JPS6237511B2 - - Google Patents

Info

Publication number
JPS6237511B2
JPS6237511B2 JP5200579A JP5200579A JPS6237511B2 JP S6237511 B2 JPS6237511 B2 JP S6237511B2 JP 5200579 A JP5200579 A JP 5200579A JP 5200579 A JP5200579 A JP 5200579A JP S6237511 B2 JPS6237511 B2 JP S6237511B2
Authority
JP
Japan
Prior art keywords
heating element
furnace
mix
resistant material
carbon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5200579A
Other languages
Japanese (ja)
Other versions
JPS55159585A (en
Inventor
Teikei Ri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI SONETSU KAIHATSU KK
Original Assignee
KOKUSAI SONETSU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI SONETSU KAIHATSU KK filed Critical KOKUSAI SONETSU KAIHATSU KK
Priority to JP5200579A priority Critical patent/JPS55159585A/en
Publication of JPS55159585A publication Critical patent/JPS55159585A/en
Publication of JPS6237511B2 publication Critical patent/JPS6237511B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気的な接触抵抗による発熱体の製造
方法に関するものである。 従来の此種発熱体としては炭素粒子が用いられ
ているが、炭素粒子は高温域で抵抗が急激に小さ
くなる特性があるから、これを電極間に充填して
通電すると、温度制御が困難である他、温度上昇
時における電極間電圧の変動も大きいから、電流
制御が複雑になると云う不利益がある。 本発明はこの様な不利益を一掃出来る発熱体の
製造方法を提供するものである。 以下本発明方法を詳述すると、本発明方法は、
植物を炭化すると共に微粒子化して炭素粒を得る
第1工程と、低温時に絶縁性を呈する一方、高温
時には導体又は半導体となる無機質耐熱材の微粒
子を上記炭素粒に混合すると共にこれに炭化可能
な接着剤溶液を添加して混〓する第2工程と、こ
の混〓した練片を焼結する第3工程と、この焼結
された練片を冷却後に粉砕する第4工程とを有す
るものである。上記無機質耐熱材としては、金属
化合物を使用すれば良く、特に第一リン酸カルシ
ウム、第二リン酸カルシウム、第三リン酸カルシ
ウム、水酸化カルシウム、酸化カルシウム、炭化
カルシウム、ケイ酸カルシウム、アルミナ、溶触
アルミナ、D−ソーダアルミナ、アルミナホワイ
ト、ケイ酸アルミナ、酸化アルミニウム、ケイ酸
化合物、窒化ケイ素、ゼオライト、タングステン
化合物、ホウ素化合物、例えばホウ砂、窒化ホウ
素、炭化ホウ素ケイ酸、ジルコニウム、酸化ジル
コニウム等が考えられる。 この金属化合物は製出発熱体に含有されていれ
ば良いから、当初の第2工程では、カルシウム、
ケイ酸、シリコンを用いて、此等物質が電気炉内
での焼結工程中に酸化されて金属化合物となる様
にしても良いし、或は又この焼結工程を炭化雰囲
気や窒化雰囲気で行つて、此等物質を炭化物や窒
化物にしても良い。 以下に実施例を示す。 実施例 1 粒度500メツシユの植物炭化物5部に、粒度500
メツシユの硅石を1部加え、これをポリビニルア
ルコール0.5部と水1部との混合溶液で混〓し、
次いでこの混〓練片を電気炉に入れ、1500℃で1
時間焼結し、更に冷却後粉砕且つ選別して0.1〜
1m/mの大きさの発熱体を得た。 この発熱体を幅50m/m、長さ100m/m、深
さ50m/mの炉に充填して長さ方向両側にある電
極間に通電した処表1に示す如き結果が得られ
た。
The present invention relates to a method of manufacturing a heating element using electrical contact resistance. Conventionally, carbon particles are used as this type of heating element, but since carbon particles have the characteristic that their resistance decreases rapidly in high temperature ranges, it is difficult to control the temperature when they are filled between electrodes and energized. Another disadvantage is that current control becomes complicated because the interelectrode voltage fluctuates greatly when the temperature rises. The present invention provides a method for manufacturing a heating element that can eliminate such disadvantages. The method of the present invention will be described in detail below.
The first step is to carbonize the plant and make it into fine particles to obtain carbon grains, and the second step is to mix fine particles of an inorganic heat-resistant material, which exhibits insulating properties at low temperatures and becomes a conductor or semiconductor at high temperatures, with the carbon grains, which can be carbonized. It has a second step of adding and mixing an adhesive solution, a third step of sintering the mixed dough, and a fourth step of crushing the sintered dough after cooling. be. As the inorganic heat-resistant material, metal compounds may be used, particularly monocalcium phosphate, dibasic calcium phosphate, tribasic calcium phosphate, calcium hydroxide, calcium oxide, calcium carbide, calcium silicate, alumina, molten alumina, D-soda. Alumina, alumina white, alumina silicate, aluminum oxide, silicate compounds, silicon nitride, zeolites, tungsten compounds, boron compounds such as borax, boron nitride, boron silicate, zirconium, zirconium oxide, etc. are considered. This metal compound only needs to be contained in the starting heating element, so in the initial second step, calcium,
Silicic acid or silicon may be used so that these substances are oxidized into metal compounds during the sintering process in an electric furnace, or the sintering process may be performed in a carbonizing or nitriding atmosphere. Then, these substances may be made into carbides or nitrides. Examples are shown below. Example 1 5 parts of vegetable carbonized material with particle size of 500 mesh
Add 1 part of mesh silica, mix this with a mixed solution of 0.5 part of polyvinyl alcohol and 1 part of water,
Next, this mixed piece was placed in an electric furnace and heated at 1500℃ for 1 hour.
Sintered for a time, further cooled, crushed and sorted to 0.1~
A heating element with a size of 1 m/m was obtained. This heating element was filled in a furnace with a width of 50 m/m, a length of 100 m/m, and a depth of 50 m/m, and electricity was applied between the electrodes on both sides in the longitudinal direction. Results as shown in Table 1 were obtained.

