JPS60256824A - Controller of solar power generating system - Google Patents
Controller of solar power generating systemInfo
- Publication number
- JPS60256824A JPS60256824A JP59113752A JP11375284A JPS60256824A JP S60256824 A JPS60256824 A JP S60256824A JP 59113752 A JP59113752 A JP 59113752A JP 11375284 A JP11375284 A JP 11375284A JP S60256824 A JPS60256824 A JP S60256824A
- Authority
- JP
- Japan
- Prior art keywords
- power
- command
- storage battery
- grid
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electrical Variables (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は太陽電池の発生電力を電力系統(本明細書では
単に系統とも呼ぶ)に供給する太陽光発電システムに係
り、特に供給電力の安定化を図る制御装置に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a photovoltaic power generation system that supplies power generated by a solar cell to a power grid (herein also simply referred to as a grid), and particularly relates to a solar power generation system that supplies power generated by a solar cell to a power grid (herein also simply referred to as a grid), and particularly relates to a system for stabilizing the supplied power. The present invention relates to a control device for achieving
太陽電池から取り出し得る電力の最大値は日射変動に伴
なって変動する。一方、系統への電力供給は負荷パター
ンに合わせ、且つ、出来るだけ変動しないことが望まし
い。The maximum value of power that can be extracted from solar cells varies with changes in solar radiation. On the other hand, it is desirable that the power supply to the grid matches the load pattern and that it does not fluctuate as much as possible.
とのため、太陽電池の発生′這カのうち余分な電力を蓄
積し、発生電力が不足するときに不足分を補うべく蓄電
池が設けられる。しかし、設置スペースやコストの関係
上、蓄電池の設置個数もしくは容量をできるだけ少なく
しなければならない。For this reason, storage batteries are provided to store excess power from the power generated by solar cells and to make up for the shortage when the power generated is insufficient. However, due to installation space and cost considerations, the number or capacity of storage batteries must be minimized.
この場合、日射量の変動すなわち太陽電池の出力変動に
対して系統へ供給する電力をうまく調整しないと蓄電池
は過充電または過放電になシ、結局、系統への電力が安
定して行なえなくなる。In this case, unless the power supplied to the grid is properly adjusted in response to fluctuations in the amount of solar radiation, that is, fluctuations in the output of the solar cells, the storage battery will not be overcharged or overdischarged, and as a result, power to the grid will not be stably supplied.
一方、この蓄電池を太陽電池の余剰電力を蓄えるだけで
なく、夜間に余剰となる系統電力をも蓄えておき、昼間
に太陽電池の出方と併せて系統へ供給する太陽先発′亀
システムがある。On the other hand, there is a solar system that not only stores surplus power from solar cells, but also stores surplus power from the grid at night, and supplies it to the grid during the day along with the output of the solar cells. .
かかる発電システムにあっては、夜間充電する舎
場合の最終の蓄電池保有電力量を適切に定めないと、系
統への供給電力との関係でやはシ過充電またけ過放電を
確実に防ぎ得す、したがって、常時安定した電力供給が
でき雉がった。In such a power generation system, if the final amount of power stored in the storage battery is not properly determined when charging at night, overcharging and overdischarging cannot be reliably prevented in relation to the power supplied to the grid. Therefore, it was possible to have a stable power supply at all times.
