器に直列に接続される他のDC!/Doコンバー
タと、変流器の直流電流信号を入力してDC/Doコン
バータに制御信号を出力する最大電力制御回路と、最大
電力制御回路よシの制御信号を受け、負荷パターンと比
較してコンタクタの投入/解放指令を出力する放電制御
回路とからなる太陽光発電制御装置でらる。
The present invention relates to a Do/Do converter that is connected to a DC circuit of a solar cell to control DC voltage, and a Do/Do converter that is connected to a DC circuit of a solar cell to control DC voltage.
A current transformer 4 that is branched from the O converter output circuit and measures the charging/discharging current of the storage battery, and a blocking diode that is connected in series with this current transformer and prevents the direct current from the storage battery from flowing back to the DC/DC converter. and a parallel circuit of contactors that bypass this blocking diode, a current transformer that is connected to another branch circuit from the DC/Do converter output circuit and measures the current to the load, and is connected in series to this current transformer. Other DC to be done! /Do converter, a maximum power control circuit that inputs the DC current signal of the current transformer and outputs a control signal to the DC/Do converter, and a maximum power control circuit that receives the control signal from the maximum power control circuit and compares it with the load pattern. This is a solar power generation control device consisting of a discharge control circuit that outputs contactor closing/release commands.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の詳細な説明する。第1図は次の各構成要素
からなる太陽光発電制御装置を示している。
Next, the present invention will be explained in detail. FIG. 1 shows a solar power generation control device consisting of the following components.

(イ)太陽光を電気量にエネルギー変換するPVセル1 (ロ)  PVセル10出出力回路八人接続されて直流
電流を一方向に導通ずるブロッキングダイオード(ハ)
 ブロッキングダイオード7に直列に接続され直流−直
流変換するDo/DCコンバータ2四 DC/DCコン
バータ2の出力直流回路2人に直列に接続され直流電流
を計測するDC−CT13(ホ) DC−CT13に直
列に接続されて直流−直流変換するDo/Doコンバー
タ4 (へ)DC/DCコンバータ2及びDC−CT13の接
続回路から分岐して接続されたDC−CT12(ト) 
 Do−CT12に直列に接続され直流を一方向に導通
するブロッキングダイオード8 例 ブロッキングダイオード8と並列に接続されたコン
タクタ9 (1月 コンタクタ9及び)゛ロッキングダイオード8
の並列回路に直列に接続され直流電力を:a屈する蓄電
池3 ■!  DC−OT 12.13の計測itを加算し、
最大電力を供給するようにDO/Doコンバータ2を制
御する最大電力制御回路10 ←0 最大電力制御回路lOからの放電指令によってコ
ンタクタ9に開閉指令を出力する放電制御回路11 即ち、第1図においてPVセル1よシ発生した電力はブ
ロッキングダイオード7、DC!/Doコンバータ2を
通じて分岐される。一方の分岐回路はDo/Doコンバ
ータ4を通じて負荷56供給され)他方の分岐回路はブ
ロッキングダイオード8を通じて蓄電池3へ供給される
。コンタクタ9は蓄電池3の電力が必要になった時にブ
ロッキングダイオード8をバイパスして蓄電池3の電力
をDO/I℃コ/バータ4へ導くためのものである。こ
こでD O/D Oコンバータ2は最大電力制御回路1
0によシ制御され、コンタクタ9は放電制御回路11に
より制御される。
(a) PV cell 1 that converts sunlight into energy (b) PV cell 10 output/output circuit Eight blocking diodes are connected to conduct DC current in one direction (c)
Do/DC converter 24 that is connected in series to the blocking diode 7 and performs DC-DC conversion DC-CT 13 (e) that is connected in series to the output DC circuits of the DC/DC converter 2 and measures the DC current Do/Do converter 4 connected in series to perform DC-DC conversion (g) DC-CT 12 connected branching from the connection circuit of DC/DC converter 2 and DC-CT 13
Blocking diode 8 connected in series to Do-CT12 and conducting DC in one direction Example Contactor 9 connected in parallel with blocking diode 8 (January Contactor 9 and) Locking diode 8
A storage battery 3 that is connected in series to a parallel circuit and receives DC power 3 ■! Add the measurement it of DC-OT 12.13,
A maximum power control circuit 10 that controls the DO/Do converter 2 to supply maximum power ←0 A discharge control circuit 11 that outputs an opening/closing command to the contactor 9 in response to a discharge command from the maximum power control circuit IO. That is, in FIG. The power generated by PV cell 1 is transferred to blocking diode 7, DC! /Do converter 2. One branch circuit is supplied with a load 56 through a Do/Do converter 4, and the other branch circuit is supplied with a storage battery 3 through a blocking diode 8. The contactor 9 is for bypassing the blocking diode 8 and guiding the power of the storage battery 3 to the DO/I°C converter 4 when the power of the storage battery 3 is required. Here, the DO/DO converter 2 is the maximum power control circuit 1.
0, and the contactor 9 is controlled by the discharge control circuit 11.

