JPS6237605B2 - - Google Patents

Info

Publication number
JPS6237605B2
JPS6237605B2 JP54092355A JP9235579A JPS6237605B2 JP S6237605 B2 JPS6237605 B2 JP S6237605B2 JP 54092355 A JP54092355 A JP 54092355A JP 9235579 A JP9235579 A JP 9235579A JP S6237605 B2 JPS6237605 B2 JP S6237605B2
Authority
JP
Japan
Prior art keywords
medium
csf
serum
glycoprotein
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54092355A
Other languages
Japanese (ja)
Other versions
JPS5618591A (en
Inventor
Fumimaro Takaku
Katsuhiro Ogasa
Morio Kuboyama
Nobuya Yanagiuchi
Muneo Yamada
Yoshiteru Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Nyugyo KK
Original Assignee
Morinaga Nyugyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Nyugyo KK filed Critical Morinaga Nyugyo KK
Priority to JP9235579A priority Critical patent/JPS5618591A/en
Priority to US06/169,107 priority patent/US4342828A/en
Priority to DE19803027105 priority patent/DE3027105A1/en
Priority to GB8023347A priority patent/GB2058081B/en
Priority to CA356,422A priority patent/CA1128881A/en
Priority to CH550580A priority patent/CH644520A5/en
Priority to FR8015923A priority patent/FR2461500A1/en
Priority to SE8005256A priority patent/SE451850B/en
Publication of JPS5618591A publication Critical patent/JPS5618591A/en
Publication of JPS6237605B2 publication Critical patent/JPS6237605B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は人顆粒球減少症の治療用医薬に係わ
り、更に詳細には人顆粒球系幹細胞(以下単に幹
細胞と略記する)に直接作用して該幹細胞の分化
増殖を促進する物質(colony stimulating
factor.以下CSFと略記する)を製造する方法に
関する。 人の顆粒球系細胞、即ち顆粒球、単球(マクロ
フアージに成熟していない細胞をいう)及びマク
ロフアージの造血発生学的機序において、人の生
体内のCSFが、これらの細胞の母細胞であると
ころの幹細胞に作用してその分裂増殖と分化とを
誘導するところから、CSFがこの機序の上で中
心的な役割を担つていることは、広く知られてい
た(Metcalf,D.;Experimental
Haematology,1巻、185〜201頁、1973年)。そ
してこのような生物学的活性を有するCSFは顆
粒球減少症治療用の医薬としての有用性が期待さ
れていた(高久史磨、医学のあゆみ、95巻、2
号、41〜50頁、1975年)。しかしながら生体内で
の顆粒球、単球及びマクロフアージの産生調節機
構が複雑であること、この機構内でのCSFの挙
動に関して未知の部分が残されていたこと及び医
薬として使用し得る品質を備えたCSFを大量に
製造することが困難であつたことから、その医薬
としての使用は未だ実用化されていない。 またCSFの診断試薬の用途としては、例えば
骨髄性白血病患者の骨髄細胞中のCSF反応細胞
数を計測することは患者の予後を診断するために
大きな意義を有しており(中尾、高久編;「血液
細胞の分化と増殖−基礎と臨床−」、29頁、科学
評論社、1975年)、その試薬(標品)としてCSF
を使用することは知られていた。しかしながら前
記医薬としての用途と同様診断に使用し得る品質
を備えたCSFを大量に製造することが困難であ
つたことから、その使用も未だ実用化されていな
い。 一方幹細胞に直接作用するCSFの製造法とし
ては、人末梢血の白血球細胞(Price,G.B.ら;
Biochemical Journal、148巻、209−217頁、1975
年)、人の胎盤細胞(Burges,A.W.ら;Blood、
49巻、4号、573〜583頁、1977年)又はCSF産
生腫瘍と呼ばれるある種の癌細胞(大沢仲昭ら;
日本血液学会雑誌、42巻、2号、237頁、1979
年)を培養する製造法が知られていた。この中で
医薬として使用する可能性のある製造は前二者で
あるが、これらの細胞を用いた従来の製造法は、
実験室的な方法であり、CSF産生量が少なく、
CSFを大量に製造できない。更にこれら従来法
によつてCSFを製造する場合、細胞を培養する
培地成分として血清が不可欠(血清を使用しなけ
ればCSFは産生されない)であり、通常、牛血
清又は牛胎児血清が使用されていた。しかしなが
ら医薬としての用途からは、培地中に加えられた
これらの血清中の異種蛋白質に由来する副作用を
回避するために、培養後、これらを除去するか又
は人血清を用いるかの対策が必要である。そして
培地中に産生されたCSFからこれらの蛋白質を
除去することは煩雑、困難であり、かつ人血清は
高価なので製造コストが高くなるという欠点があ
る。 以上のように従来CSFは、医薬及び診断用試
薬としての用途が知られていながら、大量にかつ
安価に副作用のない製品を製造する方法が知られ
ていなかつたのである。 本発明の目的は副作用のない人の顆粒球減少症
治療用の医薬として、又骨髄性白血病の診断用の
試薬として使用し得るCSFを大量に製造する方
法を提供するにある。 本発明により、人末梢血から分離した単球及び
マクロフアージを、人尿から分離した人顆粒球を
増殖する糖蛋白質を含む組織培養用培地中で培養
し、培養液中に有効成分を産生せしめ、有効成分
を回収することを特徴とする人顆粒球系幹細胞を
分化増殖する物質の製造法が提供される。 本発明は、本発明者らの一部が既に特許出願
(特願昭53−31999。以下先願と記載する)した発
明に係わる、人尿から分離した、人顆粒球を増殖
する糖蛋白質(以下単に糖蛋白質と言う)又は糖
蛋白質に含有する分画を培地成分として使用し、
幹細胞に直接作用するCSFを製造する方法であ
る。 先願発明の完成後本発明者らは、糖蛋白質につ
いて更に研究を行なつた。その結果、機序は明確
ではないが、生体内においてはこの糖蛋白質が生
体内のマクロフアージと何らかの関連を有し、
CSFが産生されることを見出した。 そこで本発明者らは糖蛋白質を含む培地を用
い、生体外でマクロフアージを培養してもCSF
を製造できるのではないかと考え、検討を行な
い、本発明を完成した。 次に本発明の方法について詳細に説明する。 (1) 単球及びマクロフアージの分離 健康人静脈よりヘパリン処理した注射器にて採
血し、血液を無菌試験管に移して、室温で1〜2
時間放置する。以後の操作は、全て無菌的に実施
する。放置した後、上層の白血球層を集め、一度
細胞を組織培養用合成培地で洗浄し、のち、密度
勾配遠心沈殿法(Mahmood,T.&W.A.
Robinson;Blood、51巻、5号、879〜887頁、
1978年)により、単球、マクロフアージ及びリン
パ球層と顆粒球層とに分画し、前者を集める。得
られた細胞分画を市販の組織培養用合成培地(以
下単に培地ということがある)に浮遊させ、遠心
沈殿して上澄を廃棄し、得られた細胞に同じ培地
を加えて洗浄する。洗浄を少なくとも2回以上繰
返す。次に少量の同じ培地に細胞を浮遊させ、そ
の一部をとり、細胞数を自動血球計測器で測定
し、単球及びマクロフアージとリンパ球との比率
をライト−ギムザ染色した塗抹標本を鏡検して求
め、所定の単球及びマクロフアージ接種数、望ま
しくは105〜107/1培養皿となる様に、ガラス製
又はプラスチツク製培養皿へ播き、次いで、5〜
20%(容量%、培地について以下同じ)の血清を
含む市販の組織培養用合成培地を加え、37℃で組
織培養用培養器中、望ましくは加湿、炭酸ガス通
気下で1〜2時間静置する。静置中に、単球及び
マクロフアージは、培養皿底面へ吸着し、リンパ
球は培地中に浮遊する。次いで、培地を廃棄し、
血清を含まない培地又は生理食塩水を加え、数回
培養皿を洗浄する。この処理により大部分のリン
パ球が除去される。単球及びマクロフアージは培
養皿底面に吸着されている。この方法において吸
着面を直接染色し、検鏡した所見では、底面に吸
着した細胞の95%以上が単球及びマクロフアージ
であり、その数は1培養皿当り105〜107個である
ことを知る。 (2) 単球及びマクロフアージの培養 次に、単球及びマクロフアージが培地1ml当り
に換算して少なくとも105個以上の割合となる様
に、糖蛋白質又は糖蛋白質を含有する分画を少な
くとも培地1ml当り0.1μg以上含有する血清添
加合成培地又は無血清合成培地を該培養皿へ注ぎ
込み、炭酸ガスを通気し、37℃に保持された培養
器中で1〜7日間培養し、CSFを培養液中に産
生せしめる。使用する合成培地は、市販の組織培
養用培地である。 本発明のCSF産生に関する至適培養条件、す
なわち、培養日数、糖蛋白質添加量、細胞の接種
量、血清添加量及び培地の種類については、試験
例を示して後記する。 本発明の方法により医薬を製造する場合には、
異種蛋白質による副作用を惹起せしめないよう人
血清添加培地又は無血清培地を用い、診断試薬を
製造する場合には、牛血清、牛胎児血清を添加し
た培地を用いてもよい。尚培養皿の代りに培養ビ
ンを用いることもできる。又1度培養した単球及
びマクロフアージを反復して使用することもでき
る。 (3) 培地に添加する糖蛋白質 本発明の方法に使用する糖蛋白質は、先願発明
の糖蛋白質又は糖蛋白質を含有する分画と同一の
ものであり、先願発明の方法と同一の方法により
次のようにして調製される。 健康な人から集めた新鮮な尿に希薄な酸又はア
ルカリの水溶液を加え、PHを6〜9望ましくは7
〜8に調整し、次いで遠心分離して尿中に含まれ
ている不溶物を除去する。ここに得られる尿の上
清をケイ素を含有する吸着剤、例えばシリカゲ
ル、シリカゲル−ケイ酸マグネシウム、珪藻土、
シリカガラス、ベントナイトなどに接触させ吸着
成分を溶出させる。溶出は好ましくはPH9以上の
アルカリ水溶液で行なう。溶出に用いるアルカリ
水溶液は、特に限定されるものではないが、好ま
しくは水酸化アンモニウム、水酸化ナトリウムな
どの0.3〜1.5M濃度の水溶液を使用する。この様
にして得られた溶出液のPHを7〜8に調整し、中
性塩、例えば硫酸アンモニウムを70%飽和に加え
て有効物質を塩析し、糖蛋白質を含む粗分画を得
る。 次にこの粗分画を少量のアルカリ水溶液に溶解
し、分子分別フイルターで分子量10000以下の低
分子成分を除去し、陽イオン交換体(例えば、カ
ルボキシメチル交換基結合デキストラン、カルボ
キシメチルセルロース、ホスフオセルロース)と
接触させ、溶液中に含まれている不純物を吸着せ
しめ除去する。接触はほぼ中性に於いて行なわ
れ、糖蛋白質粗分画及びイオン交換体は、PH6〜
8に、好ましくは0.01〜0.15Mの無機塩緩衝液に
よつて調整される。この際糖蛋白質の大部分は通
過する。これを濃縮してからPH6〜8の希薄な緩
衝液と平衡させ、平衡化した陰イオン交換体(例
えばDEAE セルロース)と接触させ、糖蛋白質
を吸着させ、0.1〜0.3Mの無機塩、例えば塩化ナ
トリウム溶液を用いて塩濃度を変化させ、所謂直
線濃度勾配溶出法により溶出させる。この際糖蛋
白質は0.1M以上の塩濃度で溶出するが、完全な
分離は困難である。この0.1〜0.3Mの塩濃度によ
る溶出分画を集め、要すれば脱塩及び濃縮する
(以下分画Aと記載する)。この分画は本発明の方
法に使用できる。 尚、この塩濃度を変化させて溶出させる工程の
前に、糖蛋白質を陰イオン交換体に吸着せしめ、
0.1〜0.3Mの塩濃度の水溶液で溶出させ、精製し
てもよい。 更に前記分画を分子篩クロマトグラフイーの目
的で、10〜20ml/gの水吸収度を有する高架橋度
重合ゲル、例えばセフアデツクスG−150、バイ
オゲルP−100を充填したカラムに通液して分画
中の有効物質を0.05〜0.1モルの塩類緩衝液にて
展開せしめ、相対溶出液量が1.11〜1.60、望まし
くは1.11〜1.45である分画を分別し、脱塩し、濃
縮又は凍結乾燥を行なう(以下分画Bと記載す
る)。 このようにして得られた糖蛋白質を含有する分
画も本発明に使用することができる。尚相対溶出
液量とはVe/Voの比で表わされる数値である
(Veはカラム内の物質を溶出するに必要な溶媒の
液量を示し、Voはカラム内のゲル粒子外部の溶
媒の液量を示す。) 上記粗製物を更に精製するには、粗製物を、
1.0〜2.0M塩を含有する希薄な緩衝液、例えばリ
ン酸塩緩衝液PH6.0〜8.0、好ましくはPH6.0〜7.0
に溶解させ、あらかじめ該緩衝液で平衡化させた
糖親和性吸着体例えばコンカナバリンA−セフア
ロース4B(フアインケミカルラボラトリー社
製)に糖蛋白質を吸着せしめ、ついで20mM〜
100mMの糖類、例えばα−メチル−D−グルコ
シドなどを含む1.0〜2.0M塩添加緩衝液PH6.0〜
8.0、好ましくはPH6.0〜7.0で溶出させ、糖蛋白質
を含有する分画を集め、必要により脱塩し、濃縮
又は凍結乾燥を行なう。この分画も本発明に使用
することができる。 更に、ここに得られた分画を電気泳動的に純化
する目的で、支持体として、例えばアクリルアミ
ドゲル、寒天ゲルPH7.0〜9.0を用いる調製用ゾー
ン電気泳動にかけ、冷却下で希薄塩溶液により支
持体から糖蛋白質を回収し、脱塩し、濃縮又は凍
結乾燥を行なう。このようにして得られた精製糖
蛋白質も本発明に使用することができる。しかし
ながら、後記する試験結果から明らかなように、
精製された糖蛋白質を用いるよりもこれらの糖蛋
白質を含有する分画を用いる方がより望ましい。 (4) 培養液から有効成分の回収 以上のようにして得られたCSFを含有する培
地を培養皿から集め、1000〜2000×gで5〜10分
間遠心分離し、清澄な上澄を得る。この上澄に
は、極めて高い活性を有するCSFが含有されて
いる。 この上澄は、臨床診断試薬又は幹細胞によるコ
ロニー形成試験のための試薬の調製に用いられ
る。即ち、前記培養液の上澄0.1ml当り少なくと
も100個の人顆粒球のコロニーを形成せしめる活
性を有するCSFを含有するように調整し、無菌
過し、無菌的に容器に充填し、密封し、液状の
試薬を製造する。又前記無菌過液を無菌的に凍
結乾燥し、粉末状の試薬を製造することもでき
る。 医薬用には、血清を添加していない培地又は人
血清を添加した培地を用いて製造した培養液を水
に対して透析し、培地成分を除去し、透析内液を
無菌過し、必要に応じて濃縮し、無菌的に容器
に充填し、密封し、液状の医薬を製造する。又前
記透析内液を無菌過し、無菌的に凍結乾燥し、
粉末の医薬を製造することもできる。 医薬用として更に高度に精製するには、前記上
澄を分子量5000〜10000を分別する限外過膜で
過し、高分子分画(分子量5000〜10000以上)
と低分子分画(分子量5000〜10000未満)とに分
画する。CSFは、高分子分画及び低分子分画い
ずれにも含まれるが、CSFの90%以上が高分子
分画に含有される。低分子分画は、それを減圧濃
縮し、製品とすることができる。高分子分画の濃
縮物を、0.01〜0.1M濃度PH6.0〜8.0の緩衝液に溶
解し、該緩衝液であらかじめ平衡化した陰イオン
交換樹脂、例えば、DEAE セルロース、DEAE
−セフアデツクス又はQAE−セフアデツクス等
に接触させ、CSFを樹脂に吸着せしめ、その
後、0.1〜0.3M濃度、PH6.0〜8.0の緩衝液にて、
CSFを溶出せしめ、精製する。 更に、この溶出液を濃縮し、ゲル過による分
子篩クロマトグラフイーの手法で精製することも
できる。この場合ゲル過用ゲルとしては、市販
のセフアデツクスG−150、バイオゲルP−100、
及びウルトロゲルAcA−44等いずれも使用でき
る。 尚、無血清培地を用いてCSF活性を産生せし
めた場合、陰イオン交換樹脂クロマトグラフイー
による処理を省略して、ゲル過クロマトグラフ
イーによる精製を行なつても良い。ゲル過クロ
マトグラフイーを実施する際の展開用緩衝液とし
ては、0.01〜0.3M濃度、PH6.0〜8.0の緩衝液が適
当である。ゲル過により分画されたCSF活性
分画を集め、濃縮、脱塩処理し、凍結乾燥し、精
製されたCSF製品を得る。 ここに得られた精製CSFについて、抗人血清
及び抗牛血清を用いる免疫電気泳動によつて、混
在する蛋白質を分析したところ、含牛胎児血清培
地から得られたものは、牛胎児血清に由来すると
推定される血清アルブミン及びグロブリン様蛋白
質がまた人由来のグロブリン様蛋白質が微量に検
出される。一方、無血清培地から得られたもの
は、全く検出されない。従つて、無血清培地によ
つて産生せしめたCSFは副作用のない医薬とし
て使用し得る。 このようにして得られた液状の医薬はそのま
ま、粉状の医薬は使用時に滅菌水、滅菌生理食塩
水等に適宜溶解し、注射剤として使用される。 本発明の方法により製造された医薬は、後記す
る試験7の動物試験により求められた有効投与量
77.8mg/体重1Kg/1日以上で顆粒球減少症の患
者に静注される。 〔試験 1〕 培養日数に関する試験。 (1) 単球及びマクロフアージの分離、糖蛋白質の
調製。 後記する実施例1と同様の方法によつた。 (2) 単球及びマクロフアージの培養。 実施例1で得た精製糖蛋白質を用い、これを含
有する培地2種と、含有しない培地2種とを調整
した。培地には血清を含有していない
McCoy′s5A培地と、20%牛胎児血清を含む
McCoy′s5A培地を用いた。 単球及びマクロフアージが底面に吸着した培養
皿に、これらの4種の培地を、培地1ml当り単球
及びマクロフアージ106個の割合となるように加
え、実施例1と同様の方法で培養した。そして培
養前、培養後1,3,5,7日に各培養液の一定
量を採取した。 (3) 培養液中のCSFの測定。 培養液中のCSFの活性を人の骨髄細胞による
コロニー形成法により測定した。健康人の胸骨よ
り、骨髄穿刺して、ヘパリン処理した注射器中へ
骨髄をとり、骨髄を1000g、10分間遠心分離して
バツフイコート(buffy Coat)を集める。次いで
これをMcCoy′s5A培地で洗浄し、20%血清を含
むMcCoy′s5A培地に懸濁させ、ペトリ皿へ播
き、これに乾熱滅菌処理したカルボン酸鉄粉末を
培地1ml当り数mg加え、37℃、培養器中で1〜2
時間静置する。静置後、カルボン酸鉄を〓喰した
細胞を、磁石でペトリ皿底面へ固定せしめ、上澄
の細胞浮遊液を集める。ここに得られた細胞は、
非吸着、非〓喰骨髄細胞であり、CSFの活性測
定に使用する。該骨髄細胞を一度遠心分離して洗
浄した後、少量の培地に浮遊させ、その浮遊液中
の有核細胞数を酢酸−ゲンチアナ染色液で染色し
て計測する。 次に、非吸着非〓喰有核細胞を1ml当り2×
105個含む様に、0.3%寒天及び20%牛胎児血清添
加McCoy′s5A培地に加え、更に培養液を、該培
地1mlにつき0.1ml加え、5%炭酸ガス通気下、
37℃加湿培養器中で10日間培養する。CSFの活
性は、培養後、形成される細胞集塊のうち、40個
以上の細胞から成る集塊をコロニーとして、その
コロニー形成数を顕微鏡視野下で計測した。そし
てこのコロニー数をもつてCSFの活性を表わ
し、CSFの産生を試験した。その結果は表1の
とおりである。
The present invention relates to a drug for the treatment of human granulocytopenia, and more specifically to a substance that directly acts on human granulocytic stem cells (hereinafter simply referred to as stem cells) to promote the differentiation and proliferation of these stem cells (colony stimulating substances).
The present invention relates to a method for producing factor (hereinafter abbreviated as CSF). In the hematopoietic developmental mechanism of human granulocytic cells, namely granulocytes, monocytes (cells that have not matured into macrophages), and macrophages, CSF in the human body is the mother cell of these cells. It was widely known that CSF plays a central role in this mechanism because it acts on certain stem cells and induces their division, proliferation, and differentiation (Metcalf, D.; Experimental