本発明は上記事情を考慮してなさhだもので、例えば、
日射変動を幾つかのモードパターンに分類し、各モード
に応じて系統へ供給する電力の最適な許容変動範囲およ
び夜間充電における蓄電池の最終保有電力量を予め計算
して系統に供給する上限電力指令、下限電力指令および
最終保有電力量指令を記憶させ、上記モードを選定する
というような単純な操作でこれらの指令を読み出し、上
限電力指令および下限電力指令に基づいて蓄電池の充・
放電制御を行なうと共に、最終保有電力量指令に基づい
て蓄電池の夜間充電制御を行なうことによって、系統へ
安定的に電力を供給し得る太陽光発電システムの制御装
置を提案するものであるO
〔発明の実施例〕
7.1
第1図は本発明の一実施例の構成を示すブロン (り図
で、太陽′電池(1)および蓄電池(2)間には、この
蓄電池(2)の充・放電々流を制御する充・放電制御装
置(8)が設けられ、また、太陽電池(1)および電力
系統母線(以下単に系統と言う)(6)間に太陽電池(
1)および蓄電池(2)の直流出力を交流に変換して系
統(6)に供給するインバータ(5)が設けられ、さら
に蓄電池(2)および系統(6)間には夜間の余剰電力
を蓄電池(2)に蓄える夜間充電制御装置(1優が設け
られている。The present invention was made in consideration of the above circumstances, for example,
An upper limit power command that classifies solar radiation fluctuations into several mode patterns and calculates in advance the optimal permissible fluctuation range of power supplied to the grid according to each mode and the final amount of power held by the storage battery during nighttime charging, and then supplies the power to the grid. , store the lower limit power command and the final power reserve command, read out these commands with a simple operation such as selecting the above mode, and charge and charge the storage battery based on the upper limit power command and the lower limit power command.
This invention proposes a control device for a solar power generation system that can stably supply power to the grid by controlling discharge and controlling nighttime charging of storage batteries based on the final power consumption command.O [Invention] [Embodiment] 7.1 Figure 1 is a diagram showing the configuration of an embodiment of the present invention, in which a solar cell (1) and a storage battery (2) are connected to each other for charging and charging the storage battery (2). A charge/discharge control device (8) for controlling the discharge current is provided, and a solar cell (1) is provided between the solar cell (1) and the power system bus (hereinafter simply referred to as the system) (6).
An inverter (5) is provided that converts the DC output of the storage battery (2) and the storage battery (2) into alternating current and supplies it to the grid (6). (2) A nighttime charging control device (1 type) is provided to store the battery.
ここで、充・放電制御装置(8)は放電チョッパ(4a
)、充電チョッパ(4b)でなり、系統(6)への供給
電力を検出する電力検出器(10)と、偏差増幅器(1
2a)。Here, the charge/discharge control device (8) is a discharge chopper (4a
), a charging chopper (4b), a power detector (10) that detects the power supplied to the grid (6), and a deviation amplifier (1
2a).
(12b)およびリミッタ(13a)、 (13b)で
なり、電力検出器α0)の出力信号および後述する指令
装置(21)の上限電力指令AH1下限電力指令人、に
基づいて放電チョッパ(4a)、充電チョッパ(4b)
を制御する電力制限制御回路q刀とで充の放電制御部を
構成しているO
また、インバータ(5ンは、太陽電池(1)の端子電圧
を検出する電圧検出器(γ)と、太陽電池(1)の最適
動作電圧を設定する電圧設定器(8)と、これら両者の
出力信号に基づいてインバータ(5)の点弧位相を調整
する電圧制御回路(9)とともに電力変換部を構成して
いる。(12b) and limiters (13a) and (13b), and based on the output signal of the power detector α0) and the upper limit power command AH1 and lower limit power command of the command device (21), which will be described later, a discharge chopper (4a), Charging chopper (4b)
In addition, the inverter (5) is connected to a voltage detector (γ) that detects the terminal voltage of the solar cell (1), and a power limit control circuit that controls the solar cell (1). A power converter is configured with a voltage setting device (8) that sets the optimum operating voltage of the battery (1), and a voltage control circuit (9) that adjusts the firing phase of the inverter (5) based on the output signals of both of them. are doing.
さらにまた、夜間充電制御装置(141は、蓄電池(2
)の充・放電々力を検出する電力検出器部)と、この電
力検出器(15)の出力信号に基づいて蓄電池(2)の
保有電力量を測定する電力量測定回路(社)と、設定器
(1す、電力制御回路(ホ)および動作指令回路(2)
でなり′電力検出器(至))、電力量測定回路(社)、
指令装置 (211の最終保有電力量指令り。を入力し
て夜間充電制御装置(1→を制御する夜間充電制御回路
α6)とともに夜間充電制御部を構成している。Furthermore, the nighttime charging control device (141 is a storage battery (2
); a power measuring circuit (company) that measures the amount of power held by the storage battery (2) based on the output signal of the power detector (15); Setting device (1), power control circuit (e) and operation command circuit (2)
Denari' power detector (to)), power measurement circuit (sha),
A command device (nighttime charging control circuit α6 that inputs the final power amount command 211 and controls the nighttime charging control device (1→)) constitutes a nighttime charging control section.
