JPS6237213B2 - - Google Patents

Info

Publication number
JPS6237213B2
JPS6237213B2 JP57210349A JP21034982A JPS6237213B2 JP S6237213 B2 JPS6237213 B2 JP S6237213B2 JP 57210349 A JP57210349 A JP 57210349A JP 21034982 A JP21034982 A JP 21034982A JP S6237213 B2 JPS6237213 B2 JP S6237213B2
Authority
JP
Japan
Prior art keywords
load
intake
low
passage
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57210349A
Other languages
Japanese (ja)
Other versions
JPS59101543A (en
Inventor
Asao Tadokoro
Haruo Okimoto
Ikuo Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP57210349A priority Critical patent/JPS59101543A/en
Priority to DE19833337518 priority patent/DE3337518A1/en
Priority to US06/542,584 priority patent/US4562804A/en
Publication of JPS59101543A publication Critical patent/JPS59101543A/en
Publication of JPS6237213B2 publication Critical patent/JPS6237213B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/08Charging, e.g. by means of rotary-piston pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 本発明は、ロータリピストンエンジンの吸気装
置に関し、詳しくは低負荷用と高負荷用との2系
統のサイド吸気ポート式の2気筒ロータリピスト
ンエンジンにおいて吸気通路内に発生する吸気圧
力波を利用してエンジン高負荷高回転時に過給効
果を得るようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for a rotary piston engine, and more particularly, the present invention relates to an intake system for a rotary piston engine. This invention relates to a device that uses intake pressure waves to obtain a supercharging effect when the engine is under high load and high rotation speed.

一般に、このような2系統のサイド吸気ポート
式の2気筒ロータリピストンエンジンは、2節ト
ロコイド状の内周面を有するロータハウジングと
その両側に位置するハウジングとで形成されたケ
ーシング内にそれぞれ配設された略三角形状のロ
ータが、エキセントリツクシヤフトに支承され該
シヤフトの回転角で180゜の位相差を持つて遊星
回転運動し、かつ低負荷用絞り弁を備えた低負荷
用吸気通路と高負荷用絞り弁を備えた高負荷用吸
気通路とが上記低負荷用絞り弁下流において各々
独立して上記各サイドハウジングに設けた低負荷
用および高負荷用吸気ポートによつて作動室に開
口するものであつて、両気筒間で上記180゜の位
相差を保ちながら各気筒においてロータの回転に
伴い吸気、圧縮、爆発、膨張および排気の各行程
を順次行うものである。そして、エンジンの低負
荷時には、上記低負荷用絞り弁のみを開作動して
低負荷用吸気通路のみから吸気を供給することに
より、吸気流速を速めて燃焼安定性を向上させる
一方、エンジンの高負荷時には、高負荷用絞り弁
をも開作動して高負荷用吸気通路からも吸気の供
給を行うことにより充填効率を高めて出力向上を
図るようにした、いわゆるデユアルインダクシヨ
ン方式と称されるものである。尚、上記低負荷用
絞り弁を低負荷用吸気通路内に設ける型式の他
に、低負荷用吸気通路と高負荷用吸気通路との分
岐部上流に設ける型式のものも含まれる。
Generally, such a two-system side intake port type two-cylinder rotary piston engine is arranged in a casing formed by a rotor housing having a two-section trochoidal inner peripheral surface and housings located on both sides of the rotor housing. A roughly triangular rotor is supported on an eccentric shaft and rotates planetarily with a phase difference of 180 degrees at the rotation angle of the shaft, and is connected to a low-load intake passage equipped with a low-load throttle valve and a low-load intake passage equipped with a low-load throttle valve. A high-load intake passage equipped with a load throttle valve opens into the working chamber through low-load and high-load intake ports provided independently in each of the side housings downstream of the low-load throttle valve. The cylinders sequentially perform the intake, compression, explosion, expansion, and exhaust strokes as the rotor rotates while maintaining the above-mentioned 180° phase difference between the two cylinders. When the engine is under low load, only the low-load throttle valve is opened and intake air is supplied only from the low-load intake passage, thereby increasing the intake flow rate and improving combustion stability. When under load, the high-load throttle valve is also opened to supply intake air from the high-load intake passage, increasing filling efficiency and increasing output. This is the so-called dual induction system. It is something. In addition to the type in which the low-load throttle valve is provided in the low-load intake passage, there is also a type in which the low-load throttle valve is provided upstream of the branch between the low-load intake passage and the high-load intake passage.

ところで、従来、このようなロータリピストン
エンジンにおいて、吸気通路に過給機を設けて吸
気の過給を行うことにより、充填効率を高めて出
力向上を図るようにすることはよく知られている
が、過給機を要するため、構造が大がかりとなる
とともにコストアツプとなる嫌いがあつた。
By the way, it is well known that conventionally, in such a rotary piston engine, a supercharger is installed in the intake passage to supercharge the intake air, thereby increasing the charging efficiency and increasing the output. However, since it requires a supercharger, the structure becomes large-scale and costs increase.

また、従来、吸気圧力波により過給効果を得る
技術として、実公昭45―2321号公報に開示されて
いるように、単一気筒のロータリピストンエンジ
ンにおいて、吸気管を寸法の異なる2本の通路に
分け、それぞれ別の吸気ポートを有し、エンジン
高回転時は2本の吸気通路を用い、低回転時は閉
塞位置の遅い方の吸気通路を閉止し、吸気を早目
に閉塞することにより、吸気管の寸法やエンジン
回転数の関数である吸気の最大圧力時点での吸気
の閉塞による過給作用を利用して広範囲のエンジ
ン回転域に亙つて好適な充填効率を得るようにし
たものが提案されている。しかし、このものは、
単一気筒のロータリピストンエンジンに対するも
のであつて、吸気通路内で発生する吸気圧力波を
どのように利用するのか、その構成、作用が定か
でなく、直ちに実用に供し得ないものであつた。
しかも、吸気ポートとしてペリフエラルポートを
用いているため、吸気ポートは吸気作動室が閉じ
る前に排気作動室と連通することになり、排気作
動室からの排気ガスの吹き返しにより過給効果を
得ることが困難であつた。特に、近年の市販車で
は、騒音低減や排気ガス浄化のためにエンジン排
圧が上昇し、高回転高負荷時、通常のエンジンで
400〜600mmHg(ゲージ圧)程度に、ターボ過給
機付エンジンでは1000mmHg以上になつており、
上記ペリフエラルポート方式による充填効率向上
は期待できないものとなつている。
Furthermore, conventionally, as a technique for obtaining a supercharging effect using intake pressure waves, as disclosed in Japanese Utility Model Publication No. 45-2321, in a single-cylinder rotary piston engine, the intake pipe was divided into two passages with different dimensions. The engine is divided into two sections, each with a separate intake port, and when the engine is running at high speeds, two intake passages are used, and when the engine is running at low speeds, the intake passage that is at the later closing position is closed, and the intake air is blocked earlier. , which utilizes the supercharging effect due to intake air blockage at the point of maximum intake pressure, which is a function of intake pipe dimensions and engine speed, to obtain suitable charging efficiency over a wide range of engine speeds. Proposed. But this one is
It was designed for a single-cylinder rotary piston engine, and it was not clear how to utilize the intake pressure waves generated in the intake passage, and its structure and operation were not clear, so it could not be put into practical use right away.
Moreover, since a peripheral port is used as the intake port, the intake port communicates with the exhaust working chamber before the intake working chamber closes, and a supercharging effect can be obtained by blowing back exhaust gas from the exhaust working chamber. was difficult. In particular, in recent years commercially available cars, engine exhaust pressure has increased to reduce noise and purify exhaust gas.
It is around 400 to 600 mmHg (gauge pressure), and in turbocharged engines it is over 1000 mmHg.
Improvement in filling efficiency by the peripheral port method cannot be expected.