Haematology, vol. 1, pp. 185-201, 1973). CSF with such biological activity was expected to be useful as a medicine for treating granulocytopenia (Fumima Takahisa, History of Medicine, Vol. 95, 2).
No. 41-50, 1975). However, the mechanism for regulating the production of granulocytes, monocytes, and macrophages in vivo is complex, and the behavior of CSF within this mechanism remains unknown. Because it has been difficult to produce CSF in large quantities, its use as a medicine has not yet been put to practical use. Regarding the use of CSF diagnostic reagents, for example, measuring the number of CSF-reactive cells in the bone marrow cells of patients with myeloid leukemia has great significance for diagnosing the patient's prognosis (Nakao and Takahisa eds.; ``Differentiation and proliferation of blood cells - basic and clinical'', p. 29, Kagaku Hyoronsha, 1975), CSF as a reagent (standard).
was known to be used. However, it has not yet been put to practical use because it has been difficult to produce a large amount of CSF with a quality that can be used for diagnosis as well as for use as a medicine. On the other hand, as a method for producing CSF that directly acts on stem cells, human peripheral blood white blood cells (Price, GB et al.;
Biochemical Journal, volume 148, pages 209-217, 1975
), human placental cells (Burges, AW et al.; Blood,
49, No. 4, pp. 573-583, 1977) or a type of cancer cells called CSF-producing tumors (Nakaaki Osawa et al.;
Journal of the Japanese Society of Hematology, Volume 42, Issue 2, Page 237, 1979
A production method was known to cultivate the Among these, the first two are the ones that can be used as medicines, but the conventional manufacturing methods using these cells are:
It is a laboratory method, produces a small amount of CSF,
CSF cannot be produced in large quantities. Furthermore, when producing CSF using these conventional methods, serum is essential as a medium component for culturing cells (CSF cannot be produced without serum), and bovine serum or fetal bovine serum is usually used. Ta. However, for pharmaceutical use, in order to avoid side effects caused by these foreign proteins in serum added to the culture medium, measures must be taken to remove them after culturing or to use human serum. be. It is complicated and difficult to remove these proteins from the CSF produced in the culture medium, and human serum is expensive, so the production cost is high. As described above, although CSF has been known to be used as a medicine and a diagnostic reagent, there was no known method for manufacturing it in large quantities at low cost and without side effects. An object of the present invention is to provide a method for producing a large amount of CSF that can be used as a drug for treating granulocytopenia in humans and as a reagent for diagnosing myeloid leukemia without causing side effects. According to the present invention, monocytes and macrophages isolated from human peripheral blood are cultured in a tissue culture medium containing a glycoprotein that proliferates human granulocytes isolated from human urine, and active ingredients are produced in the culture medium, Provided is a method for producing a substance for differentiating and proliferating human granulocytic stem cells, which comprises recovering an active ingredient. The present invention relates to an invention for which a portion of the present inventors has already applied for a patent (Japanese Patent Application No. 53-31999 (hereinafter referred to as the "prior application")). (hereinafter simply referred to as glycoprotein) or a fraction contained in glycoprotein as a medium component,
This is a method for producing CSF that directly acts on stem cells. After completing the earlier invention, the present inventors conducted further research on glycoproteins. As a result, although the mechanism is not clear, this glycoprotein has some relationship with macrophages in vivo.
It was found that CSF was produced. Therefore, the present inventors used a medium containing glycoproteins, and even if macrophages were cultured in vitro, CSF
We thought that it might be possible to manufacture the same, and after conducting studies, we completed the present invention. Next, the method of the present invention will be explained in detail. (1) Separation of monocytes and macrophages Collect blood from the vein of a healthy person using a heparin-treated syringe, transfer the blood to a sterile test tube, and incubate for 1 to 2 hours at room temperature.
Leave it for a while. All subsequent operations are performed aseptically. After standing, the upper leukocyte layer was collected, the cells were washed once with synthetic tissue culture medium, and then subjected to density gradient centrifugation (Mahmood, T. & W.A.
Robinson; Blood, Vol. 51, No. 5, pp. 879-887.
(1978), the cells are fractionated into monocytes, macrophages, lymphocytes, and granulocytes, and the former are collected. The obtained cell fraction is suspended in a commercially available synthetic medium for tissue culture (hereinafter sometimes simply referred to as medium), centrifuged and precipitated, the supernatant is discarded, and the same medium is added to the obtained cells for washing. Repeat washing at least twice. Next, cells were suspended in a small amount of the same medium, a portion of which was taken, and the number of cells was measured using an automatic blood cell counter, and the Wright-Giemsa stained smear was examined microscopically to determine the ratio of monocytes and macrophages to lymphocytes. The cells are plated on glass or plastic culture dishes at a predetermined number of inoculated monocytes and macrophages, preferably 10 5 to 10 7 /1 culture dish, and then 5 to
Add a commercially available synthetic tissue culture medium containing 20% serum (volume %, the same applies below for the medium) and leave it at 37°C in a tissue culture incubator, preferably under humidification and aeration of carbon dioxide gas, for 1 to 2 hours. do. During standing, monocytes and macrophages adsorb to the bottom of the culture dish, and lymphocytes float in the medium. Then discard the medium and
Add serum-free medium or saline and wash the culture dish several times. This treatment removes most lymphocytes. Monocytes and macrophages are adsorbed to the bottom of the culture dish. In this method, the adsorption surface was directly stained and microscopic findings showed that more than 95% of the cells adsorbed to the bottom were monocytes and macrophages, and the number was 10 5 to 10 7 per culture dish. know. (2) Culture of monocytes and macrophages Next, glycoproteins or fractions containing glycoproteins are added to at least 1 ml of the medium so that the number of monocytes and macrophages is at least 10 5 per ml of the medium. Pour a serum-supplemented synthetic medium or a serum-free synthetic medium containing 0.1 μg or more per culture dish into the culture dish, aerate carbon dioxide gas, and culture for 1 to 7 days in an incubator maintained at 37°C to remove CSF from the culture medium. to be produced. The synthetic medium used is a commercially available tissue culture medium. The optimal culture conditions for CSF production of the present invention, ie, the number of culture days, the amount of glycoprotein added, the amount of cell inoculation, the amount of serum added, and the type of medium will be described later using test examples. When manufacturing a medicine by the method of the present invention,
When producing a diagnostic reagent using a human serum-containing medium or a serum-free medium to avoid side effects caused by foreign proteins, a medium supplemented with bovine serum or fetal bovine serum may be used. Incidentally, a culture bottle can also be used instead of a culture dish. Monocytes and macrophages cultured once can also be used repeatedly. (3) Glycoprotein added to culture medium The glycoprotein used in the method of the present invention is the same as the glycoprotein or glycoprotein-containing fraction of the earlier invention, and the method is the same as the method of the earlier invention. It is prepared as follows. Add a dilute acid or alkaline aqueous solution to fresh urine collected from a healthy person to bring the pH to 6-9, preferably 7.
-8, and then centrifuged to remove insoluble matter contained in the urine. The urine supernatant obtained here is treated with a silicon-containing adsorbent, such as silica gel, silica gel-magnesium silicate, diatomaceous earth,
Contact with silica glass, bentonite, etc. to elute adsorbed components. Elution is preferably performed with an alkaline aqueous solution having a pH of 9 or higher. The alkaline aqueous solution used for elution is not particularly limited, but preferably an aqueous solution of ammonium hydroxide, sodium hydroxide or the like having a concentration of 0.3 to 1.5M is used. The pH of the eluate thus obtained is adjusted to 7 to 8, and a neutral salt, such as ammonium sulfate, is added to 70% saturation to salt out the effective substance to obtain a crude fraction containing glycoproteins. Next, this crude fraction is dissolved in a small amount of alkaline aqueous solution, and low-molecular components with a molecular weight of 10,000 or less are removed using a molecular separation filter. ) to adsorb and remove impurities contained in the solution. The contact is carried out at approximately neutrality, and the crude glycoprotein fraction and ion exchanger are heated at pH 6 to