一方、指令装置(21)は、第3図に示すように、日射
変動のモードを選択するキーボード等のモード記憶する
ROM等の記憶回路−)と、この記憶回路−)から読み
出された信号の出力ボート例と、これらの信号をアナロ
グ信号に変換して出力するディジタル・アナログ変換器
(以下A / p変換器と言う)に)とで構成されてい
る。On the other hand, the command device (21), as shown in FIG. It consists of an output port and a digital-to-analog converter (hereinafter referred to as an A/P converter) that converts these signals into analog signals and outputs them.
上記の如く構成された本実施例の作用を1日の日射変動
および供給電力量等を示した第2図、日射変動の幾つか
のモードを示した第4図およびこれらのモードに対応し
て予め計算された指令の図表である第5図をも参照して
以下に説明する。The operation of this embodiment configured as described above is shown in Fig. 2, which shows daily solar radiation fluctuations, amount of supplied power, etc., and Fig. 4, which shows several modes of solar radiation fluctuations, and the correspondence to these modes. The following description also refers to FIG. 5, which is a diagram of precalculated commands.
先ず、太陽電力は日射量や動作電圧で大幅に変化するが
、最大出力が得られる最適動作点電圧は日射量の如何に
拘わらず殆んど変化しない。電圧設定器(8)はこの最
適動作点電圧を設定するもので、電圧制御回路(9)は
太陽電池(1)の出力電圧がこの最適動作′B圧になる
ようにインバータ(6)の点弧位相を調整して系統(6
)への供給電力を制御する。しかして、太陽電池(1)
は最適動作点近傍で運転される。First, solar power varies significantly depending on the amount of solar radiation and operating voltage, but the optimal operating point voltage at which maximum output is obtained hardly changes regardless of the amount of solar radiation. The voltage setting device (8) sets this optimum operating point voltage, and the voltage control circuit (9) sets the point of the inverter (6) so that the output voltage of the solar cell (1) becomes this optimum operating point voltage. Adjust the arc phase to create a system (6
). However, solar cells (1)
is operated near the optimum operating point.
今、インバータ(5)の出力が指令装置(21)より出
力される下限電力指令ALよシ小さくなると、その偏差
が零になるように電力制御回路01)の偏差増幅器(1
2a)およびリミッタ(13a)の働きにより、充・放
電制御装置(8)の放電チョッパ(4a)が作動して蓄
電池(2)から偏差分の電力供給が行なわれ、系統への
供給電力は下限電力指令ALの値に保持される。Now, when the output of the inverter (5) becomes smaller than the lower limit power command AL output from the command device (21), the deviation amplifier (1) of the power control circuit 01) is set so that the deviation becomes zero.
2a) and the limiter (13a), the discharge chopper (4a) of the charge/discharge control device (8) operates to supply power for the deviation from the storage battery (2), and the power supplied to the grid reaches the lower limit. It is held at the value of power command AL.
また、これとは反対にインバータ(5)の出力が指令装
置(21)より出力される上限電力指令AHより太きく
なると、今度は偏差増幅器(12に+)およびリミッタ
(1,3b)の働きによシ、充・放電制御装置(8)の
充電チョッパ(4b)が作動して蓄電池(2)に偏差分
の′電力が充電され、系統への供給電力は上限電力指令
〜の値に保持される。On the other hand, when the output of the inverter (5) becomes larger than the upper limit power command AH output from the command device (21), the deviation amplifier (+ to 12) and limiter (1, 3b) work again. Then, the charging chopper (4b) of the charging/discharging control device (8) operates to charge the storage battery (2) with the power corresponding to the deviation, and the power supplied to the grid is maintained at the upper limit power command value. be done.
