JPS6237024B2 - - Google Patents

Info

Publication number
JPS6237024B2
JPS6237024B2 JP55000460A JP46080A JPS6237024B2 JP S6237024 B2 JPS6237024 B2 JP S6237024B2 JP 55000460 A JP55000460 A JP 55000460A JP 46080 A JP46080 A JP 46080A JP S6237024 B2 JPS6237024 B2 JP S6237024B2
Authority
JP
Japan
Prior art keywords
formaldehyde
mesh
metal
reaction
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55000460A
Other languages
Japanese (ja)
Other versions
JPS5697243A (en
Inventor
Satoshi Nishiwaki
Takeshi Sato
Kyugo Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP46080A priority Critical patent/JPS5697243A/en
Publication of JPS5697243A publication Critical patent/JPS5697243A/en
Publication of JPS6237024B2 publication Critical patent/JPS6237024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、メタノールと空気とを含有する原料
混合ガスを金属銀触媒と接触せしめることによつ
て、ホルムアルデヒドを製造する方法に係わるも
のである。さらに詳しくは、いわゆるメタノール
過剰法において金属銀触媒にメタノールと空気と
を含む原料混合ガスを接触せしめ、脱水素反応も
しくは酸化脱水素反応によつてホルムアルデヒド
を製造するに際し、下部で縦型多管式反応生成ガ
ス冷却器と直接結合した触媒層の直径500乃至
4000mmの比較的大型の反応器において該冷却器の
上部管板上に特定の線径を有する金属網と、特定
の目開きを有する金属網とを組み合わせて積み重
ね、該金属銀触媒の支持体とすることを特徴とす
るホルムアルデヒドの製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing formaldehyde by bringing a raw material mixed gas containing methanol and air into contact with a metallic silver catalyst. More specifically, in the so-called methanol excess method, when formaldehyde is produced by a dehydrogenation reaction or an oxidative dehydrogenation reaction by bringing a metal silver catalyst into contact with a raw material mixed gas containing methanol and air, a vertical multi-tube system is used at the bottom. The diameter of the catalyst layer directly connected to the reaction product gas cooler is 500 mm.
In a relatively large reactor of 4000 mm, a metal mesh having a specific wire diameter and a metal mesh having a specific opening are combined and stacked on the upper tube plate of the cooler, and a support for the metal silver catalyst is stacked. The present invention relates to a method for producing formaldehyde, which is characterized by:

公知のごとく、メタノールと空気とを含む原料
混合ガスを、金属銀触媒に接触せしめて、ホルム
アルデヒドを製造するいわゆるメタノール過剰法
と呼ばれる方法においては金属銀触媒を支持する
支持体として耐熱性の大きい材料が要求され、従
来はその目的のためにオーステナイト系ステンレ
ス鋼や、あるいは特公昭48−1643に示されるヒ素
を含有する銅などが用いられ、格子状、目皿状あ
るいは網状の構造のものとして使用されてきた。
As is well known, in the so-called methanol excess method, in which formaldehyde is produced by bringing a raw material mixed gas containing methanol and air into contact with a metallic silver catalyst, a material with high heat resistance is used as a support for supporting the metallic silver catalyst. Conventionally, austenitic stainless steel or arsenic-containing copper as shown in Japanese Patent Publication No. 1643 was used for this purpose, and it was used in the form of a grid, perforated or net structure. It has been.