8, preferably with a 0.01-0.15M inorganic salt buffer. At this time, most of the glycoprotein passes through. After concentrating this, it is equilibrated with a dilute buffer solution of pH 6-8, and contacted with an equilibrated anion exchanger (e.g. DEAE cellulose) to adsorb glycoproteins, and with 0.1-0.3M inorganic salt, e.g. chloride. The salt concentration is varied using a sodium solution, and elution is carried out by a so-called linear concentration gradient elution method. At this time, glycoproteins are eluted at a salt concentration of 0.1M or higher, but complete separation is difficult. This elution fraction with a salt concentration of 0.1 to 0.3M is collected, desalted and concentrated if necessary (hereinafter referred to as fraction A). This fraction can be used in the method of the invention. In addition, before this step of elution by changing the salt concentration, the glycoprotein is adsorbed on an anion exchanger,
Purification may be carried out by elution with an aqueous solution having a salt concentration of 0.1 to 0.3M. Furthermore, for the purpose of molecular sieve chromatography, the fraction is passed through a column packed with a highly crosslinked polymer gel having a water absorption of 10 to 20 ml/g, such as Sephadex G-150 or Biogel P-100. Develop the active substance in a 0.05-0.1 molar salt buffer, separate fractions with a relative eluate volume of 1.11-1.60, preferably 1.11-1.45, desalt, and concentrate or freeze-dry. (hereinafter referred to as fraction B). The glycoprotein-containing fraction thus obtained can also be used in the present invention. The relative eluate volume is a value expressed as the ratio Ve/Vo (Ve indicates the volume of solvent required to elute the substance in the column, and Vo indicates the volume of solvent outside the gel particles in the column). ) To further purify the above crude product, the crude product is
Dilute buffer containing 1.0-2.0M salt, e.g. phosphate buffer PH6.0-8.0, preferably PH6.0-7.0
The glycoprotein is adsorbed onto a sugar-affinity adsorbent such as Concanavalin A-Sepharose 4B (manufactured by Fine Chemical Laboratories) which has been equilibrated in advance with the buffer, and then 20mM to
1.0-2.0M salt-added buffer containing 100mM sugars, such as α-methyl-D-glucoside, pH 6.0~
Elution is carried out at pH 8.0, preferably pH 6.0 to 7.0, and fractions containing glycoproteins are collected, desalted if necessary, and concentrated or lyophilized. This fraction can also be used in the present invention. Furthermore, in order to electrophoretically purify the fraction obtained here, it is subjected to preparative zone electrophoresis using, for example, acrylamide gel or agar gel pH 7.0 to 9.0 as a support, and then purified with a dilute salt solution under cooling. The glycoprotein is recovered from the support, desalted, and concentrated or lyophilized. The purified glycoprotein thus obtained can also be used in the present invention. However, as is clear from the test results described below,
It is more desirable to use fractions containing these glycoproteins than to use purified glycoproteins. (4) Recovery of active ingredients from culture medium The CSF-containing medium obtained as described above is collected from the culture dish and centrifuged at 1000-2000 xg for 5-10 minutes to obtain a clear supernatant. This supernatant contains CSF with extremely high activity. This supernatant is used for the preparation of clinical diagnostic reagents or reagents for colony formation tests with stem cells. That is, the supernatant of the culture solution is adjusted to contain CSF having the activity of forming at least 100 human granulocyte colonies per 0.1 ml of the supernatant of the culture solution, sterilized, filled aseptically into a container, and sealed, Manufacture liquid reagents. Furthermore, a powdered reagent can also be produced by aseptically freeze-drying the sterile supernatant. For pharmaceutical use, a culture solution prepared using a medium without serum or a medium supplemented with human serum is dialyzed against water, the medium components are removed, and the dialyzed fluid is sterilized and used as necessary. Concentrate accordingly, fill containers aseptically, and seal them to produce liquid medicine. Further, the dialysis fluid is aseptically filtered and freeze-dried aseptically,
Powdered medicaments can also be produced. In order to further purify it for pharmaceutical use, the supernatant is passed through an ultrafiltration membrane that separates molecules with a molecular weight of 5,000 to 10,000, and a high molecular weight fraction (more than 5,000 to 10,000) is obtained.
and a low molecular weight fraction (molecular weight 5,000 to less than 10,000). CSF is contained in both the high-molecular fraction and the low-molecular fraction, but more than 90% of CSF is contained in the high-molecular fraction. The low molecular weight fraction can be concentrated under reduced pressure to produce a product. The concentrate of the polymer fraction is dissolved in a buffer solution with a concentration of 0.01 to 0.1M, pH 6.0 to 8.0, and an anion exchange resin equilibrated in advance with the buffer solution, such as DEAE cellulose, DEAE
- Contact with Cephadex or QAE-Sephadex, etc. to adsorb CSF to the resin, and then with a buffer solution with a concentration of 0.1 to 0.3M and a pH of 6.0 to 8.0.
Elute and purify the CSF. Furthermore, this eluate can be concentrated and purified by molecular sieve chromatography using gel filtration. In this case, the gel for gel passing is commercially available Cephadex G-150, Biogel P-100,
and Ultrogel AcA-44, etc. can be used. In addition, when CSF activity is produced using a serum-free medium, the treatment by anion exchange resin chromatography may be omitted and purification may be performed by gel permeation chromatography. As a developing buffer when performing gel perchromatography, a buffer with a concentration of 0.01 to 0.3M and a pH of 6.0 to 8.0 is suitable. The CSF active fractions separated by gel filtration are collected, concentrated, desalted, and lyophilized to obtain purified CSF products. The purified CSF obtained here was analyzed for mixed proteins by immunoelectrophoresis using anti-human serum and anti-bovine serum, and it was found that the protein obtained from the bovine fetal serum medium was derived from fetal bovine serum. As a result, serum albumin and globulin-like proteins, which are presumed to be present, and trace amounts of human-derived globulin-like proteins are detected. On the other hand, those obtained from serum-free medium are not detected at all. Therefore, CSF produced in a serum-free medium can be used as a medicine without side effects. The liquid medicine thus obtained is used as it is, and the powder medicine is appropriately dissolved in sterile water, sterile physiological saline, etc. at the time of use, and used as an injection. The medicament produced by the method of the present invention has an effective dosage determined by the animal test of Test 7 described below.
It is administered intravenously to patients with granulocytopenia at a dose of 77.8 mg/1 kg body weight/day or more. [Test 1] Test regarding culture days. (1) Separation of monocytes and macrophages, preparation of glycoproteins. The same method as in Example 1 described later was used. (2) Culture of monocytes and macrophages. Using the purified glycoprotein obtained in Example 1, two types of media containing it and two types of media not containing it were prepared. Medium does not contain serum
Contains McCoy's 5A medium and 20% fetal bovine serum.
McCoy's 5A medium was used. These four types of media were added to a culture dish with monocytes and macrophages adsorbed to the bottom at a ratio of 10 6 monocytes and macrophages per ml of culture medium, and cultured in the same manner as in Example 1. Then, a certain amount of each culture solution was collected before culturing and 1, 3, 5, and 7 days after culturing. (3) Measurement of CSF in culture medium. The activity of CSF in the culture solution was measured by colony formation method using human bone marrow cells. Bone marrow is aspirated from the sternum of a healthy person, taken into a heparinized syringe, and centrifuged at 1000 g for 10 minutes to collect buffy coat. Next, this was washed with McCoy's 5A medium, suspended in McCoy's 5A medium containing 20% serum, and plated on a Petri dish. Several mg of iron carboxylate powder, which had been sterilized by dry heat, was added per ml of the medium. ℃, 1-2 in incubator
Let stand for a while. After standing still, the cells that have absorbed the iron carboxylate are fixed to the bottom of the Petri dish using a magnet, and the supernatant cell suspension is collected. The cells obtained here are
Non-adsorbed, non-digesting bone marrow cells, used to measure CSF activity. The bone marrow cells are once centrifuged and washed, then suspended in a small amount of medium, and the number of nucleated cells in the suspension is counted by staining with acetic acid-gentian staining solution. Next, add 2× non-adsorbed, non-nucleated cells per ml.
Add 10 cells to McCoy's 5A medium supplemented with 0.3% agar and 20% fetal bovine serum, add 0.1 ml of culture solution per 1 ml of the medium, and add 5% carbon dioxide under aeration of 5% carbon dioxide gas.
Culture in a humidified incubator at 37°C for 10 days. The activity of CSF was determined by counting the number of colonies formed under a microscope, using clusters of 40 or more cells as colonies among the cell clusters formed after culturing. The number of colonies was used to represent the activity of CSF, and CSF production was tested. The results are shown in Table 1.