第2図(a)〜(c)はこの関係を示したもので、−日
の日射変動に伴なって太陽電池(1)の発生電力が同図
(a)の如く変化するものとして、ここに電力供給の許
容変動範囲に対応する下限電力指令ALおよび上限電力
指令AHが出力されると、系統への供給電力は同図(b
)に示す如く、日中において常に最低電力が保証される
と共に、最大電力も一定値に抑えられ、これによって電
力の安定供給が行なわれる。Figures 2 (a) to (c) show this relationship, assuming that the power generated by the solar cell (1) changes as shown in Figure 2 (a) as the solar radiation changes on -day. When the lower limit power command AL and the upper limit power command AH corresponding to the permissible variation range of power supply are output in the same figure (b
), the minimum power is always guaranteed during the day, and the maximum power is also held to a constant value, thereby ensuring a stable supply of power.
次に、ここでは夜間充電制御装置(14)を介して、夜
間における系統の余剰′電力を蓄電池(2)に蓄えてい
る。 = 、’!、、。Next, here, surplus power of the grid during the night is stored in the storage battery (2) via the nighttime charging control device (14). =,'! ,,.
この場合、蓄電池(2)の充電々力および放電々力は電
力検出器■)によって検出され、この検出値と充電々力
を設定する設定器(17)の出力が電力制御回路(ホ)
に加えられ、この電力制御回路(ト)が偏差分を零にす
るように夜間充電制御装置o→を制御するので定電力充
電が行なわれている。In this case, the charging power and discharging power of the storage battery (2) are detected by the power detector (■), and the detected value and the output of the setting device (17) that sets the charging power are sent to the power control circuit (E).
, and this power control circuit (g) controls the nighttime charging control device o→ so as to reduce the deviation to zero, so that constant power charging is performed.
一方、蓄電池(2)の保有電力量は、電力検出器(ロ)
■
の出力を積分する電力量測定回れよって、この保有電力
量信号が動作指令回路α印に取込まれる。On the other hand, the amount of power held by the storage battery (2) is determined by the power detector (b).
(2) As a result of the electric energy measurement circuit integrating the output of (2), this retained electric energy signal is taken into the operation command circuit α mark.
動作指令回路09)ではこの信号と、指令装置it’
+211から出力される最終保有′電力量指令り。と全
比較し、両者が等しくなったとき電力指令回路(四に対
して夜間充電を停止する旨の信号を与えて充電を停止さ
せる。The operation command circuit 09) uses this signal and the command device it'
The final power amount command output from +211. When the two become equal, a signal is given to the power command circuit (4) to stop charging at night.
第2図(d)は蓄′電池(2)の保有電力量の変化状態
を示したもので、日中1、太陽電池による電力供給を開
始する時点では最終保有電力量指令り。に対応する値に
充電されている。FIG. 2(d) shows the state of change in the amount of power held by the storage battery (2).During the daytime 1, at the time when power supply by the solar cell is started, the final amount of power held is commanded. is charged to the value corresponding to .
かくして、夜間の余剰電力の活用がなされると共に、不
確定要素の多い昼間だけの充・放電を補完する形で夜間
に所望のレベルまで充電されることから運用上の自由度
が増大する。In this way, the surplus power at night can be utilized, and the degree of operational freedom is increased because the battery is charged to a desired level at night to supplement charging and discharging only during the daytime, which is subject to many uncertainties.
次に、指令装置(21)の記憶回路例には予め計算され
た最適レベルの下限電力指令A1、上限電力指令へおよ
び最終保有電力量指令D0が記憶さねでいる。Next, the storage circuit example of the command device (21) stores the pre-calculated optimal level lower limit power command A1, upper limit power command, and final possessed power amount command D0.