第2図及び第3図を参照しながら第1図の回路動作を更
に詳細に説明する。最大電力制御回路10はPvセル1
の電力を最大に利用するためのものでPVセル1の出力
電流と電圧の積が最大となる点を探し出して制御すると
いうものである。
The operation of the circuit shown in FIG. 1 will be explained in more detail with reference to FIGS. 2 and 3. Maximum power control circuit 10 is Pv cell 1
This is to maximize the use of the electric power of the PV cell 1, and controls the point where the product of the output current and voltage of the PV cell 1 becomes maximum.

第2図はPVセル1の出力特性を示すもので、日照量Q
によシ出力電圧・電流特性が変わることを示している。
Figure 2 shows the output characteristics of PV cell 1, and shows the amount of sunlight Q
This shows that the output voltage and current characteristics change depending on the output voltage and current characteristics.

−例として曲1lX−Yにおいて最大電力を示す点は点
P1であシ、日照量に応じて曲線Pの上を啓動する。最
大電力制御回路10は曲線X−Y上で点Plt−探し出
す回路でラシ、点P1に相当する電圧vIで制御するも
のでろる。電流は分岐回路に挿入されたDOOT 12
,13の和を用い、電圧はDC/DCコンバータ2の出
力電圧を用いる。
- For example, in the song 11X-Y, the point showing the maximum power is point P1, and it moves on the curve P depending on the amount of sunlight. The maximum power control circuit 10 is a circuit that searches for a point Plt- on the curve X-Y, and is controlled by a voltage vI corresponding to the point P1. The current is inserted into the branch circuit DOOT 12
, 13, and the output voltage of the DC/DC converter 2 is used as the voltage.

第3図は最大電力制御回路10の動作特性の一例ヲ示ス
もので、DC/DCコンバータ2の出力電圧と出力電力
の関係を示すものである。第3図において、点AはPv
セル1の開放電圧を示す。線分A−Bは、PVセルlの
出力電力が小ぜいため、DC/DCコンバータ出力が高
くならない領域でらる。線分B−0はPVセル1の出力
電圧は十分でらるがPvセル1からの電力を全て負荷5
に供給スルタめ、DC/DCコンバータ2の出力電圧を
一定値(第3図で点F)に制御し、蓄電池3への充電を
行わない領域である。即ち、蓄電池3の浮動充’mz圧
と同じ値でらる。
FIG. 3 shows an example of the operating characteristics of the maximum power control circuit 10, and shows the relationship between the output voltage and output power of the DC/DC converter 2. In Figure 3, point A is Pv
The open circuit voltage of cell 1 is shown. The line segment A-B is located in a region where the output power of the PV cell 1 is small, so the output of the DC/DC converter does not become high. Line segment B-0 shows that the output voltage of PV cell 1 is sufficient, but all the power from PV cell 1 is transferred to load 5.
This is a region in which the output voltage of the DC/DC converter 2 is controlled to a constant value (point F in FIG. 3) and the storage battery 3 is not charged. That is, the value is the same as the floating charging mz pressure of the storage battery 3.