そこで、本発明者等は、ロータリピストンエン
ジンにおけるサイド吸気ポートの吸気特性を検討
するに、吸気ポート開口時には作動室の残留排気
ガスの圧力によつて吸気が圧縮され、吸気通路内
の吸気ポート部分に圧縮波が発生することを知見
した。このことから、一方の気筒での上記開口時
の圧縮波を他方の気筒の特に上記吸気の吹き返し
が生じる全閉直前の吸気ポートに作用せしめれば
効果的に過給効果が得られること(以下、排気干
渉効果という)を見い出したのである。そして、
この排気干渉効果は、上述の如く、近年、エンジ
ン排気系に排気浄化用の触媒装置が介設されてエ
ンジン排圧が高くなつていることから、その効果
が顕著である。
Therefore, when examining the intake characteristics of the side intake port in a rotary piston engine, the present inventors found that when the intake port is opened, the intake air is compressed by the pressure of the residual exhaust gas in the working chamber, and the intake port portion in the intake passage It was discovered that compression waves are generated. From this, it can be seen that if the compression wave at the time of opening in one cylinder is applied to the intake port of the other cylinder, especially just before the intake port is fully closed, where the intake air blowback occurs, an effective supercharging effect can be obtained (hereinafter referred to as , the exhaust interference effect). and,
As mentioned above, this exhaust interference effect is remarkable because in recent years, engine exhaust pressure has been increased due to the installation of catalyst devices for exhaust purification in engine exhaust systems.

そして、上記の如き2系統のサイド吸気ポート
式の2気筒ロータリピストンエンジンにおいて
は、上記排気干渉効果を得るに当つて、高負荷用
吸気通路と低負荷用吸気通路との各々独立した2
系統の吸気通路を有することから、各々の吸気系
統で排気干渉効果を得ることができ効果的であ
る。
In the two-system side intake port type two-cylinder rotary piston engine as described above, in order to obtain the above-mentioned exhaust interference effect, the high-load intake passage and the low-load intake passage are separated by two independent passages.
Since the system has intake passages, it is possible to obtain an exhaust interference effect in each intake system, which is effective.

尚、サイド吸気ポート式と異なり、吸気通路が
ロータハウジングに開口するペリフエラル吸気ポ
ート式にあつては、該吸気ポートが常に作動室に
開口しているので上記のような効果は生じない。
Note that, unlike the side intake port type, in the peripheral intake port type in which the intake passage opens into the rotor housing, the above effect does not occur because the intake port always opens into the working chamber.

すなわち、本発明の目的は、上記の如き2系統
のサイド吸気ポート式の2気筒ロータリピストン
エンジンにおいて、高負荷用および低負荷用吸気
ポートの各開口期間、各気筒の高負荷用および低
負荷用吸気通路同志を連通する連通路の位置、並
びに両気筒の高負荷用吸気ポート間および低負荷
用吸気ポート間の通路長さを適切に設定すること
により、高出力を要する5000〜7000rpmのエンジ
ン高回転時、高負荷用吸気系統での排気干渉効果
と低負荷用吸気系統での排気干渉効果との相剰作
用により強い過給効果を得、よつて過給機等を用
いることなく既存の吸気系の僅かな設計変更によ
る簡単な構成によつてエンジン高負荷高回転時の
充填効率を著しく高めて出力向上を大巾にかつ有
効に図らんとするものである。
That is, an object of the present invention is to provide a two-system side intake port type two-cylinder rotary piston engine as described above, with each opening period of the high-load and low-load intake ports, and the high-load and low-load intake ports of each cylinder. By appropriately setting the position of the communication passage that connects the intake passages and the length of the passage between the high-load intake ports and the low-load intake ports of both cylinders, the engine speed of 5000 to 7000 rpm, which requires high output, can be improved. During rotation, a strong supercharging effect is obtained due to the mutual effect of the exhaust interference effect in the high-load intake system and the exhaust interference effect in the low-load intake system, and therefore the existing intake air can be used without using a supercharger etc. The aim is to significantly and effectively improve the output by significantly increasing the charging efficiency at high engine load and high rotation speeds through a simple configuration with slight design changes to the system.

この目的を達成するため、本発明の構成は、2
節トロコイド状の内周面を有するロータハウジン
グとその両側に位置するサイドハウジングとで形
成されるケーシング内にそれぞれ配設された略三
角形状のロータが、エキセントリツクシヤフトに
支承され該シヤフトの回転角で180゜の位相差を
持つて遊星回転運動し、かつ低負荷用吸気通路と
高負荷用吸気通路とが上記低負荷用絞り弁下流に
おいて各々独立して各サイドハウジングに設けた
低負荷用および高負荷用吸気ポートによつて作動
室に開口する2気筒ロータリピストンエンジンに
おいて、 a 高負荷用吸気ポートの開口期間θsをエキセ
ントリツクシヤフトの回転角で270〜320゜の範
囲内に設定すること、 b 低負荷用吸気ポートの開口期間θpをエキセ
ントリツクシヤフトの回転角で230〜290゜の範
囲内に設定すること、 c 各気筒の高負荷用吸気通路を絞り弁下流にお
いて高負荷用連通路で連通すること、 d 各気筒の低負荷用吸気通路を絞り弁下流にお
いて低負荷用連通路で連通すること、 e 上記高負荷用連通路およびその下流の高負荷
用吸気通路によつて形成される両気筒の高負荷
用吸気ポート間の通路長さLsを、5000〜
7000rpmのエンジン高回転時、一方の気筒の高
負荷用吸気ポート開口時に高負荷用吸気通路内
に発生する開口時圧縮波を上記高負荷用連通路
を介して他方の気筒の全閉直前の高負荷用吸気
ポートに伝播させるように0.57〜1.37mの範囲
内に設定すること、 f 上記低負荷用連通路およびその下流の低負荷
用吸気通路によつて形成される両気筒の低負荷
用吸気ポート間の通路長さLpを、5000〜
7000rpmのエンジン高回転時、一方の気筒の低
負荷用吸気ポート開口時に低負荷用吸気通路内
に発生する圧縮波を上記低負荷用連通路を介し
て他方の気筒の全閉直前の低負荷用吸気ポート
に伝播させるように0.25〜1.03mの範囲内に設
定すること の条件のもとで、各気筒の全閉直前の低負荷用お
よび高負荷用吸気ポートにそれぞれ伝播した圧縮
波により過給を行うようにし、よつて高負荷用吸
気系統における気筒相互間の排気干渉効果と低負
荷用吸気系統における気筒相互間の排気干渉効果
との相剰効果により各吸気ポート全閉直前での吸
気の吹き返しを抑えて充填効率を効果的に著しく
高めるようにしたものである。
In order to achieve this objective, the configuration of the present invention is as follows:
Approximately triangular rotors are disposed within a casing formed by a rotor housing having a nodular trochoidal inner circumferential surface and side housings located on both sides of the rotor housing, and are supported by an eccentric shaft to adjust the rotation angle of the shaft. The low-load intake passage and the high-load intake passage are independently provided in each side housing downstream of the low-load throttle valve. In a two-cylinder rotary piston engine in which a high-load intake port opens into the working chamber, a. The opening period θs of the high-load intake port should be set within the range of 270 to 320 degrees in rotation angle of the eccentric shaft. (b) Setting the opening period θ p of the low-load intake port within the range of 230 to 290 degrees in rotation angle of the eccentric shaft; (c) Connecting the high-load intake passage of each cylinder to the high-load connection downstream of the throttle valve. (d) The low-load intake passages of each cylinder are connected by a low-load communication passage downstream of the throttle valve; (e) The above-mentioned high-load communication passage and the high-load intake passage downstream thereof are formed. The passage length L s between the high-load intake ports of both cylinders is set to 5000~
When the engine rotates at a high speed of 7000 rpm, the opening compression wave generated in the high-load intake passage when the high-load intake port of one cylinder is opened is transferred to the high-load intake port of the other cylinder through the high-load communication passage. Set within the range of 0.57 to 1.37m so as to propagate to the load intake port; The passage length L p between ports is 5000~
When the engine rotates at a high speed of 7000 rpm, the compression wave generated in the low-load intake passage when the low-load intake port of one cylinder is opened is transferred to the low-load intake passage just before the other cylinder is fully closed, via the low-load communication passage. Under the condition that the distance is set within the range of 0.25 to 1.03m so that the wave propagates to the intake port, supercharging is generated by the compression wave that propagates to the low-load and high-load intake ports just before each cylinder is fully closed. Therefore, due to the mutual effect of the exhaust interference effect between the cylinders in the high-load intake system and the exhaust interference effect between the cylinders in the low-load intake system, the intake air immediately before each intake port is fully closed is reduced. This suppresses blowback and effectively and significantly increases filling efficiency.