一般に太陽′電池の出力を決定する日射量は、日れば蓄
電池が過放電または過充電になる虞れがある。そこで、
第5図に示した図表の如く、日射モードA、B、C−a
・に応じてそれぞれ上限電力指令A1(、下限電力指令
ALおよび最終保有電力量指令り。を予め計算し、その
値を記憶回路隣)に記憶せしめ、例えば、天気予報等に
よって適切なモード選択スイッチ(財)を操作すると、
記憶回路128)より最適データが読み出され、出カポ
−11241よりD / A変換されて、電力制限制御
回路01)および夜間充電制御回路(16)に加えられ
る。In general, the amount of solar radiation that determines the output of a solar cell may cause the storage battery to over-discharge or over-charge if the solar cell is exposed to sunlight. Therefore,
As shown in the chart shown in Figure 5, solar radiation modes A, B, C-a
・The upper limit power command A1 (the lower limit power command AL and the final power consumption command) are calculated in advance and stored in the storage circuit next to each other, and the appropriate mode selection switch is selected depending on the weather forecast, etc. When you manipulate (goods),
The optimum data is read out from the storage circuit 128), D/A converted by the output capacitor 11241, and applied to the power limit control circuit 01) and the night charging control circuit (16).
なお、上記実施例では1日の日射モデルに基づくモード
(i−記憶せしめたが、必要に応じて各モードの修正、
変更モード(例えばABモード)の指令データをも記憶
させるならば一段と安定した電力供給が可能になる。In the above embodiment, the mode (i-memorized) based on the daily solar radiation model is used, but each mode may be modified or modified as necessary.
If command data for change modes (for example, AB mode) are also stored, more stable power supply becomes possible.
以上の説明によって明らかな如く、本発明によれば、例
えば、日射変動のモードを指定することによって系統へ
供給する電力の許容範囲および蓄電池の最終保有電力量
の設定が完了すると共に、燈適な上限電力指令、下限心
力指令および最終保有電力掃指令が読み出される指令装
置と、この指令装置の出力に基づいて蓄電池の充・放電
制御および夜間充電制御が行なわれるので、蓄電池設置
容量を比較的低く抑えた場合でも系統へ安定的に電力を
供給し得るという効果が得られている。As is clear from the above description, according to the present invention, for example, by specifying the solar radiation fluctuation mode, the allowable range of power supplied to the grid and the final amount of power stored in the storage battery are completed, and the lighting There is a command device that reads out the upper limit power command, lower limit mental force command, and final power sweep command, and charge/discharge control of the storage battery and nighttime charging control are performed based on the output of this command device, so the installed capacity of the storage battery can be kept relatively low. Even when the power is reduced, the effect is that power can be stably supplied to the grid.
また、本発明によればオペレータが単にモード選択する
だけで済むことから自動運転や遠隔操作も極めて容易に
な乙。Furthermore, according to the present invention, automatic operation and remote control are extremely easy because the operator only has to select a mode.
第1図は本発明の一実施例の構成を示すブロック図、第
2図(a)〜(d)は同実施例の作用を説明するために
電力、電流電力量の髪化状態を示すタイムチャート、第
3図は同実施例の要部の詳細な構成を示すブロック図、
第4図は同実施例の作用を説明するための日射モード図
、第5図は同実施例の主要な要素の記憶データを示す図
表である。
(1)・・太陽電池 (2)・・蓄電池(8)・・充・
放電制御装置
(6)・・インバータ (6)・・電力系統母線(10
) l■)・拳電力検出器
(1η・中電力制限制御回路
(14)・・夜間充電制御装置
(16)・・夜間充電制御回路
(社)・・電力量測定回路
(23)・・指令装置
代理人大岩増雄
5.1
第1図
第2図
第3図
2.5
第4図
箇5図
′手続補正書(自発)
口召和 5県 10月26日
2、発明の名称
太陽光発電システムの制御装置
3、補正をする者
代表者 片 山 仁 八 部(ほか1名)5、補正の対
象
明細書の特許請求の範囲の欄。
6、補正の内容
明細書の特許請求の範囲の記載を別紙の通り補正する。
7、添付書類の目録
補正後の特許請求の範囲を記載した書面 1通以 上
補正後の特許請求の範囲を記載した書面(1)太陽電池
の発生電力を系統に供給すると共に所定の供給電力に対
する余剰電力を蓄電池に蓄え、不足電力をこの蓄電池よ
り補給し、且つ、夜間に系統より電力を得てこの蓄電池
に蓄える太陽光発電システムにおいて工に統に供給する
上限電力指令、下限電力指令および前記蓄電池の最終保
有電力量指令を予め記憶させた記憶装置から読み出す指
令装置と、この指令装置の上限電力指令および下限電力
指令に基づいて、系統へ供給される電力が許容変動範囲
を超るとき前記太陽電池の出力の一部を前記蓄電池に蓄
え、許容変動範囲より下がるとき前記蓄電池の電力を前
記電力変換部に加える充、放電制御部と、前記蓄電池の
保有電力量を演算する保有電力演算手段を含み、この保
有電力信号および前記指令装置の最終保有電力量指令に