〔試験 2〕[Test 2]

糖蛋白質の添加量に関する試験。 20%の牛胎児血清を添加したMcCoy′s5A培地
及び血清を添加していないMcCoy′s5A培地に、
実施例1と同様の方法で調製した精製糖蛋白質を
培地1ml当り、0.1,1.0,10.0及び100μg添加し
た培地を調製し、これを単球及びマクロフアージ
が吸着した培養皿に加え、試験1と同様の方法で
3日間培養した。そして得られた各培養液を試験
1と同様の方法で試験してCSFの活性を測定
し、CSFの産生を試験した。尚精製糖蛋白質を
加えずに培養した試料を対照とした。結果は表2
に示すとおりである。
Test regarding the amount of glycoprotein added. McCoy's5A medium supplemented with 20% fetal bovine serum and McCoy's5A medium without serum.
A medium was prepared in which 0.1, 1.0, 10.0, and 100 μg of purified glycoprotein prepared in the same manner as in Example 1 was added per ml of the medium, and this was added to the culture dish on which monocytes and macrophages had been adsorbed. The cells were cultured for 3 days using the method described above. Each of the obtained culture solutions was tested in the same manner as Test 1 to measure CSF activity and test for CSF production. A sample cultured without adding purified glycoprotein was used as a control. The results are in Table 2
As shown below.