線分0−DはPVセル1よpの電力が十分な値でろり、
負荷5の必要とする電力以上の供給能力をもつため、余
刹する電力を蓄′成池5に蓄えるべく、DC/DCコン
バータ2の出力電圧を高くするa斌テ11りる。DC/
DCコンバータ2の最高出力電圧(第3図点G)は蓄電
池3によシ決められる均等光を電圧に相当する。
The line segment 0-D indicates that the power of PV cell 1 and p is a sufficient value,
Since the power supply capacity is greater than that required by the load 5, the output voltage of the DC/DC converter 2 is increased in order to store the excess power in the storage battery 5. DC/
The maximum output voltage of the DC converter 2 (point G in Figure 3) corresponds to the voltage of the uniform light determined by the storage battery 3.

以上説明したように第3図で三角形ODHの範囲が蓄電
池3の充電領域でらる。
As explained above, the range of the triangle ODH in FIG. 3 is the charging area of the storage battery 3.

第3図で点工はインバータ出力容量に相当し、点JはP
vセルlの最大出力電力である。MWはDC!−DCコ
ンバータ4の動作入力電圧範囲でらる。
In Figure 3, the point corresponds to the inverter output capacity, and point J is P
v is the maximum output power of cell l. MW is DC! - within the operating input voltage range of the DC converter 4.

次に放電制御回路11について説明する。Next, the discharge control circuit 11 will be explained.

放電制御回路11は例えば予め負荷5パターンを記憶し
ているパターン発生回路11Aの出力と、最大電力制御
回路10のその時刻における電力を比較し、ある時刻に
おける負荷5の必要とする電力よシPvセルlが発生す
る成力の方がちいざいことを判定し、コンタクタ制御回
路110を介してコンタクタ9の投入指令を発するもの
でらる。ろる時刻における負荷5の必要とする電力がP
vセル10発生しうる電力よシも小さい時は放電制御回
路11はコンタクタ9を開放する一方で、最大電力制御
回路10が電圧を高く(すなわち第3図で線分り−E上
を制御)する。パターン発生回路11Aの制御信号によ
)第3図の点Iは縦軸上を上下忙移動することは勿論で
るる。最大電力制御回路10と放電制御回路11は以上
の説明を実施するための回路を包含している。
The discharge control circuit 11 compares, for example, the output of the pattern generation circuit 11A that stores five load patterns in advance with the power of the maximum power control circuit 10 at that time, and determines the power required by the load 5 at a certain time Pv. It is determined that the force generated by the cell 1 is greater, and a command to close the contactor 9 is issued via the contactor control circuit 110. The power required by the load 5 at the time is P
When the power that can be generated by the V-cell 10 is also small, the discharge control circuit 11 opens the contactor 9, while the maximum power control circuit 10 increases the voltage (that is, controls on the line -E in FIG. 3). . Of course, the point I in FIG. 3 can be moved up and down on the vertical axis (by the control signal of the pattern generation circuit 11A). The maximum power control circuit 10 and the discharge control circuit 11 include circuits for carrying out the above explanation.

第2図でブロッキングダイオード8はDo/D。In FIG. 2, the blocking diode 8 is Do/D.

コンバータ2の出力電圧が第3図の線分A−Bの領域に
お込て蓄電池3から電力が流入するのを防止するだめの
ものでおる。ブロッキングダイオード7はコンタクタ9
が閉の時に蓄電池3の電力がDo/Doコンバータ2を
通じてPVセル1へ流入するのを防止するためのもので
ろる。
This is to prevent the output voltage of the converter 2 from falling within the range of the line segment A-B in FIG. Blocking diode 7 is contactor 9
This is to prevent the power of the storage battery 3 from flowing into the PV cell 1 through the Do/Do converter 2 when the switch is closed.