基づき前記蓄電池の保有電力量が最終保有電力量に到達
するまで系統電力を夜間にこの蓄電池に蓄える夜間充電
制御部とを具備したことを特徴とする太陽光発電システ
ムの制御装置。
(3)前記指令装置は種々の日射パターンをモードに分
類し、それぞれ計算された値を記憶させた記憶装置を有
し、日射パターンのモード選択によって上限電力指令、
下限電力指令および最終保有電力量指令が読み出される
ように構成したことを特徴とする特許請求の範囲第1項
記載の太陽光発電システムの制御装置。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIGS. 2(a) to 2(d) are time charts showing the state of electric power and electric current power in order to explain the operation of the embodiment. Chart, FIG. 3 is a block diagram showing the detailed configuration of the main parts of the same embodiment,
FIG. 4 is a solar radiation mode diagram for explaining the operation of the embodiment, and FIG. 5 is a chart showing stored data of the main elements of the embodiment. (1)...Solar battery (2)...Storage battery (8)...Charging...
Discharge control device (6)...Inverter (6)...Power system bus (10)
) l■)・Fist power detector (1η・Medium power limit control circuit (14)・・Night charging control device (16)・・Night charging control circuit (company)・・Electric power measurement circuit (23)・・Command Equipment agent Masuo Oiwa 5.1 Figure 1 Figure 2 Figure 3 Figure 2.5 Figure 4 Clause 5' Procedural amendment (voluntary) Kuchisawa 5 prefectures October 26th 2, Name of invention Solar power generation System control device 3. Representative of the person making the amendment: Hitoshi Katayama (and one other person) 5. Scope of claims of the specification to be amended. 6. Scope of claims of the specification to be amended. Amend the description as shown in the attached sheet. 7. Document stating the scope of claims after the amendment to the list of attached documents 1 or more Documents stating the scope of claims after amendment In a solar power generation system, power is supplied to the power supply system, surplus power to the specified power supply is stored in a storage battery, and insufficient power is supplied from the storage battery, and power is obtained from the grid at night and stored in the storage battery. A command device that reads an upper limit power command, a lower limit power command, and a final power amount command of the storage battery from a storage device that is stored in advance, and electric power that is supplied to the grid based on the upper limit power command and lower limit power command of this command device. a charging/discharging control unit that stores a part of the output of the solar cell in the storage battery when the output exceeds a permissible fluctuation range, and applies the power of the storage battery to the power conversion unit when the output falls below the permissible fluctuation range; The system includes a retained power calculating means for calculating the amount of electric power, and uses the grid power to the storage battery at night until the retained electric power of the storage battery reaches the final retained electric power amount based on the retained electric power signal and the final retained electric power command of the command device. A control device for a photovoltaic power generation system, characterized in that it is equipped with a nighttime charging control unit that stores data in the solar cell. The upper limit power command can be set by selecting the solar radiation pattern mode.
2. The control device for a solar power generation system according to claim 1, wherein the control device is configured to read a lower limit power command and a final power amount command.