【表】 次に、同一の炉内へ従来同様に植物炭素粒子の
みを充填して通電した処表2の如き結果であつ
た。
[Table] Next, the same furnace was filled with only plant carbon particles and energized in the same manner as before, and the results were as shown in Table 2.

【表】 尚上記実験では初期電圧、電流値を一定に規制
したが、実際にはこの様な規制をしないから、初
期電流値は発熱体の接触抵抗により炉毎に異る。 以上の実験により、本発明方法により得られた
発熱体は、時間経過中における電圧降下特性及び
電流増加特性が従来の炭素粒子に比べて緩やかで
ある事が確認されたと共に、炉内温度も従来に比
して高い事が認められた。 実施例 2 粒度500メツシユ以下の木炭粉末4部に、粒度
500メツシユ以下の第三リン酸カルシウム1部
と、粒度500メツシユ以下の硅石1部を加え、こ
れをポリビニルアルコール0.1部と水2部との溶
液で混〓し、練片に成型乾燥後1500℃で1時間焼
結し、次いでこれを冷却した後粉砕して0.1〜1
m/mの大きさの発熱体を得た。 この発熱体を実験1に用いた炉内に充填し黒鉛
電極を用いて通電した処下記結果を得た。
[Table] In the above experiment, the initial voltage and current values were regulated to be constant, but in reality, such regulation is not done, so the initial current value varies from furnace to furnace depending on the contact resistance of the heating element. Through the above experiments, it was confirmed that the heating element obtained by the method of the present invention has gentle voltage drop characteristics and current increase characteristics over time compared to conventional carbon particles, and the furnace temperature was also lower than that of conventional carbon particles. was found to be higher than that of Example 2 To 4 parts of charcoal powder with a particle size of 500 mesh or less,
Add 1 part of tricalcium phosphate with a particle size of 500 mesh or less and 1 part of silica with a particle size of 500 mesh or less, mix this with a solution of 0.1 part of polyvinyl alcohol and 2 parts of water, mold it into a piece, dry it, and heat it at 1500℃. Sintered for an hour, then cooled and crushed to 0.1~1
A heating element with a size of m/m was obtained. This heating element was filled in the furnace used in Experiment 1 and energized using a graphite electrode, and the following results were obtained.