〔試験 3〕[Test 3]

単球及びマクロフアージの接種量に関する試
験。 培地に接種する単球及びマクロフアージの数を
培地1ml当り0,103,104,105及び106個とした
こと、20%の牛胎児血清を添加したMcCoy′s5A
培地及び血清を添加しないMcCoy′s5A培地1ml
当り糖蛋白質(実施例1で得た精製物)を1μg
の割合で添加したこと、培養日数を3日としたこ
とを除き、試験1と同様の方法で培養液を得た。
そしてこれらの培養液を試験1と同様の方法で試
験してSSFの活性を測定し、CSFの産生を試験し
た。その結果は、表3のとおりである。
Tests on monocyte and macrophage inoculum. The number of monocytes and macrophages inoculated into the medium was 0, 10 3 , 10 4 , 10 5 and 10 6 per ml of medium, and McCoy's 5A supplemented with 20% fetal bovine serum.
1 ml of McCoy's 5A medium without medium or serum
1 μg of glycoprotein (purified product obtained in Example 1)
A culture solution was obtained in the same manner as in Test 1, except that the following was added at a ratio of 1.5% and the number of days of culture was 3 days.
These culture solutions were then tested in the same manner as Test 1 to measure SSF activity and test for CSF production. The results are shown in Table 3.

〔試験 4〕[Test 4]

培地の種類に関する試験。 組織培養又は細胞培養のために現在市販されて
いる4種の合成培地、即ちMcCoy′s5A培地
(Gibco社製)、Nutrient Mixture HAMF−10
(Gibco社製)、RPMI−1640(日水製薬社製)及
びアミノ酸添加イーグルMEM培地(日水製薬社
製)を用いてCSFの産生を比較した。 これらの培地に血清を添加せず、糖蛋白質(実
施例1で得た精製物)を各培地1ml当り1.0μg
添加し、3目間試験1と同様の方法で培養した。
そして得られた培養液を試験1と同様の方法で試
験してCSFの活性を測定し、CSFの産生を試験
した。その結果は、表4のとおりである。
Testing on media type. There are currently four types of synthetic media commercially available for tissue culture or cell culture: McCoy's 5A medium (manufactured by Gibco), Nutrient Mixture HAMF-10
(manufactured by Gibco), RPMI-1640 (manufactured by Nissui Pharmaceutical), and Eagle MEM medium supplemented with amino acids (manufactured by Nissui Pharmaceutical) to compare the production of CSF. No serum was added to these media, and 1.0 μg of glycoprotein (purified product obtained in Example 1) was added per ml of each medium.
and cultured in the same manner as in 3-eye test 1.
Then, the obtained culture solution was tested in the same manner as in Test 1 to measure CSF activity and test for CSF production. The results are shown in Table 4.

〔試験 5〕[Test 5]

添加する血清の量に関する試験。 McCoy′s5A培地に58℃で30分間加熱処理した
人血清(ミドリ十字社製)及び牛胎児血清
(Flow Laboratory社製)を0,5,10,20及び
30%添加し、更に糖蛋白質(実施例1の精製物)
を培地1ml当り1μgの割合で添加した培地を用
いたこと、単泣とマクロフアージの接種量を培地
1ml当り105個としたこと及び培養日数を3日と
したことを除き、試験1と同様の方法で培養し、
培養液を得た。そして得られた培養液を試験1と
同様の方法で試験してCSFの活性を測定し、
CSFの産生を試験した。その結果は表5のとお
りである。
Testing on the amount of serum added. Human serum (manufactured by Midori Juji) and fetal bovine serum (manufactured by Flow Laboratory) heated at 58°C for 30 minutes were added to McCoy's 5A medium at 0, 5, 10, 20, and
Added 30% and further added glycoprotein (purified product of Example 1)
The same procedure as in Test 1 was used, except that a medium containing 1 μg of 1 μg per 1 ml of medium was used, the inoculation amount of monocrystals and macrophages was 10 5 per 1 ml of medium, and the number of days of culture was 3 days. Cultivated by method,
A culture solution was obtained. Then, the obtained culture solution was tested in the same manner as Test 1 to measure the activity of CSF,
CSF production was tested. The results are shown in Table 5.

〔試験 6〕[Test 6]

糖蛋白質を含有する分画の添加に関する試験。 試験1〜5では精製された糖蛋白質を用いて試
験したが、糖蛋白質を含有する分画、いわば半精
製の糖蛋白質も本発明の方法に使用できることを
立証する。 使用した糖蛋白質を含有する分画は、実施例1
と同様の方法で調製した分画A及びBである。こ
れらの分画を無血清McCoy′s5A培地にそれぞ
れ、0,0.5,1.0,5.0及び10mg/mlの割合で添加
した。この添加量を培地1ml当りの糖蛋白質の添
加量に換算すれば分画Aではそれぞれ0,8.3,
16.6,83.3及び166.6μgであり、分画Bではそれ
ぞれ0,41.7,83.4,417及び834μgである。こ
れらの培地を用いたこと、単球及びマクロフアー
ジの接種量を培地1ml当り105個としたこと及び
培養日数を3日としたことを除き、試験1と同様
の方法で培養し、培養液を得た。 尚これらの分画には尿に排泄された人血清アル
ブミンが含有されているので、対照として人血清
アルブミン(シグマ社製)を同じ割合で
McCoy′s5A培地に添加し、同様に培養した。 そして得られた培養液を試験1と同様の方法で
試験してCSFの活性を測定し、CSFの産生を試
験した。その結果は表6のとおりである。
Test on the addition of fractions containing glycoproteins. Although tests 1 to 5 were conducted using purified glycoproteins, it is demonstrated that glycoprotein-containing fractions, so-called semi-purified glycoproteins, can also be used in the method of the present invention. The glycoprotein-containing fraction used was as described in Example 1.
Fractions A and B were prepared in the same manner as above. These fractions were added to serum-free McCoy's 5A medium at ratios of 0, 0.5, 1.0, 5.0 and 10 mg/ml, respectively. If this amount of addition is converted into the amount of glycoprotein added per ml of medium, fraction A is 0, 8.3, and 8.3, respectively.
16.6, 83.3 and 166.6 μg, and 0, 41.7, 83.4, 417 and 834 μg in fraction B, respectively. The culture was carried out in the same manner as in Test 1, except that these media were used, the inoculation amount of monocytes and macrophages was 10 5 per ml of the culture medium, and the number of days of culture was 3 days. Obtained. Since these fractions contain human serum albumin excreted in urine, human serum albumin (manufactured by Sigma) was added at the same ratio as a control.
It was added to McCoy's 5A medium and cultured in the same manner. Then, the obtained culture solution was tested in the same manner as in Test 1 to measure CSF activity and test for CSF production. The results are shown in Table 6.

〔試験 7〕[Test 7]

有効投与量等に関する試験 本発明者らは、次の動物試験を行ない、本発明
の方法によつて得られるCSFの有効投与量及び
急性毒性量(LD50)を試験した。 実施例3と同じ方法により培養液を製造した。
この培養液を無菌過し、限外過膜(分子量
10000未満過膜)で過して濃縮、脱塩し、の
ち無菌的に凍結乾燥し、粉末状のCSFを製造し
た。この粉末を試験1と同様の方法で試験した結
果、人骨髄細胞によるコロニー形成数は1mg当り
4500個であつた。又比較のためC3H/Heマウス
の骨髄細胞を用いて試験1と同様の方法で試験し
た結果、このマウス骨髄細胞によるコロニー形成
数は1mg当り7000個であつた。 6週令の雄のC3H/Heマウス(平均体重20
g)80匹を無作為に1群5匹ずつ16群にわけ、更
に各群を無作為に4群ずつ4グループにわけた。 前記CSFを滅菌生理食塩水0.1ml当り1mg(
グループ)、2mg(グループ)及び4mg(グ
ループ)の割合で溶解し、この溶液を1日マウス
1匹当り0.1mlずつ連続5日間皮下注射し、投与
開始後1,3,7及び11日後に各グループの1群
のマウス5匹から採血し(採血した群は以後の試
験から除いた)、末梢血中の白血球数及び顆粒球
数をそれぞれ自動血球測定器及びライト−ギムザ
染色により測定し、CSF投与による白血球及び
顆粒球の増加を試験した。尚CSFを含まない滅
菌生理食塩水0.1mlを投与し、同様に処理したグ
ループ(グループ)を対照とした。その結果は
表7のとおりである。
Test Regarding Effective Dose, etc. The present inventors conducted the following animal test to test the effective dose and acute toxic dose (LD 50 ) of CSF obtained by the method of the present invention. A culture solution was produced by the same method as in Example 3.
This culture solution was filtered aseptically, and the ultrafiltration membrane (molecular weight
It was concentrated and desalted by filtration (less than 10,000 filtration membrane), and then aseptically freeze-dried to produce powdered CSF. As a result of testing this powder in the same manner as Test 1, the number of colonies formed by human bone marrow cells per mg
There were 4,500 pieces. For comparison, the bone marrow cells of C3H/He mice were tested in the same manner as Test 1, and the number of colonies formed by these mouse bone marrow cells was 7000 per mg. 6-week-old male C3H/He mice (average weight 20
g) The 80 animals were randomly divided into 16 groups of 5 animals each, and each group was further randomly divided into 4 groups of 4 groups. The CSF was added at 1 mg per 0.1 ml of sterile physiological saline (
This solution was subcutaneously injected at a rate of 0.1 ml per mouse per day for 5 consecutive days, and 1, 3, 7, and 11 days after the start of administration, each mouse Blood was collected from 5 mice in each group (groups from which blood was collected were excluded from subsequent tests), and the number of white blood cells and granulocytes in peripheral blood were measured using an automatic hematology meter and Wright-Giemsa staining, and CSF The increase in leukocytes and granulocytes due to administration was tested. A group treated in the same manner by administering 0.1 ml of sterile physiological saline containing no CSF was used as a control. The results are shown in Table 7.