すなわち、従来金属銀触媒としては10乃至90メ
ツシユ程度の電解銀を1層もしくは粒度別に多層
に厚さ10乃至60mm程度にして用いるが、触媒の支
持体として金属網のみを使用することは、触媒層
の直径がたとえば20乃至300mm程度の比較的小規
模な実験装置の場合には問題にならないが、たと
えば500乃至4000mm程度の大規模の生産装置の場
合には、たわみが生じ、且つ耐久性が弱く使用す
ることが出来なかつた。そこで通常は前記のよう
な耐熱性の大きい材料の格子状もしくは目皿状の
支持体を設置しその上方に単に電解銀粒子の落下
を防止する目的として1乃至3枚程度の網をしく
方法が採用されてきた。しかし格子状もしくは目
皿状の支持体を用いる方法は、 構造上、触媒層の下方に設置されている反応
生成ガス冷却部と触媒層との近接が困難で、こ
のため折角生成された一部のホルムアルデヒド
が高温にさらされて分解する 強度上目皿の開孔比を大きくできないので圧
力損失が大きい などの欠点を有していた。
In other words, conventionally, as a metallic silver catalyst, about 10 to 90 meshes of electrolytic silver are used in one layer or in multiple layers depending on the particle size, with a thickness of about 10 to 60 mm, but using only a metal mesh as a support for the catalyst This is not a problem in the case of relatively small-scale experimental equipment where the layer diameter is, for example, 20 to 300 mm, but in the case of large-scale production equipment, for example, where the layer diameter is 500 to 4000 mm, deflection may occur and durability may deteriorate. It was too weak to be used. Therefore, a method is usually used in which a grid-like or perforated plate-like support made of a material with high heat resistance as described above is installed, and one to three nets are placed above it simply to prevent the electrolytic silver particles from falling. It has been adopted. However, in the method of using a grid-like or perforated plate-like support, it is difficult to bring the catalyst layer close to the reaction product gas cooling section installed below the catalyst layer due to its structure. Formaldehyde decomposes when exposed to high temperatures.In addition to its strength, it is not possible to increase the aperture ratio of the perforated plate, resulting in large pressure loss.

本発明者らはこれら格子状、目皿状及び網状の
支持体の長所短所について種々検討した結果、特
定の金属網の組合せからなる網状構造物を縦型多
管式反応ガス冷却器の管板上に直接設置して支持
体とすることによつて、格子状、目皿状及び網状
の支持体の持つ欠点を除去できることを見出し
た。すなわち、従来の格子状もしくは目皿状のも
のと網状のものとを共用する方法に比べて本発明
の網状構造物を単独に縦型多管式反応ガス冷却器
の上部管板上に直接設置する方法は、次のような
3点の効果があることが判つた。
As a result of various studies on the merits and demerits of these lattice-like, perforated-like, and net-like supports, the present inventors found that a net-like structure consisting of a combination of specific metal nets was used as a tube sheet for a vertical multi-tubular reaction gas cooler. It has been found that the drawbacks of lattice-like, perforated-like, and net-like supports can be eliminated by directly installing the support on top of the support. That is, compared to the conventional method of using both a grid-like or perforated plate-like structure and a mesh-like structure, the mesh structure of the present invention can be installed directly on the upper tube plate of a vertical multi-tubular reaction gas cooler. This method was found to have the following three effects.

触媒層と冷却部が近くなる。また金網と冷却
部である管板との接触面積が大きくなる。した
がつて副反応が少なくなりホルムアルデヒド収
率が高くなる。
The catalyst layer and cooling section become closer. Moreover, the contact area between the wire mesh and the tube sheet, which is the cooling section, becomes large. Therefore, side reactions are reduced and the formaldehyde yield is increased.

本発明の網状構造物は目皿状もしくは、格子
状に比べて圧力損失が小さいため、相対的に生
産量を増加できる。
Since the net-like structure of the present invention has a smaller pressure loss than a perforated structure or a lattice-like structure, production can be relatively increased.

構造、製作が簡単である。 The structure and production are simple.