岡、DO/DoコンバータをDo/AOコンバータとす
る太陽光発電制御装置、又はソーラーセルとD C!/
D Oコンバータの間に直列に接続され、DC/Doコ
ンバータの電力がソーラーセルへ逆流スルことを防止ス
るブロッキングダイオードを使用したことを特徴とする
太陽光発電制御装置とすることが出来る事は言う迄もな
いことでろる。これらの構成を用いることで、高効率な
システムを提供できると同時に負荷の状態に応じた電力
供給/ステムを構成することができる。
Oka, a solar power generation control device that uses a DO/Do converter as a Do/AO converter, or a solar cell and DC! /
A solar power generation control device characterized by using a blocking diode connected in series between the DO converter and preventing the power of the DC/Do converter from flowing back to the solar cell It goes without saying. By using these configurations, it is possible to provide a highly efficient system and at the same time configure a power supply/system depending on the load state.

〔発明の効果〕〔Effect of the invention〕

以上説明したよりに本発明によれは蓄電池等の電力エネ
ルギー蓄積手段を備えた太陽先発=、1装置におりて、
高効率な負荷パターン制御を実現することができる。特
に負荷パターン制御を必要とする負荷としてはB猥用ポ
ンプ、動植物の人工飼育のための光・温度制御等の電力
消費設備がろシ、一方で、電力系統に送電してピークカ
ット用としてパターン制御することができる。
As explained above, according to the present invention, a single solar generator equipped with electric energy storage means such as a storage battery,
Highly efficient load pattern control can be achieved. In particular, loads that require load pattern control include power consumption equipment such as B pumps and light/temperature control for artificial rearing of animals and plants. can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す太陽光発電制御装置の
構成図、第2図及び第3図は第1図を説明するためO説
F!A図でろる。 1ハ・PVセル 2ハ・DO/Doコンバータ 3ハ・蓄電池 4ハ・DO/1)0コンバータ5 ハ・負荷 7.8ハ・ブロッキングダイオード9 ハ・コンタクタ 10ハ・最大電力制御回路 11ハ・放電制御回路 12.13ハ・DC−OT 代理人 弁理士 則 近 憲 佑 同  三俣弘文 10最犬電力制イ即回路 7゛。 イ 2τ ト°。 第1図 雪圧 第2図
Fig. 1 is a block diagram of a solar power generation control device showing one embodiment of the present invention, and Figs. 2 and 3 are for explaining Fig. 1. It's A diagram. 1H・PV cell 2H・DO/Do converter 3H・Storage battery 4H・DO/1)0 converter 5H・Load 7.8H・Blocking diode 9H・Contactor 10H・Maximum power control circuit 11H・Discharge control circuit 12.13 DC-OT Agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata 10 Most dog power control immediate circuit 7゛. I2τ To°. Figure 1 Snow pressure Figure 2

Claims (1)