【表】 CSF投与群の中で、グループの結果は、
グループ(対照)に比較して、試験開始11日目
(CSF投与終了後、6日目)で、白血球数が約2
倍、顆粒球が約3倍の増加を示した。また、グ
ループでは、グループに比して同じ11日目にお
いて、白血球数で約4.5倍、顆粒球数で約8倍の
顕著な増加を示した。以上のことからマウスに於
ける有効量は、1日投与量として体重1Kg当り50
mgと認められる。そしてこの試験において用いた
CSFの人及びマウスの骨髄細胞のコロニー形成
能は前記のようにマウス骨髄細胞に対する活性が
人骨髄細胞に対するそれの約1.556倍であるから
人骨髄細胞に対して同等の効果を示す投与量は体
重1Kg当り77.8mgである。 従つて、顆粒球減少症患者に対する有効投与量
は少なくとも77.8mg/体重1Kg/日である。本発
明の方法によつて得られるCSFの急性毒性につ
いて、前記投与量の試験に用いたCSFを使用
し、6〜8週令のC3H/Heマウス(平均体重
20.4g)を用いて試験したが、マウスに体重1Kg
当り4.0gの投与群(雌、雄各5匹)においても
死亡例はなかつた。従つて急性毒性量の決定はで
きなかつた。 実施例 1 1 単球及びマクロフアージの分離 健康人の末梢血200mlをヘパリン1000単位を
含有する採血ビンへとり、静かにヘパリンと混
合させて、滅菌した200ml容ガラスシリンダー
(直径20mm)へ移し、室温で2時間静置する。
静置後、上層の白血球層を静かにピペツトで集
め、血清を含まぬMcCoy′s5A培地で2倍に希
釈した後、1500×g、15分間遠心沈殿させ、上
澄を廃棄し、沈渣をMcCoy′s5A培地20mlへ浮
遊させる。次にメトリゾ酸ナトリウム溶液、比
重d=1.077を入れた遠心管の上へ、該浮遊液
を重ね、400×g、30分間遠心沈殿させ、上層
の底部の白色をした単球−マクロフアージ及び
リンパ球層をピペツトで採集し、McCoy′s5A
培地を加えて洗浄し、1500×g、10分間遠心沈
殿して、上澄を廃棄する。これを2回繰返す。
得られた細胞を約20mlのMcCoy′s5A培地へ浮
遊させ、この浮遊液の一部を取り、自動血球計
測器(トーア製)で、細胞数を計測し、同じ
く、この浮遊液の塗沫標本を作製して、ライト
ーギムザ染色をして、リンパ球と単球及びマク
ロフアージとの数を顕微鏡下で形態学的に測定
し、その比率を求めた。その結果、単球及びマ
クロフアージの比率は、25.5%であつた。これ
を5mlずつ、直径15cmガラス製ペトリ皿4枚へ
播き、更に30mlの10%牛胎児血清加
McCoy′s5A培地を加え、5%炭酸ガス通気下
加湿培養器(37℃)中で2時間放置し、のち培
地を廃棄し、更にMcCoy′s5A培地30mlを加
え、やや激しく振とうして洗い、これを廃棄し
て、リンパ球を除去した。前記と同様の試験方
法で単球及びマクロフアージの比率を測定した
ところいずれも95%であつた。 2 糖蛋白質の調製 先願の実施例1の方法により、次のようにし
て糖蛋白質を調製した。 健康な人から集めた新鮮な尿400に10%水
酸化ナトリウムを加えてPHを8に調整し、0℃
に冷却しながら15000×gで連続遠心分離機で
遠心し、不溶物を除去し、上清を得た。 次にこの上清を10%塩酸でPHを7に調整し、
シリカゲルを充填したカラム(10×80cm)に通
液し、シリカゲルに吸着された成分を5%アン
モニア水40でカラムから溶出した。 このようにして得られた溶出液を1規定の硫
酸でPHを7.5に調整し、これに粉末硫酸アンモ
ニウムを加えて70%飽和となし、0℃で1夜放
置し、生成した沈殿を別した。 この沈殿物を5%アンモニア水2に溶解
し、透析チユーブ(Visking社製)に入れ、
0.05Mリン酸塩緩衝液(PH6.5)に対して充分
透析し、透析内液に該緩衝液を加えて全量を10
に調整し、あらかじめ0.05Mリン酸塩緩衝液
(PH6.5)で平衡化させたCMセフアデツクスC
−50イオン交換カラム(40×40cm)に通液し、
夾雑物を該イオン交換樹脂に吸着せしめ、通過
液を得た。 この通過液10をダイアフローホローフアイ
バー濃縮装置(アミコン社製、DC−30型)で
濃縮し、前記と同様に濃縮液を0.1Mトリス−
塩酸緩衝液(PH7.0)に対し1夜5℃で透析
し、この透析内液に該緩衝液を加えて1に調
整した。この溶液をあらかじめ該緩衝液で平
衡、活性化したDEAEセルロースカラム(4.0
×40cm)に通液し、0.1Mトリス−塩酸緩衝液
(PH7.0)でカラムを充分洗浄した後、0.3Mの
食塩を含む0.1Mトリス−塩酸緩衝液(PH7.0)
で溶出を行なつた。そして溶出液を集め、
0.1Mトリス−塩酸緩衝液(PH7.0)に対して透
析し、透析内液を得た。 この透析内液を再び該緩衝液で平衡、活性化
させたDEAEセルロースカラム(4.0×40cm)
に通液し、0.1Mから0.3MのCl-イオンの直線濃
度勾配溶出法により溶出させ、0.15〜0.25Mの
分画を集め、この分画に粉末硫酸アンモニウム
を加えて70%飽和となし、沈殿物を集め、この
沈殿を少量の0.1Mトリス−塩酸緩衝液(PH
7.0)に溶解し、該緩衝液に対して透析し、透
析内液を得た。(分画A)。 次にこの透析内液20mlを、あらかじめ0.1M
トリス−塩酸緩衝液(PH7.0)で平衡化したセ
フアデツクスG−150カラム(4.0×60cm)で展
開させ、相対溶出液量1.11−1.45の分画を集
め、この分画を蒸留水に対して充分透析し、透
析内液を凍結乾燥し、約500mgの粉末を得た
(分画B)。 次に、上記粉末200mgを1.0M食塩を含む
0.02Mリン酸塩緩衝液(PH7.0)に溶解し、あ
らかじめ該緩衝液で平衡化したコンカナバリン
A−セフアロース4B100mlを含むカラムに通液
し、1.0M食塩を含む0.02Mリン酸塩緩衝液(PH
7.0)でカラムを充分洗浄し、のち50mMα−
メチル−D−グルコシド及び1.0M食塩を含む
0.02Mリン酸塩緩衝液(PH7.0)で溶出させ、
溶出液を集め、これを蒸留水に対して透析し、
透析内液を凍結乾燥した。 更に、ここに得られた凍結乾燥粉末約50mg
を、10%グリセリンを含む0.125Mトリス−グ
リシン緩衝液(PH6.8)、1mlに溶解し、8%ア
クリルアミドゲル(PH8.9,20mm×25mm)を用
いた調製用電気泳動装置(富士理研、フジカバ
ラー型)により、冷却水通水下、10mAの電
流を通電し、泳動させ、相対移動度0.46の分画
を0.025Mトリス−グリシン緩衝液(PH8.3)で
回収し、蒸留水に対して透析し、透析内液を凍
結乾燥し、糖蛋白質約10mgを得た。この方法を
繰返し、約30mgの糖蛋白質を得た。 3 単球及びマクロフアージの培養 前記糖蛋白質を、20%牛胎児血清添加
McCoy′s5A培地30mlに培地1ml当り100μgの
割合で加え、そして30mlの培地を各ペトリ皿に
加えた。培地1ml当りの単球及びマクロフアー
ジの数は106個であつた。これを5%炭酸ガス
通気下加湿培養器(37℃)中で3日間培養し、
CSFを含有する培養液を得た。 4 培養液の精製 培地を集め、2℃、2000×g、10分間遠心分
離して、清澄な上澄液約120mlを得た。得られ
た上澄液を、分子量10000未満除去限外過膜
(アミコン社製)で過して濃縮し、次に
0.05Mトリス−塩酸緩衝液(PH7.2)100mlを加
え、再び濃縮し、濃縮物を5mlの該緩衝液に溶
解した。 次に、この溶液を、0.05Mトリス−塩酸、PH
7.0緩衝液で平衡化したDEAEセルロースカラ
ム(2.0×60cm)に吸着せしめ、該緩衝液に
0.3M食塩を加えた緩衝液を用いて、濃度勾配
溶出法によつてCSFを溶出せしめた。溶出液
を再び前記限外過膜装置で濃縮し、0.05Mト
リス−塩酸、PH7.0緩衝液で平衡化した
Sephadex G−150カラム(2.0×90cm)にこの
濃縮液を通液し、該緩衝液で展開し、分子量
65000〜90000に相当する分画及び分子量30000
〜60000に相当する分画を集めた。この分画を
合わせて、前記限外過装置で濃縮し、次に蒸
留水を加えて、脱塩、濃縮処理を行ない約5ml
の精製CSF含有液を得た。試験1と同一の方
法で試験した結果、この溶液は1ml当り人顆粒
球コロニーを41000個形成する活性を有してい
た。 実施例 2 実施例1と同様に方法で単球及びマクロフアー
ジを人末梢血から分離した。そして実施例1と同
様の方法で調製した精製糖蛋白質を、血清を含有
していないMcCoy′s5A培地に培地1ml当り100μ
gの割合で加えた培地を用い、以下実施例1と同
様の方法で約5mlの精製CSF含有液を得た。試
験1と同一の方法で試験した結果、この溶液は1
ml当り人顆粒球コロニーを16000個形成する活性
を有していた。 実施例 3 実施例1と同様の方法で単球及びマクロフアー
ジを人末梢血から分離した。そして実施例1と同
様の方法で調製した糖蛋白質を含有する分画(分
画A)を血清を含有しないMcCoy′s5A培地に、
培地1ml当り5mg(糖蛋白質として83.3μg)の
割合で加えた培地を用い、以下実施例1と同様の
方法で培養を行ない、約120mlの培養液を得た。
この培養液を蒸留水に対して透析し、透析内液を
低温で減圧濃縮し、約5mlのCSF含有液を得
た。試験1と同一の方法で試験した結果、この溶
液は1ml当り人顆粒球コロニーを36700個形成す
る活性を有していた。 実施例 4 実施例1と同様の方法で単球及びマクロフアー
ジを人末梢血から分離した。そして実施例1と同
様の方法で調製した糖蛋白質を含有する分画(分
画B)を、10%濃度に人血清を含有する
McCoy′s5A培地に、培地1ml当り1mg(糖蛋白
質として83.3μg)の割合で加えた培地を用い、
以下実施例1と同様の方法で約5mlの精製CSF
含有液を得た。試験1と同じ方法で試験した結
果、この溶液は1ml当り人顆粒球コロニーを
43200個形成する活性を有していた。
[Table] Among the CSF administration groups, the group results were as follows:
Compared to the group (control), on the 11th day of the study (6 days after the end of CSF administration), the white blood cell count was approximately 2
granulocytes showed an approximately 3-fold increase. Furthermore, on the same day 11, the group showed a remarkable increase of about 4.5 times in the number of white blood cells and about 8 times in the number of granulocytes compared to the group. Based on the above, the effective dose in mice is 50 g/kg body weight per day.
Recognized as mg. And used in this test
As mentioned above, the colony-forming ability of human and mouse bone marrow cells in CSF is about 1.556 times that of mouse bone marrow cells than that of human bone marrow cells. It is 77.8 mg per 1 kg. Therefore, the effective dose for granulocytopenic patients is at least 77.8 mg/Kg body weight/day. Regarding the acute toxicity of CSF obtained by the method of the present invention, the CSF used in the above-mentioned dose test was used to examine C3H/He mice (average body weight) aged 6 to 8 weeks.
20.4g), but the mice weighed 1Kg.
There were no deaths in the 4.0g/dose group (5 females and 5 males each). Therefore, it was not possible to determine the acute toxic dose. Example 1 1 Separation of monocytes and macrophages 200 ml of peripheral blood from a healthy person was taken into a blood collection bottle containing 1000 units of heparin, mixed gently with heparin, transferred to a sterilized 200 ml glass cylinder (diameter 20 mm), and kept at room temperature. Let stand for 2 hours.
After standing still, the upper leukocyte layer was gently collected with a pipette, diluted 2 times with serum-free McCoy's 5A medium, and centrifuged at 1500 x g for 15 minutes. The supernatant was discarded and the precipitate was collected using McCoy's ’ Float in 20 ml of s5A medium. Next, the suspension was layered on top of a centrifuge tube containing sodium metrizoate solution, specific gravity d = 1.077, and centrifuged at 400 x g for 30 minutes. Collect the layer with a pipette and
Add medium, wash, centrifuge at 1500 xg for 10 minutes, and discard the supernatant. Repeat this twice.
The obtained cells were suspended in approximately 20 ml of McCoy's 5A medium, a portion of this suspension was taken, the number of cells was counted using an automatic blood cell counter (manufactured by Tor), and a smear of this suspension was also collected. were prepared, subjected to Wright-Giemsa staining, and the numbers of lymphocytes, monocytes, and macrophages were morphologically measured under a microscope, and their ratios were determined. As a result, the ratio of monocytes and macrophages was 25.5%. Pour 5 ml of this into four 15 cm diameter glass Petri dishes, and add 30 ml of 10% fetal bovine serum.
Add McCoy's 5A medium, leave for 2 hours in a humidified incubator (37℃) under 5% carbon dioxide aeration, then discard the medium, add 30 ml of McCoy's 5A medium, shake vigorously and wash. This was discarded and lymphocytes were removed. When the ratio of monocytes and macrophages was measured using the same test method as above, both were 95%. 2 Preparation of Glycoprotein Glycoprotein was prepared as follows according to the method of Example 1 of the previous application. Add 10% sodium hydroxide to 400ml of fresh urine collected from healthy people, adjust the pH to 8, and store at 0°C.