【表】 この実験では商用電源を用いたため、定電圧で
の通電となつたが、前述同様初期電流値は各炉毎
の接触抵抗の変化で一定ではない。 この実験に用いた炉内に従来の炭素粒子のみの
発熱体を充填して通電した処下記結果を得た。
[Table] In this experiment, a commercial power source was used, so electricity was applied at a constant voltage, but as mentioned above, the initial current value was not constant due to changes in contact resistance for each furnace. The following results were obtained by filling the furnace used in this experiment with a conventional heating element made only of carbon particles and energizing it.

【表】 この実験により、本発明方法で得られた発熱体
の電流変化特性、温度上昇特性は従来の発熱体に
比しリニヤ特性を有している事が確認された。 実施例 3 粒度500メツシユの木炭4部と粒度500メツシユ
の酸化ジルコニウム1部とを混合し、これをポリ
ビニルアルコール0.5部と水2部との溶液で混〓
した後1800℃の温度で1時間焼成し、更に冷却後
に粉砕して0.5〜1m/mの大きさの発熱体を得
た。 この発熱体を実験1で用いた炉内に充填すると
共に電圧を経過時に制御して通電した処表5の如
き結果を得た。
[Table] Through this experiment, it was confirmed that the current change characteristics and temperature rise characteristics of the heating element obtained by the method of the present invention had linear characteristics compared to conventional heating elements. Example 3 4 parts of charcoal with a particle size of 500 mesh and 1 part of zirconium oxide with a particle size of 500 mesh were mixed, and this was mixed with a solution of 0.5 part of polyvinyl alcohol and 2 parts of water.
After that, it was fired at a temperature of 1800°C for 1 hour, and after further cooling, it was pulverized to obtain a heating element having a size of 0.5 to 1 m/m. This heating element was filled in the furnace used in Experiment 1, and the voltage was controlled during the elapse of time to energize the furnace, and results as shown in Table 5 were obtained.