Claims (1)
の供給電力に対する余@電力を蓄電池に蓄え、不足電力
をこの蓄電池より補給し、且つ、夜間に系統より電力を
得てこの蓄電池に蓄える太陽光発電システムにおいて、
系統へ供給する電力の許容変動範囲および前記蓄電池の
最終保有電力量を設定することによって、系統に供給す
る上限電力指令、下限電力指令および前記蓄電池の最終
保有電力量指令を予め記憶させた記憶装置から読み出す
指令装置と、この指令装置の上限電力指令および下限電
力指令に基づいて、系統へ供給される電力が許容変動範
囲を超えるとき前記太陽電池の出力の一部を前記蓄電池
に蓄え、許容変動範囲よシ下がるとき前記蓄電池の電力
を前記電力変換部に加える充、放電制御部と、前記蓄電
池の保有電力量を演算する保有電力演算手段を含み、こ
の保有電力信号および前記指令装置の最終保有電力量指
令に基づき前記蓄電池の保有電力量が最終保有電力量に
到達するまで系統電力を夜間にこの蓄電池に蓄える夜間
充電制御部とを具備したことを特徴とする太陽光発電シ
ステムの制御装置。 C2)前記指令装置は種々の日射パターンをモードに分
類し、それぞれ計算された値を記憶させた記憶装置を有
し、日射パターンのモード選択によって上限電力指令、
下限電力指令および最終保有電力量指令が読み出される
ように構成したことを特徴とする特許請求の範囲第1項
記載の太陽光発電システムの制御装置。(1) The power generated by the solar cells is supplied to the grid, and the excess power for the specified supply power is stored in a storage battery, the insufficient power is supplied from this storage battery, and the power is obtained from the grid at night and stored in this storage battery. In solar power generation systems,
A storage device that stores in advance an upper limit power command, a lower limit power command, and a final power amount command of the storage battery to be supplied to the grid by setting an allowable fluctuation range of power to be supplied to the grid and a final power amount of the storage battery. When the power supplied to the grid exceeds the allowable fluctuation range, a part of the output of the solar cell is stored in the storage battery based on the upper limit power command and lower limit power command of this command device. a charging/discharging control unit that applies the power of the storage battery to the power conversion unit when the storage battery falls out of range, and a retained power calculation means that calculates the amount of retained power of the storage battery, and includes a retained power signal and the final retained power of the command device. A control device for a solar power generation system, comprising: a night charging control unit that stores grid power in the storage battery at night until the amount of power held in the storage battery reaches the final amount of power held in the storage battery based on a power amount command. C2) The command device classifies various solar radiation patterns into modes and has a storage device that stores calculated values for each mode, and outputs an upper limit power command by selecting a solar radiation pattern mode.
2. The control device for a solar power generation system according to claim 1, wherein the control device is configured to read a lower limit power command and a final power amount command.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59113752A JPS60256824A (en) | 1984-06-01 | 1984-06-01 | Controller of solar power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59113752A JPS60256824A (en) | 1984-06-01 | 1984-06-01 | Controller of solar power generating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60256824A true JPS60256824A (en) | 1985-12-18 |
Family
ID=14620224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59113752A Pending JPS60256824A (en) | 1984-06-01 | 1984-06-01 | Controller of solar power generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60256824A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0374147A (en) * | 1989-08-16 | 1991-03-28 | Kyushu Electric Power Co Inc | Solar generator system |
JPH04200245A (en) * | 1990-11-29 | 1992-07-21 | Misawa Homes Co Ltd | Solar cell system |
JPH05328633A (en) * | 1992-05-22 | 1993-12-10 | Mitsubishi Electric Corp | Solar power generator |
JPH0638384A (en) * | 1992-02-25 | 1994-02-10 | Roehm Properties Bv | Energy control device |
JPH06113482A (en) * | 1992-09-28 | 1994-04-22 | Japan Storage Battery Co Ltd | Bidirectional dc power converting equipment |
JP2014087239A (en) * | 2012-10-26 | 2014-05-12 | Fuji Furukawa Engineering & Construction Co Ltd | Output stabilization control device for distributed power supply device |