ここにおいて、上記排気干渉効果を得るエンジ
ン高回転時としての5000〜7000rpmの限定は、一
般に最高出力および最高速度がこの範囲に設定さ
れていることから、エンジンの高負荷高回転領域
であつて高出力を要し、充填効率向上、出力向上
に有効な領域であることに依る。
Here, the limitation of 5000 to 7000 rpm as the engine high speed to obtain the above exhaust interference effect is because the maximum output and maximum speed are generally set within this range. This depends on the fact that it requires a lot of power and is an effective area for improving filling efficiency and power.

また、上記設定事項aでの高負荷用吸気ポート
開口期間θsは、その上限である320゜は、サイド
吸気ポートを介して先行作動室と後続作動室とが
連通するのを防止するためで、ロータ側面による
実質的な開口期間よりもサイドシールによる開口
期間は約40゜大きくなり、このサイドシール開口
期間のラツプを避けるために間に40゜以上の間隔
を設ける必要があるので、これ以下に開口期間を
抑えることにより、サイドシール外側のサイドハ
ウジング内摺面とロータ側面との間の微小間隙
(通常200μ程度)を介しての吸気作動室とそれに
続く排気作動室との連通を防止し、アイドリング
のような低回転低負荷時における排気ガスの吸気
作動室への持ち込みを防止し安定した燃焼を確保
するものである。一方、その下限である270゜
は、吸入上死点(TDC)から下死点(BDC)ま
での幾何学的な吸気行程の最低期間であり、吸気
を効果的に行うためには、少なくとも開口期間を
これ以上に設定する必要がある。
In addition, the upper limit of the high-load intake port opening period θ s in setting item a above is 320° to prevent communication between the preceding working chamber and the following working chamber via the side intake port. , the opening period due to the side seal is approximately 40° larger than the actual opening period due to the rotor side surface, and it is necessary to provide an interval of 40° or more in order to avoid this side seal opening period lapping, so the opening period less than this is required. By suppressing the opening period, communication between the intake working chamber and the subsequent exhaust working chamber is prevented through the minute gap (usually about 200μ) between the inner sliding surface of the side housing on the outside of the side seal and the rotor side. This prevents exhaust gas from entering the intake working chamber during low engine speeds and low loads, such as when idling, thereby ensuring stable combustion. On the other hand, the lower limit of 270° is the minimum period of the geometrical intake stroke from top dead center (TDC) to bottom dead center (BDC). It is necessary to set the period longer than this.

この高負荷用吸気ポートの開閉時期の設定にあ
たつては、開時期を上死点よりも、また、閉時期
を下死点よりも遅らせる必要がある。これは、高
負荷用吸気ポートが主として受け持つ高回転域で
は吸入空気量の慣性によつて幾何学的な吸気行程
の効果が遅れ側にずれること、加えて、サイド吸
気ポートではその開時期を上死点側に近ずけると
サイドシールの回転側先端がポートに落ち込むた
め上死点後約30゜以降に設定しなければならない
ことによつている。
When setting the opening/closing timing of this high-load intake port, the opening timing must be delayed from the top dead center, and the closing timing must be delayed from the bottom dead center. This is because the effect of the geometrical intake stroke is delayed due to the inertia of the intake air amount in the high rotation range, which is mainly handled by the high-load intake ports, and in addition, the opening timing of the side intake ports is increased. This is because the tip of the rotating side of the side seal falls into the port as it approaches the dead center, so it must be set at about 30 degrees or more after the top dead center.

これに対し、低負荷用吸気ポートは、吸入空気
量が少なく慣性が小さい低回転域を主に受け持つ
ため、閉時期を下死点後約50゜以前にし吸気の吹
き返しを防ぐ一方、少なくともその開口期間を
230゜以上とることによつて必要な吸気の確保を
行う必要がある。従つて、低負荷用吸気ポートの
開口期間θpは、設定事項bのように230〜290゜
に設定される。
On the other hand, low-load intake ports are mainly responsible for the low-speed range where the amount of intake air is small and the inertia is small. period
It is necessary to secure the necessary intake air by setting the angle to 230° or more. Therefore, the opening period θ p of the low-load intake port is set to 230 to 290° as in setting item b.

尚、本発明の高負荷用および低負荷用吸気ポー
トの開口期間はロータ側面による吸吸気ポートの
実質的な開閉期間であつて、サイドシールによる
ものではない。これは、本発明で問題とする高い
回転域における有効な圧力波の発生、伝播に関し
ては、サイドシール外側の微小間隙は実質的に影
響を及ぼさないためである。
Incidentally, the opening period of the high-load and low-load intake ports of the present invention is the substantial opening/closing period of the intake ports by the side surface of the rotor, and is not due to the side seal. This is because the minute gap outside the side seal has no substantial effect on the generation and propagation of effective pressure waves in the high rotation range, which is the problem of the present invention.