The mixture was centrifuged in a continuous centrifuge at 15,000 xg while cooling to remove insoluble materials to obtain a supernatant. Next, adjust the pH of this supernatant to 7 with 10% hydrochloric acid,
The solution was passed through a column (10 x 80 cm) packed with silica gel, and the components adsorbed on the silica gel were eluted from the column with 40 ml of 5% aqueous ammonia. The pH of the eluate thus obtained was adjusted to 7.5 with 1N sulfuric acid, powdered ammonium sulfate was added to make it 70% saturated, and the mixture was allowed to stand at 0°C overnight, and the precipitate formed was separated. This precipitate was dissolved in 5% ammonia water 2 and placed in a dialysis tube (manufactured by Visking).
Dialyze thoroughly against 0.05M phosphate buffer (PH6.5), add the buffer to the dialysate, and dilute the total volume to 10%.
CM Sephadex C, which was adjusted to
-50 ion exchange column (40 x 40 cm),
Impurities were adsorbed onto the ion exchange resin to obtain a permeate. This permeate 10 was concentrated using a diaflow hollow fiber concentrator (manufactured by Amicon, model DC-30), and the concentrated solution was mixed with 0.1M Tris in the same manner as above.
Dialysis was performed against a hydrochloric acid buffer (PH7.0) overnight at 5° C., and the buffer solution was added to the dialyzed solution to adjust the concentration to 1. This solution was equilibrated and activated with the buffer beforehand on a DEAE cellulose column (4.0
x 40cm), and thoroughly wash the column with 0.1M Tris-HCl buffer (PH7.0), then add 0.1M Tris-HCl buffer (PH7.0) containing 0.3M NaCl.
Elution was performed with and collect the eluate,
Dialysis was performed against 0.1M Tris-HCl buffer (PH7.0) to obtain a dialysate solution. DEAE cellulose column (4.0 x 40 cm) in which this dialysis solution was equilibrated and activated with the buffer solution again.
0.1M to 0.3M Cl - ions were eluted using a linear concentration gradient elution method, a fraction of 0.15 to 0.25M was collected, and powdered ammonium sulfate was added to this fraction to achieve 70% saturation, followed by precipitation. This precipitate was added to a small amount of 0.1M Tris-HCl buffer (PH
7.0) and dialyzed against the buffer to obtain a dialysate solution. (Fraction A). Next, add 20ml of this dialysis fluid to 0.1M in advance.
Developed on a Sephadex G-150 column (4.0 x 60 cm) equilibrated with Tris-HCl buffer (PH7.0), collected fractions with a relative eluate volume of 1.11-1.45, and added this fraction to distilled water. After thorough dialysis, the dialyzed fluid was freeze-dried to obtain about 500 mg of powder (Fraction B). Next, add 200mg of the above powder containing 1.0M salt.
The solution was passed through a column containing 100 ml of Concanavalin A-Sepharose 4B dissolved in 0.02 M phosphate buffer (PH7.0) and equilibrated with the buffer, and then 0.02 M phosphate buffer (PH7.0) containing 1.0 M NaCl was passed through the column. PH
Wash the column thoroughly with 7.0), then add 50mMα-
Contains methyl-D-glucoside and 1.0M salt
Elute with 0.02M phosphate buffer (PH7.0),
Collect the eluate, dialyze it against distilled water,
The dialyzed fluid was freeze-dried. Furthermore, about 50mg of the freeze-dried powder obtained here
was dissolved in 1 ml of 0.125M Tris-glycine buffer (PH6.8) containing 10% glycerin, and prepared using an 8% acrylamide gel (PH8.9, 20 mm x 25 mm) using a preparative electrophoresis device (Fuji Riken, Using a Fuji Coverer type), a current of 10 mA was applied while running cooling water, electrophoresis was performed, and a fraction with a relative mobility of 0.46 was collected in 0.025 M Tris-glycine buffer (PH8.3), and then added to distilled water. Dialysis was performed, and the dialyzed fluid was freeze-dried to obtain approximately 10 mg of glycoprotein. This method was repeated to obtain about 30 mg of glycoprotein. 3 Culture of monocytes and macrophages The above glycoprotein was added with 20% fetal bovine serum.
30 ml of McCoy's 5A medium was added at a rate of 100 μg per ml of medium, and 30 ml of medium was added to each Petri dish. The number of monocytes and macrophages per ml of medium was 106 . This was cultured for 3 days in a humidified incubator (37°C) under 5% carbon dioxide aeration.
A culture medium containing CSF was obtained. 4. Purification of culture medium The culture medium was collected and centrifuged at 2°C, 2000 xg for 10 minutes to obtain about 120 ml of clear supernatant. The obtained supernatant liquid was filtered and concentrated through an ultrafiltration membrane (manufactured by Amicon) that removes molecular weights of less than 10,000, and then
100 ml of 0.05M Tris-HCl buffer (PH7.2) was added, concentrated again, and the concentrate was dissolved in 5 ml of the buffer. Next, this solution was mixed with 0.05M Tris-HCl, PH
Adsorb onto a DEAE cellulose column (2.0 x 60 cm) equilibrated with 7.0 buffer, and
CSF was eluted by concentration gradient elution using a buffer solution containing 0.3M sodium chloride. The eluate was again concentrated using the ultrafiltration membrane device and equilibrated with 0.05M Tris-HCl, PH7.0 buffer.
This concentrated solution was passed through a Sephadex G-150 column (2.0 x 90 cm), developed with the buffer solution, and the molecular weight
Fraction equivalent to 65000-90000 and molecular weight 30000
Fractions corresponding to ~60,000 were collected. These fractions were combined and concentrated using the ultrafiltration device, and then distilled water was added to perform desalting and concentration treatment to approximately 5 ml.
A solution containing purified CSF was obtained. As a result of testing in the same manner as Test 1, this solution had the activity of forming 41,000 human granulocyte colonies per ml. Example 2 Monocytes and macrophages were separated from human peripheral blood in the same manner as in Example 1. Then, the purified glycoprotein prepared in the same manner as in Example 1 was added to serum-free McCoy's 5A medium at a concentration of 100 μl per ml of the medium.
Approximately 5 ml of a purified CSF-containing solution was obtained in the same manner as in Example 1 using the culture medium added at a ratio of 5 ml. As a result of testing in the same manner as Test 1, this solution was 1
It had the activity of forming 16,000 human granulocyte colonies per ml. Example 3 Monocytes and macrophages were separated from human peripheral blood in the same manner as in Example 1. Then, the glycoprotein-containing fraction (fraction A) prepared in the same manner as in Example 1 was added to McCoy's 5A medium containing no serum.
Using a medium added at a rate of 5 mg (83.3 μg as glycoprotein) per ml of the medium, culturing was carried out in the same manner as in Example 1 to obtain about 120 ml of culture solution.
This culture solution was dialyzed against distilled water, and the dialyzed solution was concentrated under reduced pressure at low temperature to obtain about 5 ml of a CSF-containing solution. As a result of testing in the same manner as Test 1, this solution had the activity of forming 36,700 human granulocyte colonies per ml. Example 4 Monocytes and macrophages were separated from human peripheral blood in the same manner as in Example 1. Then, a fraction containing glycoprotein (fraction B) prepared in the same manner as in Example 1 was mixed with human serum at a concentration of 10%.
Using a medium added to McCoy's 5A medium at a rate of 1 mg (83.3 μg as glycoprotein) per ml of medium,
Approximately 5 ml of purified CSF was prepared in the same manner as in Example 1.
A containing liquid was obtained. Tested in the same manner as Test 1, this solution yielded human granulocyte colonies per ml.
It had the activity of forming 43,200 pieces.