本発明の網状構造物とは、線径が2乃至10mmで
あるAグループの金属網1乃至5枚と、目開きが
0.1乃至4mmであるBグループの金属網1乃至5
枚とを組合せて積み重ねたものである。積み重ね
る順序はAグループの金属網とBグループの金属
網を交互に積み重ねる方法等適宜選択しうるが、
管板に接するのはAグループの金属網であること
が必要であり、特に先ずAグループの金属網を置
き、次いでBグループの金属網を重ねて置く態様
が、また同じAグループの金属網でも線径の異な
る複数枚を用いるときは線径の大きいものから、
同じBグループの金属網では目開きの大きいもの
から順に重ねる態様が好ましい。
The net-like structure of the present invention includes 1 to 5 metal nets of group A with a wire diameter of 2 to 10 mm, and
Group B metal mesh 1 to 5 with a diameter of 0.1 to 4 mm
It is a combination of sheets and stacks. The stacking order can be selected as appropriate, such as stacking the metal nets of group A and the metal nets of group B alternately.
It is necessary that the metal mesh of Group A be in contact with the tube sheet, and in particular, the method in which the metal mesh of Group A is placed first, and then the metal mesh of Group B is placed on top of the metal mesh, and even if the metal mesh of the same Group A is placed When using multiple pieces of wire with different diameters, start with the one with the largest wire diameter,
It is preferable that the metal nets of the same group B are stacked in order from the one with the largest opening.

またAグループの金属網とBグループの金属網
とを組合せて一体にした構造物のものを特別に製
作して用いてかまわない。
Further, a structure in which a metal net of group A and a metal net of group B are combined and integrated may be specially manufactured and used.

金属網の形状は触媒層の径が比較的大きい場合
には、円形のものでなくとも半円形もしくは扇形
などに切断して敷くこともできる。
When the diameter of the catalyst layer is relatively large, the shape of the metal net does not have to be circular, but can be cut into semicircular or fan shapes.

金属網の材質はステンレス鋼その他の金属材料
でも良いが、カーボン析出を嫌う場合には銅、好
ましくは脱酸素銅が望ましい。
The material of the metal mesh may be stainless steel or other metal materials, but if carbon deposition is to be avoided, copper, preferably deoxidized copper, is desirable.

本発明の実施に当たつて、原料混合ガス中には
メタノールと空気を必ず含むがホルムアルデヒド
生成反応に有効な物質もしくは不活性の物質、た
とえば水蒸気、窒素、炭酸ガスなどの混入は差し
支えない。
In carrying out the present invention, the raw material mixed gas necessarily contains methanol and air, but substances effective or inert for the formaldehyde production reaction, such as water vapor, nitrogen, carbon dioxide, etc., may be mixed in without any problem.

通常、原料ガス中の空気(mol)/メタノール
(mol)比は1.5乃至2.2、反応温度は550乃至750℃
である。水蒸気(mol)/メタノール(mol)比
は高いほど、メタノールのホルムアルデヒドへの
収率を増すが、水蒸気が多過ぎると製品濃度をう
すめるので、通常水蒸気(mol)/メタノール
(mol)比は0.1乃至1.0が選ばれる。窒素、炭酸ガ
ス、その他ホルムアルデヒド生成反応に不活性の
物質は水蒸気の代替として用いられることがあ
り、その場合のメタノールとのモル比は2.0以下
が選ばれる。その他の反応条件等は従来公知の、
いわゆるメタノール過剰法、ホルムアルデヒド製
造法の場合と全く同じである。
Usually, the air (mol)/methanol (mol) ratio in the raw material gas is 1.5 to 2.2, and the reaction temperature is 550 to 750℃.
It is. The higher the water vapor (mol)/methanol (mol) ratio, the higher the yield of methanol to formaldehyde, but too much water vapor dilutes the product concentration, so the water vapor (mol)/methanol (mol) ratio is usually between 0.1 and 2. 1.0 is selected. Nitrogen, carbon dioxide, and other substances inert to the formaldehyde production reaction are sometimes used as a substitute for water vapor, and in that case, the molar ratio with methanol is selected to be 2.0 or less. Other reaction conditions are conventionally known.
This is exactly the same as the so-called methanol excess method and formaldehyde production method.

次に比較例及び実施例をもつて本発明を説明す
る。
Next, the present invention will be explained using comparative examples and examples.