また、上記設定事項cでの高負荷用連通路およ
び上記設定事項dでの低負荷用連通路の絞り弁下
流位置設定は、高負荷用および低負荷用吸気通路
の空気流量を制御する絞り弁の存在が圧力波の伝
播の抵抗となるのでそれを避けるためであり、圧
力波をその減衰を小さくして有効に伝播させるた
めである。
In addition, the downstream position setting of the throttle valve of the high-load communication passage in the above setting c and the low-load communication passage in the above setting d is the throttle valve that controls the air flow rate of the high-load and low-load intake passages. This is to avoid the presence of , which acts as a resistance to the propagation of pressure waves, and to propagate the pressure waves effectively by reducing their attenuation.

さらに、上記設定事項eでの両気筒の高負荷用
吸気ポート間の通路長さLsおよび上記設定事項
fでの両気筒の低負荷用吸気ポート間の通路長さ
pは、5000〜7000rpmのエンジン高回転時に排
気干渉効果を効果的に得るように設定されたもの
で、 Ls(P)=(θs(P)−180−θp) ×(60/360N)×a ……() の式から求められた値である。すなわち、上記式
において、θs,θpは高負荷用および低負荷用吸
気ポート開口期間でθs=270〜320゜、θp=230
〜290゜であり、180゜は両気筒間の位相差であ
り、またθpは各吸気ポート開口から開口時圧縮
波が実質的に発生するまでの期間と効果的に過給
を行うために該開口時圧縮波を伝播させる各吸気
ポート全閉直前の時期から全閉までの期間とを合
算した無効期間で、θp≒20゜であり、よつて
(θs(P)−180−θp)は一方の気筒での開口時圧
縮波発生から他方の気筒の各吸気ポートへの伝播
までに要するエキセントリツクシヤフトの回転角
度を表わす。また、Nはエンジン回転数でN=
5000〜7000rpmであり、60/360Nは1゜回転す
るのに要する時間(秒)を表わす。また、aは圧
力波の伝播速度(音速)であつて、20℃でa=
343m/sである。よつて、これらの値から、Ls
=0.57〜1.37m、Lp=0.25〜1.03mとなる。
Furthermore, the passage length L s between the high-load intake ports of both cylinders in the above setting e and the passage length L p between the low-load intake ports of both cylinders in the above setting f are 5000 to 7000 rpm. It is set to effectively obtain the exhaust interference effect at high engine speeds, L s(P) = (θ s(P) −180−θ p ) × (60/360N) × a ……( ) is the value obtained from the formula. That is, in the above formula, θ s and θ p are θ s = 270 to 320° and θ p = 230 during the intake port opening period for high load and low load.
~290°, 180° is the phase difference between both cylinders, and θ p is the period from the opening of each intake port until the compression wave is substantially generated at the time of opening, and the period for effective supercharging. The ineffective period is the sum of the period from just before fully closing to the period when each intake port is fully closed, which propagates the opening compression wave, and θ p ≒20°, so (θ s(P) −180 − θ p ) represents the rotation angle of the eccentric shaft required from generation of the compression wave at opening in one cylinder to propagation to each intake port of the other cylinder. Also, N is the engine speed and N=
5000 to 7000 rpm, and 60/360N represents the time (seconds) required to rotate 1 degree. Also, a is the propagation velocity (sound velocity) of the pressure wave, and at 20°C a=
It is 343m/s. Therefore, from these values, L s
=0.57~1.37m, L p =0.25~1.03m.

尚、上記()式では、圧力波の伝播に対する
吸入空気の流れの影響を無視している。これは、
流速が音速に比べて小さく、吸気通路の長さにほ
とんど変化をもたらさないためである。
Note that in the above equation (), the influence of the flow of intake air on the propagation of pressure waves is ignored. this is,
This is because the flow velocity is smaller than the speed of sound and causes almost no change in the length of the intake passage.

以下、本発明を図面に示す実施例に基づいて詳
細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図および第2図において、1Aおよび1B
は低負荷用と高負荷用との2系統のサイド吸気ポ
ート式の2気筒ロータリピストンエンジンにおけ
る第1気筒および第2気筒であつて、各気筒1
A,1Bは各々、2節トロコイド状の内周面2a
を有するロータハウジング2と、その両側に位置
し後述の低負荷用吸気通路20a,20bおよび
高負荷用吸気通路21a,21bが各々開口する
低負荷用吸気ポート3および高負荷用吸気ポート
4を備えたサイドハウジング5,5とで形成され
たケーシング6内を、略三角形状のロータ7が単
一のエキセントリツクシヤフト8に支承されて遊
星回転運動し、かつ各気筒1A,1Bのロータ
7,7はエキセントリツクシヤフト8の回転角で
180゜の位相差を持ち、上記各ロータ7の回転に
伴つてケーシング6内を3つの作動室9,9,9
に区画して、各々の気筒1A,1Bにおいて上記
180゜の位相差でもつて吸気、圧縮、爆発、膨張
および排気の各行程を順次行うものである。尚、
10は各気筒1A,1Bにおいてロータハウジン
グ2に設けられた排気ポート、11および12は
リーデイング側およびトレーリング側点火プラ
グ、13はロータ7の側面に装着されたサイドシ
ール、14はロータ7の各頂部に装着されたアペ
ツクスシール、15はロータ7の各頂部両側面に
装着されたコーナシールである。
In Figures 1 and 2, 1A and 1B
are the first and second cylinders in a two-system side intake port type two-cylinder rotary piston engine for low load and high load use, and each cylinder
A and 1B each have a two-section trochoidal inner peripheral surface 2a.
The rotor housing 2 includes a low-load intake port 3 and a high-load intake port 4 located on both sides of the rotor housing 2, in which low-load intake passages 20a, 20b and high-load intake passages 21a, 21b (described later) open respectively. A substantially triangular rotor 7 is supported by a single eccentric shaft 8 and rotates planetarily within a casing 6 formed by side housings 5, 5, and rotors 7, 7 of each cylinder 1A, 1B. is the rotation angle of eccentric shaft 8.
With a phase difference of 180°, three working chambers 9, 9, 9 move inside the casing 6 as each rotor 7 rotates.
In each cylinder 1A, 1B, the above
The intake, compression, explosion, expansion, and exhaust strokes are performed sequentially with a phase difference of 180°. still,
10 is an exhaust port provided in the rotor housing 2 for each cylinder 1A, 1B, 11 and 12 are leading side and trailing side spark plugs, 13 is a side seal attached to the side surface of the rotor 7, and 14 is each of the rotor 7. An apex seal 15 is attached to the top of the rotor 7, and corner seals 15 are attached to both sides of the top of the rotor 7.

上記低負荷用および高負荷用吸気ポート3,4
はロータ7側面によつて開閉され、高負荷用吸気
ポート4の開口期間θsはエキセントリツクシヤ
フト8の回転角で270〜320゜の範囲に設定されて
おり、低負荷用吸気ポート3の開口期間θpは230
〜290゜の範囲に設定されている。また、上記高
負荷用吸気ポート4の開口時期は低負荷用吸気ポ
ート3の開口時期とほぼ同時期に設定され、また
高負荷用吸気ポート4の閉口時期は低負荷用吸気
ポート3の閉口時期と同時期もしくは遅らせるよ
うに設定されている。
Above low load and high load intake ports 3, 4
is opened and closed by the side surface of the rotor 7, and the opening period θ s of the high-load intake port 4 is set in the range of 270 to 320 degrees based on the rotation angle of the eccentric shaft 8. The period θ p is 230
It is set in the range of ~290°. Further, the opening timing of the high-load intake port 4 is set to be approximately the same time as the opening timing of the low-load intake port 3, and the closing timing of the high-load intake port 4 is set to the closing timing of the low-load intake port 3. It is set to be at the same time as or later than that.