Claims (1)

【特許請求の範囲】 1 人末梢血から分離した単球及びマクロフアー
ジを、人尿から分離した人顆粒球を増殖する糖蛋
白質を含む組織培養用培地中で培養し、培養液中
に有効成分を産生せしめ、有効成分を回収するこ
とを特徴とする人顆粒球系幹細胞を分化増殖する
物質の製造方法。 2 培養が血清の存在または不存在において行な
われる特許請求の範囲第1項記載の方法。 3 存在する血清が人血清である特許請求の範囲
第2項記載の方法。 4 血清の量が培地の容量に基き少なくとも5%
である特許請求の範囲第3項記載の方法。 5 該糖蛋白質の含有量が培地1ml当り少なくと
も0.1μgであることを特徴とする特許請求の範
囲第1項又は第2項記載の方法。 6 該糖蛋白質が尿蛋白質を付随する部分的精製
物であることを特徴とする特許請求の範囲第1項
記載の人顆粒球系幹細胞を分化増殖する物質の製
造方法。 7 単球及びマクロフアージの細胞接種量が、培
地1ml当り少なくとも105個であることを特徴と
する特許請求の範囲第1項記載の方法。
[Claims] 1. Monocytes and macrophages isolated from human peripheral blood are cultured in a tissue culture medium containing a glycoprotein that proliferates human granulocytes isolated from human urine, and an active ingredient is added to the culture medium. A method for producing a substance for differentiating and proliferating human granulocytic stem cells, characterized by producing the substance and recovering the active ingredient. 2. The method according to claim 1, wherein the culturing is carried out in the presence or absence of serum. 3. The method according to claim 2, wherein the serum present is human serum. 4 The amount of serum is at least 5% based on the volume of the medium.
The method according to claim 3, wherein: 5. The method according to claim 1 or 2, characterized in that the content of said glycoprotein is at least 0.1 μg per ml of medium. 6. The method for producing a substance for differentiating and proliferating human granulocytic stem cells according to claim 1, wherein the glycoprotein is a partially purified product accompanied by urine protein. 7. The method according to claim 1, characterized in that the inoculated amount of monocytes and macrophages is at least 10 5 cells/ml of medium.
JP9235579A 1979-07-20 1979-07-20 Production of substance capable of differentiation and multiplication of stem cells of human granulocyte Granted JPS5618591A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP9235579A JPS5618591A (en) 1979-07-20 1979-07-20 Production of substance capable of differentiation and multiplication of stem cells of human granulocyte
US06/169,107 US4342828A (en) 1979-07-20 1980-07-15 Method for producing substance capable of stimulating differentiation and proliferation of human granulopoietic stem cells
DE19803027105 DE3027105A1 (en) 1979-07-20 1980-07-17 METHOD FOR PRODUCING A FACTOR STIMULATING THE PROLIFERATION AND DIFFERENTIATION OF HUMAN GRANULOPOETIC STEM CELLS
GB8023347A GB2058081B (en) 1979-07-20 1980-07-17 Method of producing a substance for curing human granulocytopoenia
CA356,422A CA1128881A (en) 1979-07-20 1980-07-17 Method for producing substance capable of stimulating differentiation and proliferation of human granulopoietic stem cells
CH550580A CH644520A5 (en) 1979-07-20 1980-07-18 METHOD FOR PRODUCING A FACTOR STIMULATING PROLIFERATION AND DIFFERENTIATION OF HUMAN GRANULOPOETIC STEM CELLS.
FR8015923A FR2461500A1 (en) 1979-07-20 1980-07-18 PROCESS FOR PRODUCING A SUBSTANCE CAPABLE OF STIMULATING THE PROLIFERATION AND DIFFERENTIATION OF HUMAN GRANULOPOIETIC STEM CELLS
SE8005256A SE451850B (en) 1979-07-20 1980-07-18 SET TO MAKE A GLYCOPROTEIN WITH KNOWN ABILITY TO STIMULATE EDUCATION AND DIFFERENTIZATION OF HUMAN GRANULOCYTES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9235579A JPS5618591A (en) 1979-07-20 1979-07-20 Production of substance capable of differentiation and multiplication of stem cells of human granulocyte

Publications (2)

Publication Number Publication Date
JPS5618591A JPS5618591A (en) 1981-02-21
JPS6237605B2 true JPS6237605B2 (en) 1987-08-13

Family

ID=14052084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9235579A Granted JPS5618591A (en) 1979-07-20 1979-07-20 Production of substance capable of differentiation and multiplication of stem cells of human granulocyte

Country Status (1)

Country Link
JP (1) JPS5618591A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618778B2 (en) * 1985-10-04 1994-03-16 中外製薬株式会社 Leukopenia treatment

Also Published As

Publication number Publication date
JPS5618591A (en) 1981-02-21

Similar Documents

Publication Publication Date Title
US4342828A (en) Method for producing substance capable of stimulating differentiation and proliferation of human granulopoietic stem cells
Burgess et al. Stimulation by human placental conditioned medium of hemopoietic colony formation by human marrow cells
Dinarello et al. Demonstration and characterization of two distinct human leukocytic pyrogens
Nicola et al. Separation of functionally distinct human granulocyte-macrophage colony-stimulating factors
Nicola et al. Preparation of colony stimulating factors from human placental conditioned medium
JPS6030291B2 (en) HGI glycoprotein that promotes differentiation and proliferation of human granulocytes, method for producing HGI glycoprotein, and therapeutic agent for leukopenia containing HGI glycoprotein
Faradji et al. Large scale isolation of human blood monocytes by continuous flow centrifugation leukapheresis and counterflow centrifugation elutriation for adoptive cellular immunotherapy in cancer patients
US20080319163A1 (en) Method for Isolating and Purifying Immuno-Modulating Polypeptide from Cow Placenta
CA1063019A (en) Extracts of the haemopoietic system
JPS6154040B2 (en)
JPS6236326A (en) Remedy for disease of hematopoietic organ
JPS62223126A (en) Growth factor for blood stem cell
EP0516845B1 (en) Novel megakaryocytic colony stimulating factor and process for its preparation
JPS6237605B2 (en)
JPS6237606B2 (en)
JPS6041615A (en) Preparation of colony stimulating factor
SE451844B (en) GLYCOPROTEIN, PROCEDURE FOR PREPARING THEREOF AND THERAPEUTIC AGENTS INCLUDING THE GLYCOPROTEIN
RU2799637C1 (en) Method of producing biologically active peptide-amino acid preparation based on human blood plasma
EP0417129B1 (en) Lung growth stimulatory and inhibitory factors for carcinoma tumor cells
Sieber Chromatography of human urinary erythropoietin and granulocyte colony-stimulating factor on insolubilized phytohaemagglutinin
KR920003167B1 (en) Process for producing human interferon
JPH03145499A (en) Human monocyto growth factor
Calcagno et al. Evidence of the existence of a factor that induces Fc receptors on bone marrow cells
JPH03504978A (en) Human neutrophil granulocyte terminal stage maturation factor and its production and use
Earney Effect of Aging and State of Health on Colony Stimulating Factor Levels