【特許請求の範囲】 次の各構成要素からなる、太陽光発電制御装置。 (イ)太陽光を電気量にエネルギー変換するソーラーセ
ル (ロ)このソーラーセルの出力回路に接続されて直流電
流を一方向に導通する第1の逆流阻止装置 (ハ)この第1の逆流阻止装置に直列に接続され直流−
直流変換する第1の直流変換装置 (ニ)この第1の直流変換装置の出力直流回路に直列に
接続され直流電流を計測する第1の直流計測装置 (ホ)この第1の直流計測装置に直列に接続されて直流
−直流変換する第2の直流変換装置 (ヘ)前記第1の直流変換装置及び前記第1の直流計測
装置の接続回路から分岐して接続された第2の直流計測
装置 (ト)この第2の直流計測装置に直列に接続され直流電
流を一方向に導通する第2の逆流阻止装置 (チ)この第2の逆流阻止装置と並列に接続された開閉
装置 (リ)この開閉装置及び前記第2の逆流阻止装置の並列
回路に直列に接続され直流電力を蓄電する蓄電池 (ヌ)前記第1及び第2の直流計測装置の計測値を加算
し、最大電力を供給するように前記第1の直流変換装置
を制御する最大電力制御回路 (ル)この最大電力制御回路からの放電指令によつて前
記開閉装置に開閉指令を出力する放電制御回路
[Claims] A solar power generation control device comprising the following components. (a) A solar cell that converts sunlight into electricity (b) A first backflow prevention device that is connected to the output circuit of this solar cell and conducts direct current in one direction (c) This first backflow prevention device Connected in series to the device and DC-
A first DC converter that converts DC current (D) A first DC measuring device that is connected in series to the output DC circuit of this first DC converter and measures DC current (E) A first DC measuring device that measures DC current. a second DC converter that is connected in series and performs DC-DC conversion; (f) a second DC measurement device that is branched from and connected to the connection circuit of the first DC converter and the first DC measurement device; (G) A second backflow blocking device that is connected in series to this second DC measuring device and conducts DC current in one direction (H) A switchgear that is connected in parallel with this second backflow blocking device (I) A storage battery (N) that is connected in series to the parallel circuit of the switchgear and the second backflow prevention device and stores DC power.The measured values of the first and second DC measurement devices are added together and the maximum power is supplied. a maximum power control circuit (1) for controlling the first DC converter; a discharge control circuit for outputting a switching command to the switching device according to a discharge command from the maximum power control circuit
JP17569185A 1985-08-12 1985-08-12 Photovoltaic power generation control device Expired - Lifetime JPH0625944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17569185A JPH0625944B2 (en) 1985-08-12 1985-08-12 Photovoltaic power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17569185A JPH0625944B2 (en) 1985-08-12 1985-08-12 Photovoltaic power generation control device

Publications (2)

Publication Number Publication Date
JPS6237717A true JPS6237717A (en) 1987-02-18
JPH0625944B2 JPH0625944B2 (en) 1994-04-06

Family

ID=16000553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17569185A Expired - Lifetime JPH0625944B2 (en) 1985-08-12 1985-08-12 Photovoltaic power generation control device

Country Status (1)

Country Link
JP (1) JPH0625944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477430A (en) * 1987-09-16 1989-03-23 Mitsui Bussan Charge-and-discharge controlling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477430A (en) * 1987-09-16 1989-03-23 Mitsui Bussan Charge-and-discharge controlling device

Also Published As

Publication number Publication date
JPH0625944B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
KR101277185B1 (en) Dc microgrid system and ac/dc hybrid microgrid system using it
US20060099463A1 (en) Direct current/direct current converter for a fuel cell system
CN116349106A (en) Energy storage system, control method of energy storage system and photovoltaic power generation system
JP2015195674A (en) Power storage battery assembly control system
JP2013161139A (en) Power supply system and power supply device
WO2023226095A1 (en) Method for controlling current during battery charging and discharging in off-grid mode of hybrid energy storage inverter
Subashini et al. A novel design of charge controller for a standalone solar photovoltaic system
Morais et al. Interlink Converters in DC nanogrids and its effect in power sharing using distributed control
CN104767469A (en) Photovoltaic lighting control system
JP2004088900A (en) Power supply system
CN115085245A (en) Photovoltaic energy storage system and applicable control method thereof
CN114123449A (en) Independent photovoltaic power generation energy storage system and energy management method
CN110289632A (en) A kind of new energy power grid control method
CN218183067U (en) Solar power supply device with MPPT and UPS functions
CN108121393A (en) A kind of accumulator charging maximum power point-tracing control method
CN115622134B (en) MPPT scheduling control method of photovoltaic power generation system
CN116247711A (en) Energy storage system based on load priority control
CN114928102B (en) Distributed energy storage photovoltaic intelligent power generation system
CN105552963A (en) Photovoltaic power generation grid-connected system based on lithium ion battery energy storage
JPS60256824A (en) Controller of solar power generating system
JPS6237717A (en) Controller for photovoltaic power generation
CN113098041A (en) Energy storage system, energy storage container and light storage system
CN102035438A (en) Energy storage solar module and intelligent storage control method thereof
CN112311083A (en) Multi-redundancy distributed mobile power supply system
CN219611358U (en) Household photovoltaic energy storage hybrid grid-connected system