一方、16は一端がエアクリーナ17を介して
大気に開口して両気筒1A,1Bに吸気を供給す
るための主吸気通路であつて、該主吸気通路16
には、吸入空気量を検出するエアフローメータ1
8が配設されている。上記主吸気通路16はエア
フローメータ18下流において隔壁19によつて
主低負荷用吸気通路20と主高負荷用吸気通路2
1とに仕切られ、該主低負荷用吸気通路20に
は、エンジンの負荷の増大に応じて開作動し所定
負荷以上になると全開となるエンジンン低負荷時
の吸入空気量を制御する低負荷用絞り弁22が配
設され、また上記主高負荷用吸気通路21には、
エンジン負荷が所定負荷以上になると開作動する
エンジンン高負荷時の吸入空気量を制御する高負
荷用絞り弁23が配設されている。さらに、上記
主低負荷用吸気通路20は低負荷用絞り弁22下
流において同形状寸法の第1および第2低負荷用
吸気通路20a,20bに分岐されたのち各気筒
1A,1Bの低負荷用吸気ポート3,3を介して
作動室9,9に連通し、また上記主高負荷用吸気
通路21は高負荷用絞り弁23下流において同形
状寸法の第1および第2高負荷用吸気通路21
a,21bに分岐されたのち各気筒1A,1Bの
高負荷用吸気ポート4,4を介して作動室9,9
に連通しており、よつて各気筒1A,1Bに対し
て、低負荷用吸気通路20a,20bと高負荷用
吸気通路21a,21bとは低負荷用絞り弁22
下流において各々独立して作動室9に開口するよ
うに構成されている。
On the other hand, 16 is a main intake passage whose one end opens to the atmosphere via an air cleaner 17 to supply intake air to both cylinders 1A and 1B.
is equipped with an air flow meter 1 that detects the amount of intake air.
8 are arranged. The main intake passage 16 is connected to a main low-load intake passage 20 and a main high-load intake passage 2 by a partition wall 19 downstream of the air flow meter 18.
1, and the main low-load intake passage 20 has a low-load passage that opens in response to an increase in engine load and fully opens when the load exceeds a predetermined load to control the amount of intake air at low engine loads. A throttle valve 22 is provided in the main high-load intake passage 21.
A high-load throttle valve 23 is provided that opens when the engine load exceeds a predetermined load and controls the intake air amount during high engine load. Further, the main low-load intake passage 20 is branched downstream of the low-load throttle valve 22 into first and second low-load intake passages 20a and 20b having the same shape and dimensions, and then is branched into first and second low-load intake passages 20a and 20b for each cylinder 1A and 1B. The main high-load intake passage 21 communicates with the working chambers 9, 9 through the intake ports 3, 3, and the main high-load intake passage 21 has first and second high-load intake passages 21 having the same shape and dimensions downstream of the high-load throttle valve 23.
a, 21b, and then into the working chambers 9, 9 via the high-load intake ports 4, 4 of each cylinder 1A, 1B.
Therefore, for each cylinder 1A, 1B, the low load intake passages 20a, 20b and the high load intake passages 21a, 21b are connected to the low load throttle valve 22.
They are each configured to open into the working chamber 9 independently on the downstream side.

上記各高負荷用吸気通路21a,21bの最小
通路面積Asは各低負荷用吸気通路20a,20
bの最小通路面積Apよりも大きく(As>Ap
設定され、また各高負荷用吸気通路21a,21
bの通路長さlsは各低負荷用吸気通路20a,
20bの通路長さlpよりも短かく(ls<lp
設定されており、高負荷用吸気通路21a,21
bによる排気干渉効果での圧縮波の伝播をその減
衰を小さくして有効に行うようにしている。ま
た、上記各低負荷用吸気通路20a,20bには
それぞれ上記エアフローメータ18の出力(吸入
空気量)に応じて燃料噴射量が制御される電磁弁
式の燃料噴射ノズル24,24が配設されてい
る。
The minimum passage area A s of each of the above-mentioned high-load intake passages 21a, 21b is
larger than the minimum passage area A p of b (A s > A p )
and each high-load intake passage 21a, 21
The passage length l s of b is for each low-load intake passage 20a,
20b is shorter than the passage length l p (l s <l p )
The high load intake passages 21a, 21
The propagation of the compression wave due to the exhaust interference effect due to b is made more effective by reducing its attenuation. Further, electromagnetic valve type fuel injection nozzles 24, 24 whose fuel injection amount is controlled according to the output (intake air amount) of the air flow meter 18 are arranged in each of the low-load intake passages 20a, 20b, respectively. ing.

そして、上記主高負荷用吸気通路21の分岐部
は高負荷用絞り弁23下流に位置して、第1高負
荷用吸気通路21aと第2高負荷用吸気通路21
bとを連通する高負荷用連通路25を有する高負
荷用拡大室26によつて構成されている。上記高
負用連通路25の通路面積Acsは圧力波(排気干
渉効果での圧縮波)をその減衰を小さくして有効
に伝達するように第1、第2高負荷用吸気通路2
1a,21bの最小通路面積Asと同等かそれ以
上(Acs>As)に設定されている。
The branching portion of the main high-load intake passage 21 is located downstream of the high-load throttle valve 23, and includes a first high-load intake passage 21a and a second high-load intake passage 21.
It is constituted by a high load expansion chamber 26 having a high load communication passage 25 that communicates with b. The passage area Acs of the high-negative communication passage 25 is set to the first and second high-load intake passages 2 so as to reduce the attenuation of pressure waves (compression waves due to exhaust interference effect) and effectively transmit them.
It is set to be equal to or larger than the minimum passage area As of 1a and 21b (Acs>As).

また、上記主低負荷用吸気通路20の分岐部
は、同様に、低負荷用絞り弁22下流に位置し
て、第1低負荷用吸気通路20aと第2低負荷用
吸気通路20bとを連通する低負荷用連通路27
を有する低負荷用拡大室28によつて構成されて
いる。上記低負荷用連通路27の通路面積Acp
同じく圧力波を有効に伝達するように第1、第2
低負荷用吸気通路20a,20bの最小通路面積
pと同等かそれ以上(Acp≧Ap)に設定されて
いる。尚、上記各拡大室26,28は、エンジン
の加速時又は減速時等の過渡運転時でのサージタ
ンクとして機能し、燃料の良好な応答性を確保す
るものである。
Further, the branch portion of the main low-load intake passage 20 is similarly located downstream of the low-load throttle valve 22 and communicates the first low-load intake passage 20a and the second low-load intake passage 20b. Low load communication path 27
It is constituted by a low load expansion chamber 28 having a. The passage area A cp of the low-load communication passage 27 is set so that the first and second
It is set to be equal to or larger than the minimum passage area A p of the low-load intake passages 20a and 20b (A cp ≧A p ). Each of the enlarged chambers 26 and 28 functions as a surge tank during transient operation such as acceleration or deceleration of the engine, and ensures good fuel response.