【表】 この実験により、電圧値の制御によつて炉内温
度を容易に制御出来る事が確認された。 本発明方法により得られた発熱体は以上の如き
特性を有するものであるから、下記効果を期待出
来る。 本方法により得られた発熱体は、炭素粒子と無
機質耐熱材とにより構成されており、この無機質
耐熱材は所定の高温に至るまで電気的に絶縁性を
有する一方所定の高温に至ると半導体又は導体と
して電気的抵抗値を有する事になる。 従つて発熱体の発熱量は高温領域で大きくなる
と共に、以後の発熱体全体の抵抗値変化は、無機
質耐熱材の分だけは一定であるから、炉内の温度
は高温領域で上昇率が大きくなる一方発熱体の抵
抗変化は従来の炭素粒子のみの場合に比較して緩
やかになると考えられる。 本方法の発熱体は無機質耐熱材を含有している
から保熱性が良く、このため炉内温度の上昇特性
を高温領域で促進する様改良出来る他、高温領域
での抵抗変化が緩やかであるから電圧、電流の制
御が容易となる。
[Table] This experiment confirmed that the temperature inside the furnace can be easily controlled by controlling the voltage value. Since the heating element obtained by the method of the present invention has the above characteristics, the following effects can be expected. The heating element obtained by this method is composed of carbon particles and an inorganic heat-resistant material, and while this inorganic heat-resistant material has electrical insulation properties up to a predetermined high temperature, it becomes a semiconductor or As a conductor, it has an electrical resistance value. Therefore, the calorific value of the heating element increases in the high-temperature range, and the subsequent change in resistance of the entire heating element is constant due to the inorganic heat-resistant material, so the temperature inside the furnace increases at a large rate in the high-temperature range. On the other hand, it is thought that the change in resistance of the heating element will be gentler than in the case of conventional carbon particles only. Since the heating element of this method contains an inorganic heat-resistant material, it has good heat retention properties, so it can be improved to accelerate the temperature increase in the furnace in the high temperature range, and the resistance change in the high temperature range is gradual. Voltage and current can be easily controlled.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化植物の微粒子と、所定温度以下では電気
的に絶縁性を呈する反面所定温度以上では導体又
は半導体となる様な無機質耐熱材の微粒子とを混
〓すると共に混〓して得た練片を焼結し、次いで
この練片を冷却してから粉砕して所要大きさの粒
子を選別回収する事を特徴とした電気抵抗発熱体
の製造方法。
1. Mix and mix fine particles of a carbonized plant with fine particles of an inorganic heat-resistant material that exhibits electrical insulation at a certain temperature or below, but becomes a conductor or a semiconductor at a certain temperature or above. A method for manufacturing an electric resistance heating element, which comprises sintering, then cooling and pulverizing the powder to select and collect particles of a required size.
JP5200579A 1979-04-28 1979-04-28 Method of manufacturing electric resistance heater Granted JPS55159585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200579A JPS55159585A (en) 1979-04-28 1979-04-28 Method of manufacturing electric resistance heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200579A JPS55159585A (en) 1979-04-28 1979-04-28 Method of manufacturing electric resistance heater

Publications (2)

Publication Number Publication Date
JPS55159585A JPS55159585A (en) 1980-12-11
JPS6237511B2 true JPS6237511B2 (en) 1987-08-12

Family

ID=12902699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200579A Granted JPS55159585A (en) 1979-04-28 1979-04-28 Method of manufacturing electric resistance heater

Country Status (1)

Country Link
JP (1) JPS55159585A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126548A (en) * 1984-07-17 1986-02-05 小松 茂富 Electric resistance heater

Also Published As

Publication number Publication date
JPS55159585A (en) 1980-12-11

Similar Documents

Publication Publication Date Title
US2679545A (en) Amgient temf-jo
JPS6237511B2 (en)
JPH0826709A (en) Production of carbon material
JP2506552B2 (en) Electric resistance heating furnace and method for manufacturing electric resistance heating element using the heating furnace
US4292505A (en) Furnace for generating heat by electrical resistance
KR100401748B1 (en) A PTC ceramic pre-heater and the preparing method thereof
US2680771A (en) High-temperature resistor for
JPH0259468A (en) Production of isotropic graphite material modified to have high specific resistance
US4469925A (en) Inductive heating device utilizing a heat insulator
WO1981003238A1 (en) Resistant heat generating element and method of manufacturing same
JPS6237512B2 (en)
US1914939A (en) Nonmetallic resistor and method of making the same
US2357072A (en) Electrical insulating compositions
JPH0238548B2 (en)
JP2019064850A (en) Silicon carbide powder
JP2766753B2 (en) Manufacturing method of low sputter graphite material
SU532567A1 (en) The method of obtaining graphitized products
SU823358A1 (en) Charge for producing refractory electroinsulating material
SU608271A1 (en) Method of manufacturing current-conducting material for heaters
RU1574094C (en) Semiconductor ceramic material for manufacture of posistors
JP2000313661A (en) Discharge plasma sintered compact and its production
SU726064A1 (en) Refractory packing mass
JPH04349387A (en) Conductive heating element
JPH0118004B2 (en)
JP2000048938A (en) Manufacture of carbon heating element