WO2018066044A1 (en) * | 2016-10-03 | 2018-04-12 | 株式会社アイケイエス | Power control device and control method employed therein |
CN108475940A (en) * | 2015-12-31 | 2018-08-31 | 安辛可公司 | For managing the method and apparatus for substituting the power flow between energy source and storage device |
JP2019012578A (en) * | 2016-10-03 | 2019-01-24 | 株式会社アイケイエス | Power controller and method of controlling the same |
-
1984
- 1984-06-01 JP JP59113752A patent/JPS60256824A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0374147A (en) * | 1989-08-16 | 1991-03-28 | Kyushu Electric Power Co Inc | Solar generator system |
JPH04200245A (en) * | 1990-11-29 | 1992-07-21 | Misawa Homes Co Ltd | Solar cell system |
JPH0638384A (en) * | 1992-02-25 | 1994-02-10 | Roehm Properties Bv | Energy control device |
JPH05328633A (en) * | 1992-05-22 | 1993-12-10 | Mitsubishi Electric Corp | Solar power generator |
JPH06113482A (en) * | 1992-09-28 | 1994-04-22 | Japan Storage Battery Co Ltd | Bidirectional dc power converting equipment |
JP2014087239A (en) * | 2012-10-26 | 2014-05-12 | Fuji Furukawa Engineering & Construction Co Ltd | Output stabilization control device for distributed power supply device |
EP3398245A4 (en) * | 2015-12-31 | 2019-08-21 | EnSync, Inc. | Method and apparatus for managing power flow between an alternate energy source and a storage device |
CN108475940A (en) * | 2015-12-31 | 2018-08-31 | 安辛可公司 | For managing the method and apparatus for substituting the power flow between energy source and storage device |
WO2018066044A1 (en) * | 2016-10-03 | 2018-04-12 | 株式会社アイケイエス | Power control device and control method employed therein |
JP2019012578A (en) * | 2016-10-03 | 2019-01-24 | 株式会社アイケイエス | Power controller and method of controlling the same |
CN109791418A (en) * | 2016-10-03 | 2019-05-21 | 株式会社Iks | Power control unit and its control method |
JPWO2018066044A1 (en) * | 2016-10-03 | 2018-10-04 | 株式会社アイケイエス | Power control apparatus and control method thereof |
US11249502B2 (en) | 2016-10-03 | 2022-02-15 | Iks Co., Ltd. | Power control device and control method employed therein |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8901893B2 (en) | Electricity storage device and hybrid distributed power supply system | |
US7550952B2 (en) | Electric power control apparatus, power generation system and power grid system | |
US4636931A (en) | Photovoltaic power control system | |
JP3014487B2 (en) | Relay storage battery charger | |
JPH1169893A (en) | Hybrid power generation system | |
CN110176788B (en) | Power storage system and power storage device | |
JP5884414B2 (en) | Control system | |
US20130113436A1 (en) | Charge controlling method and discharge controlling method, charging apparatus controller and discharging apparatus controller, and charge controlling program and discharge controlling program | |
JP2015195674A (en) | Power storage battery assembly control system | |
JP2001327080A (en) | Power storage device and control method of distributed power supply system equipped therewith | |
JPS60256824A (en) | Controller of solar power generating system | |
JP5887841B2 (en) | Control system | |
JP2013099207A (en) | Control apparatus and control method | |
JPS6290984A (en) | Solar photovoltaic generation control system | |
JP6993300B2 (en) | Power storage system | |
JP2002171669A (en) | Power system stabilizer and its control method | |
JP2022072945A (en) | Storage battery system | |
JPH06121470A (en) | Power storage system | |
JP2921475B2 (en) | Satellite-mounted battery temperature control circuit | |
JPH03226233A (en) | Controller for power storing system | |
JP3656113B2 (en) | Solar power plant | |
JP7044500B2 (en) | Power supply system | |
JPH0261227B2 (en) | ||
JPS61163670A (en) | Wind-force and solar ray combined electric power plant | |
JP2003189502A (en) | Battery power storage and control method thereof |