さらに、上記両気筒1A,1Bの高負荷用吸気
ポート4,4間の通路長さLsは、高負荷用連通
路25の通路長さlcsと該連通路25下流の第
1、第2高負荷用吸気通路21a,21bの各通
路長さls,lsとを加算したもの(Ls=lcs
2ls)となり、5000〜7000rpmのエンジン高回転
時を基準として上記()式から、 Ls≒0.57〜1.37(m) に設定されている。
Further, the passage length L s between the high-load intake ports 4 and 4 of the two cylinders 1A and 1B is the passage length L cs of the high-load communication passage 25 and the first and second passages downstream of the communication passage 25. The sum of the passage lengths l s and ls of the high-load intake passages 21a and 21b (L s = l cs +
2l s ), and from the above formula (), L s is set to approximately 0.57 to 1.37 (m) based on the engine high rotation of 5000 to 7000 rpm.

加えて、上記両気筒1A,1Bの低負荷用吸気
ポート3,3間の通路長さLpは、低負荷用連通
路27の通路長さlcpと該連通路27下流の第
1、第2低負荷用吸気通路20a,20bの各通
路長さlp,lpとを加算したもの(Lp=lcp
2lp)となり、5000〜7000rpmのエンジン高回転
時を基準として上記()式から Lp=0.25〜1.03(m) に設定されている。
In addition, the passage length L p between the low-load intake ports 3 and 3 of the two cylinders 1A and 1B is equal to the passage length l cp of the low-load communication passage 27 and the first and second ports downstream of the communication passage 27. 2 The sum of the passage lengths l p and l p of the low-load intake passages 20a and 20b (L p = l cp +
2l p ), and L p is set to 0.25 to 1.03 (m) from the above formula () based on the engine high rotation of 5000 to 7000 rpm.

尚、第2図中、29は排気ポート10に接続さ
れた排気通路、30は該排気通路29の途中に介
設された触媒装置(図示せず)を補助する排気浄
化用の拡大マニホールドである。
In FIG. 2, 29 is an exhaust passage connected to the exhaust port 10, and 30 is an enlarged manifold for exhaust purification that assists a catalyst device (not shown) interposed in the middle of the exhaust passage 29. .

次に、上記実施例の作用を第3図により説明す
るに、高出力を要する5000〜7000rpmのエンジン
高回転時には、高負荷用絞り弁23の開作動によ
り第1,第2高負荷用吸気通路21a,21bが
開かれて各気筒1A,1Bの高負荷用吸気ポート
4,4からも低負荷用吸気ポート3,3とは独立
して吸気の供給を行つている。その際、一方の気
筒例えば第2気筒1Bの高負荷用吸気ポート4開
口時には残留排気ガスの圧力により吸気が圧縮さ
れて第2高負荷用吸気通路21b内の高負荷用吸
気ポート4部分に開口時圧縮波が発生する。それ
と同時に、第2気筒1Bの低負荷用吸気ポート3
開口時には低負荷用吸気通路20b内の低負荷用
吸気ポート3部分に開口時圧縮波が発生する。こ
れらの開口時圧縮波は、それぞれ両気筒1A,1
Bの高負荷用吸気ポート4,4間および低負荷用
吸気ポート3,3間の各通路長さLs,Lpを上記
5000〜7000rpmのエンジン高回転時を基準として
上記()式によりLs=0.57〜1.37m,Lp
0.25〜1.03mに設定したことにより、各々第2高
負荷用又は第2低負荷用吸気通路21b,20b
→高負荷用又は低負荷用連通路25,27→第1
高負荷用又は第1低負荷用吸気通路21a,20
aを経て、180゜の位相差を持つ第1気筒1Aの
全閉直前の高負荷用吸気ポート4および低負荷用
吸気ポート3に伝播する。その結果、これらの開
口時圧縮波により、吸気が第1気筒1Aの全閉直
前の高負荷用吸気ポート4および低負荷用吸気ポ
ート3より作動室9内へ押し込まれて強い過給が
行われることになる。同様に、第2気筒1Bにお
いても、全閉直前の高負荷用吸気ポート4および
低負荷用吸気ポート3に対して第1気筒1Aから
の開口時圧縮波がそれぞれ伝播されて強い過給効
果が得られる。
Next, to explain the operation of the above embodiment with reference to FIG. 3, when the engine rotates at a high speed of 5,000 to 7,000 rpm, which requires high output, the high-load throttle valve 23 is opened to open the first and second high-load intake passages. 21a, 21b are opened, and intake air is supplied from the high-load intake ports 4, 4 of each cylinder 1A, 1B independently of the low-load intake ports 3, 3. At this time, when the high-load intake port 4 of one cylinder, for example, the second cylinder 1B, is opened, the intake air is compressed by the pressure of the residual exhaust gas and is opened to the high-load intake port 4 in the second high-load intake passage 21b. A time compression wave is generated. At the same time, the low-load intake port 3 of the second cylinder 1B
At the time of opening, a compression wave is generated in the low-load intake port 3 portion within the low-load intake passage 20b. These opening compression waves are generated in both cylinders 1A and 1, respectively.
The passage lengths L s and L p between the high-load intake ports 4 and 4 and between the low-load intake ports 3 and 3 of B are shown above.
Based on the above equation (), L s = 0.57 to 1.37 m, L p = based on the high engine speed of 5000 to 7000 rpm.
By setting it to 0.25 to 1.03 m, the second high-load or second low-load intake passages 21b and 20b, respectively.
→ High load or low load communication path 25, 27 → 1st
High load or first low load intake passage 21a, 20
a, and propagates to the high-load intake port 4 and low-load intake port 3 of the first cylinder 1A, which has a phase difference of 180 degrees, just before fully closing. As a result, these opening compression waves force intake air into the working chamber 9 from the high-load intake port 4 and the low-load intake port 3 just before the first cylinder 1A is fully closed, and strong supercharging is performed. It turns out. Similarly, in the second cylinder 1B, the opening compression wave from the first cylinder 1A is propagated to the high-load intake port 4 and the low-load intake port 3 just before fully closing, respectively, resulting in a strong supercharging effect. can get.

したがつて、このように気筒1A,1B相互間
において高負荷用吸気系統での全閉直前の高負荷
用吸気ポート4に対する排気干渉効果による過給
効果と、低負荷用吸気系統での全閉直前の低負荷
用吸気ポート3に対する排気干渉効果による過給
効果との相剰作用によつて、第4図に示すように
エンジンの高負荷高回転時(5000〜7000rpm)で
の充填効率が著しく増大して出力を大巾に向上さ
せることができる。尚、第4図では、各気筒1
A,1Bの低負荷用および高負荷用吸気通路20
a,20b,21a,21bを独立させた従来例
の場合(破線で示す)に対し、6000rpmを基準に
低負荷用吸気系統で排気干渉効果(一点鎖線で示
す)を得るとともに6000rpmを基準に高負荷用吸
気系統で排気干渉効果を得るようにした本発明例
の場合(実線で示す)におけるエンジンの出力ト
ルク特性を示す。
Therefore, between the cylinders 1A and 1B, there is a supercharging effect due to the exhaust interference effect on the high-load intake port 4 just before the high-load intake system is fully closed, and a supercharging effect due to the exhaust interference effect on the high-load intake port 4 immediately before the high-load intake system is completely closed. As shown in Figure 4, due to the interaction effect with the supercharging effect due to the exhaust interference effect on the low-load intake port 3 immediately before, the charging efficiency is significantly increased at high engine load and high rotation speeds (5000 to 7000 rpm). The output can be greatly improved by increasing the output power. In addition, in Fig. 4, each cylinder 1
A, 1B low load and high load intake passages 20
In contrast to the conventional case where a, 20b, 21a, and 21b are independent (indicated by the broken line), the exhaust interference effect (indicated by the dashed line) is obtained in the low-load intake system based on 6000 rpm, and the high 2 shows the output torque characteristics of the engine in the case of an example of the present invention (indicated by a solid line) in which an exhaust interference effect is obtained in the load intake system.

また、その場合、特に高負荷用吸気通路21
a,21bは、低負荷用吸気通路20a,20b
よりも通路面積が大であり、しかも通路長さが短
かいので、圧力波(圧縮波)の伝播の抵抗が小さ
く、上記高負荷用吸気系統での排気干渉効果を有
効に発揮させることができる。
In that case, especially the high load intake passage 21
a, 21b are low load intake passages 20a, 20b
Since the passage area is larger and the passage length is shorter, there is less resistance to the propagation of pressure waves (compression waves), and the exhaust interference effect in the above-mentioned high-load intake system can be effectively exerted. .

また、上記各連通路25,27は、各絞り弁2
2,23下流に位置し、しかも該各連通路25,
27の通路面積Acs、Acpを高負荷用および低負
荷用吸気通路21a,21b,20a,20bの
最小通路面積As,Apより同等以上としたので、
上記各絞り弁22,23や各連通路25,27自
身によつて圧力波が減衰されることがなく上記各
吸気系統での排気干渉効果を有効に発揮できる。
Further, each of the communication passages 25 and 27 is connected to each throttle valve 2.
2, 23 downstream, and each communication path 25,
Since the passage areas A cs and A cp of No. 27 are made equal to or greater than the minimum passage areas A s and A p of the high-load and low-load intake passages 21a, 21b, 20a, and 20b,
The pressure waves are not attenuated by the throttle valves 22, 23 or the communicating passages 25, 27 themselves, so that the exhaust interference effect in the intake systems can be effectively exerted.

また、上記排気干渉効果による過給効果は、低
負荷用および高負荷用吸気ポート3,4の開口期
間、高負荷用吸気通路21a,21b同志および
低負荷用吸気通路20a,20b同志を連通する
各連通路25,27の位置並びに両気筒1A,1
Bの高負荷用吸気ポート4,4間および低負荷用
吸気ポート3,3間の通路長さLs,Lpを上述の
如く設定することによつて得られ、過給機等を要
さないので、既存の吸気系の僅かな設計変更で済
み、構造が極めて簡単なものであり、よつて容易
にかつ安価に実施できる。
Furthermore, the supercharging effect due to the exhaust interference effect allows the high-load intake passages 21a, 21b and the low-load intake passages 20a, 20b to communicate with each other during the opening period of the low-load and high-load intake ports 3, 4. The position of each communication passage 25, 27 and both cylinders 1A, 1
This can be obtained by setting the passage lengths L s and L p between the high-load intake ports 4 and 4 and between the low-load intake ports 3 and 3 of B as described above, and does not require a supercharger or the like. Therefore, only a slight design change to the existing intake system is required, and the structure is extremely simple, so it can be implemented easily and at low cost.

尚、本発明は上記実施例に限定されるものでは
なく、その他種々の変形例をも包含するものであ
る。例えば、吸排気オーバラツプ期間はエキセン
トリツクシヤフトの回転角で0〜20゜の範囲に設
定することが、充填効率の向上を図るとともに、
ダイリユーシヨンガスの持込み量を少なくして特
にエンジン低負荷時の失火の防止を図る上で好ま
しい。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but also includes various other modifications. For example, setting the intake/exhaust overlap period to a range of 0 to 20 degrees in rotation angle of the eccentric shaft improves filling efficiency and
This is preferable in order to reduce the amount of dilution gas brought in and to prevent misfires, especially when the engine is under low load.

また、上記実施例では低負荷用絞り弁22を主
低負荷用吸気通路20内に設けた型式のものにつ
いて述べたが、低負荷用絞り弁22を、主低負荷
用吸気通路20と主高負荷用吸気通路21との分
岐部上流の主吸気通路16に設けた型式のものも
採用可能である。
Further, in the above embodiment, the low load throttle valve 22 is provided in the main low load intake passage 20, but the low load throttle valve 22 is installed in the main low load intake passage 20 and in the main low load intake passage 20. A type provided in the main intake passage 16 upstream of the branching portion with the load intake passage 21 may also be adopted.

以上説明したように、本発明によれば、低負荷
用と高負荷用との2系統のサイド吸気ポート式の
2気筒ロータリピストンエンジンにおいて、5000
〜7000rpmのエンジン高回転時、高負荷用吸気系
統における気筒相互間の排気干渉効果と低負荷用
吸気系統における気筒相互間の排気干渉効果との
相剰効果により強い過給効果を得るようにしたの
で、過給機等を要さずに既存の吸気系の僅かな設
計変更による簡単な構成でもつて、エンジンの高
負荷高回転時での充填効率を著しく高めて出力向
上を有効にかつ大巾に図ることができ、よつてロ
ータリピストンエンジンの出力向上対策の容易実
施化およびコストダウン化に大いに寄与できるも
のである。
As explained above, according to the present invention, in a side intake port type two-cylinder rotary piston engine with two systems for low load and high load, 5000
At high engine speeds of ~7000 rpm, a strong supercharging effect is achieved through the mutual effect of the exhaust interference effect between cylinders in the high-load intake system and the exhaust interference effect between cylinders in the low-load intake system. Therefore, even with a simple configuration that requires only a slight design change to the existing intake system without the need for a supercharger, it is possible to significantly increase the charging efficiency under high load and high engine rotation speeds, effectively increasing the output. Therefore, it can greatly contribute to the easy implementation of measures to improve the output of rotary piston engines and cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体構
成説明図、第2図は全体概略図、第3図は第1お
よび第2気筒の吸気行程を示す説明図、第4図は
本発明による出力トルク特性を示すグラフであ
る。 1A……第1気筒、1B……第2気筒、2……
ロータハウジング、2a……2節トロコイド状内
周面、3……低負荷用吸気ポート、4……高負荷
用吸気ポート、5……サイドハウジング、6……
ケーシング、7……ロータ、8……エキセントリ
ツクシヤフト、9……作動室、16……主吸気通
路、20……主低負荷用吸気通路、20a……第
1低負荷用吸気通路、20b……第2低負荷用吸
気通路、21……主高負荷用吸気通路、21a…
…第1高負荷用吸気通路、21b……第2高負荷
用吸気通路、22……低負荷用絞り弁、23……
高負荷用絞り弁、25……高負荷用連通路、27
……低負荷用連通路。
The drawings show an embodiment of the present invention; FIG. 1 is an explanatory diagram of the overall configuration, FIG. 2 is an overall schematic diagram, FIG. 3 is an explanatory diagram showing the intake stroke of the first and second cylinders, and FIG. 4 is an illustration of the main structure. 3 is a graph showing output torque characteristics according to the invention. 1A...1st cylinder, 1B...2nd cylinder, 2...
Rotor housing, 2a...Two-section trochoidal inner peripheral surface, 3...Intake port for low load, 4...Intake port for high load, 5...Side housing, 6...
Casing, 7... Rotor, 8... Eccentric shaft, 9... Working chamber, 16... Main intake passage, 20... Main low load intake passage, 20a... First low load intake passage, 20b... ...Second low-load intake passage, 21...Main high-load intake passage, 21a...
...First intake passage for high load, 21b... Second intake passage for high load, 22... Throttle valve for low load, 23...
High load throttle valve, 25...High load communication passage, 27
...Low load communication path.

Claims (1)

【特許請求の範囲】 1 2節トロコイド状の内周面を有するロータハ
ウジングとその両側に位置するサイドハウジング
とで形成されたケーシング内にそれぞれ配設され
た略三角形状のロータが、エキセントリツクシヤ
フトに支承され該シヤフトの回転角で180゜の位
相差を持つて遊星回転運動し、かつ低負荷用吸気
通路と高負荷用吸気通路とが各々独立して各サイ
ドハウジングに設けた低負荷用および高負荷用吸
気ポートによつて作動室に開口する2気筒ロータ
リピストンエンジンにおいて、 a 高負荷用吸気ポートの開口期間をエキセント
リツクシヤフトの回転角で270〜320゜の範囲に
設定すること、 b 低負荷用吸気ポートの開口期間をエキセント
リツクシヤフトの回転角で230〜290゜の範囲に
設定すること、 c 各気筒の高負荷用吸気通路を絞り弁下流にお
いて高負荷用連通路で連通すること、 d 各気筒の低負荷用吸気通路を絞り弁下流にお
いて低負荷用連通路で連通すること、 e 上記高負荷用連通路およびその下流の高負荷
用吸気通路によつて形成される両気筒の高負荷
用吸気ポート間の通路長さを、5000〜7000rpm
のエンジン高回転時、一方の気筒の高負荷用吸
気ポート開口時に高負荷用吸気通路内に発生す
る圧縮波を上記高負荷用連通路を介して他方の
気筒の全閉直前の高負荷用吸気ポートに伝播さ
せるように0.57〜1.37mの範囲内に設定するこ
と、 f 上記低負荷用連通路およびその下流の低負荷
用吸気通路によつて形成される両気筒の低負荷
用吸気ポート間の通路長さを、5000〜7000rpm
のエンジン高回転時、一方の気筒の低負荷用吸
気ポート開口時に低負荷用吸気通路内に発生す
る圧縮波を上記低負荷用連通路を介して他方の
気筒の全閉直前の低負荷用吸気ポートに伝播さ
せるように0.25〜1.03mの範囲内に設定するこ
と の条件のもとで、各気筒の全閉直前の低負荷用お
よび高負荷用吸気ポートにそれぞれ伝播した圧縮
波により過給を行うようにしたことを特徴とする
ロータリピストンエンジンの吸気装置。
[Scope of Claims] 1. Approximately triangular rotors each disposed within a casing formed of a rotor housing having a two-bar trochoidal inner circumferential surface and side housings located on both sides of the rotor housing have eccentric shafts. The shaft is supported by the shaft and rotates planetarily with a phase difference of 180 degrees at the rotation angle of the shaft, and a low-load intake passage and a high-load intake passage are independently provided in each side housing. In a two-cylinder rotary piston engine in which a high-load intake port opens into the working chamber, a) the opening period of the high-load intake port is set in the range of 270 to 320 degrees in rotation angle of the eccentric shaft; b. Setting the opening period of the load intake port to a range of 230 to 290 degrees in rotation angle of the eccentric shaft; c. Connecting the high load intake passages of each cylinder with a high load communication passage downstream of the throttle valve; d) connecting the low-load intake passages of each cylinder with a low-load communication passage downstream of the throttle valve; e) increasing the height of both cylinders formed by the above-mentioned high-load communication passage and the high-load intake passage downstream thereof; The passage length between the load intake ports is 5000 to 7000rpm.
When the engine rotates at high speed, the compression wave generated in the high-load intake passage when the high-load intake port of one cylinder is opened is transferred to the high-load intake of the other cylinder just before it is fully closed, via the high-load communication passage. Set within the range of 0.57 to 1.37m so as to propagate to the port; Passage length, 5000~7000rpm
When the engine rotates at high speed, the compression wave generated in the low-load intake passage when the low-load intake port of one cylinder is opened is transferred to the low-load intake of the other cylinder just before it is fully closed, via the low-load communication passage. Under the condition that the distance is set within the range of 0.25 to 1.03 m so that the waves propagate to the ports, supercharging is performed by the compression waves that propagate to the low-load and high-load intake ports just before each cylinder is fully closed. An intake device for a rotary piston engine characterized by the following features:
JP57210349A 1982-10-15 1982-11-30 Suction device of rotary piston engine Granted JPS59101543A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57210349A JPS59101543A (en) 1982-11-30 1982-11-30 Suction device of rotary piston engine
DE19833337518 DE3337518A1 (en) 1982-10-15 1983-10-14 INLET SYSTEM FOR ROTARY PISTON ENGINES
US06/542,584 US4562804A (en) 1982-10-15 1983-10-17 Intake system for rotary piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210349A JPS59101543A (en) 1982-11-30 1982-11-30 Suction device of rotary piston engine

Publications (2)

Publication Number Publication Date
JPS59101543A JPS59101543A (en) 1984-06-12
JPS6237213B2 true JPS6237213B2 (en) 1987-08-11

Family

ID=16587923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210349A Granted JPS59101543A (en) 1982-10-15 1982-11-30 Suction device of rotary piston engine

Country Status (1)

Country Link
JP (1) JPS59101543A (en)

Also Published As

Publication number Publication date
JPS59101543A (en) 1984-06-12

Similar Documents

Publication Publication Date Title
JPS6211169B2 (en)
JPS5999034A (en) Intake apparatus for rotary piston engine
JPH0337009B2 (en)
JPH0337012B2 (en)
JPS6326261B2 (en)
JPS6237213B2 (en)
JPH0452377B2 (en)
JPS6340251B2 (en)
JPH0337011B2 (en)
JPH0337014B2 (en)
JPH0337010B2 (en)
JPS6326262B2 (en)
JPS6340252B2 (en)
JPS5979044A (en) Intake apparatus for rotary piston engine
JPH0329968B2 (en)
JPH0559249B2 (en)
JPH0337013B2 (en)
JPS5970832A (en) Intake device of rotary piston engine
JPS5979042A (en) Intake apparatus for rotary piston engine
JPS5970833A (en) Intake device of rotary piston engine
JPH0562226B2 (en)
JPS5970834A (en) Intake device of rotary piston engine
JPS5979041A (en) Intake apparatus for rotary piston engine
JPS5979043A (en) Intake apparatus for rotary piston engine
JPH0517373B2 (en)