比較例 1 下部で縦型の多管式反応生成ガス冷却器と直接
結合した、触媒層の直径が1000mmの反応器におい
て、該冷却器の上部管板上面に300mm角、高さ40
mmの格子状の脚のついた銅目皿を設置し、その上
方に50メツシユ(線径0.23mm、目開き0.30mm)の
銅網1枚を敷いた。銅網の上方には10乃至40メツ
シユの電解銀を厚さが20mmになるよう敷きつめ
た。銅目皿には孔径8mmの孔が12mmピツチ正方配
列で全面に開けられている。この反応器において
メタノール700Nm3/h、水蒸気550Nm3/h、及
び空気約1300Nm3/hを原料ガスとして供給し、
反応温度が650℃になるように空気量を調節して
ホルムアルデヒド生成反応を進めた結果、メタノ
ール供給量毎100Kgに対しホルムアルデヒド37重
量%換算のホルムアルデヒド水溶液を毎時2198Kg
得た。また触媒層の入口の圧力は徐々に上昇し、
反応開始後第3日目で0.20Kg/cm2Gであつたもの
が反応開始後第15日目で0.24Kg/cm2Gとなり、更
に運転を続けるためには減産しなければならなく
なつた。
Comparative Example 1 In a reactor with a catalyst layer diameter of 1000 mm that is directly connected to a vertical multi-tubular reaction product gas cooler at the bottom, a 300 mm square, 40 mm high
A copper mesh plate with lattice-like legs of mm was installed, and a sheet of copper netting of 50 meshes (wire diameter 0.23 mm, opening 0.30 mm) was placed above it. 10 to 40 meshes of electrolytic silver were spread over the copper mesh to a thickness of 20 mm. The copper plate has holes with a diameter of 8 mm in a square arrangement of 12 mm on the entire surface. In this reactor, methanol 700Nm 3 /h, steam 550Nm 3 /h, and air approximately 1300Nm 3 /h were supplied as raw material gases,
As a result of proceeding with the formaldehyde production reaction by adjusting the amount of air so that the reaction temperature was 650°C, 2198 kg of formaldehyde aqueous solution (converted to 37% by weight formaldehyde) was produced per hour for every 100 kg of methanol supplied.
Obtained. Also, the pressure at the inlet of the catalyst bed gradually increases,
What was 0.20Kg/cm 2 G on the third day after the start of the reaction became 0.24Kg/cm 2 G on the 15th day after the start of the reaction, and it became necessary to reduce production in order to continue operation. .

実施例 1 比較例1と同様の反応器において、目皿を使わ
ずに縦型多管式反応生成ガス冷却器の上部管板上
に直接、線径が5mm、目開きが10mmの銅網1枚を
しき、その上に線径3mm、目開き6mmの銅網1枚
をしいた。次に50メツシユ銅網1枚をしきその上
方には比較例1と同様10乃至40メツシユの電解銀
を厚さが20mmになるように敷きつめた。
Example 1 In a reactor similar to Comparative Example 1, a copper mesh 1 with a wire diameter of 5 mm and an opening of 10 mm was placed directly on the upper tube plate of a vertical multi-tube reaction product gas cooler without using a perforated plate. A sheet of copper mesh with a wire diameter of 3 mm and an opening of 6 mm was placed on top of it. Next, one 50-mesh copper mesh was placed, and above it, 10 to 40 meshes of electrolytic silver were spread to a thickness of 20 mm, as in Comparative Example 1.

この反応器を用いて比較例1と同様にホルムア
ルデヒド生成反応を進めた結果、メタノール供給
量毎時1000Kgに対しホルムアルデヒド37重量%換
算のホルムアルデヒド水溶液(ギ酸含量
35ppm)を毎時2232Kg得た。
Using this reactor, a formaldehyde production reaction was carried out in the same manner as in Comparative Example 1. As a result, an aqueous formaldehyde solution (containing formic acid
35ppm) was obtained at 2232Kg/hour.

触媒層の入口の圧力は反応開始後第3日目の
0.20Kg/cm2Gから日数の経過と共にわずかに上昇
したが、反応開始後45日目でようやく0.24Kg/cm2
Gに到達した。
The pressure at the inlet of the catalyst bed was the same on the third day after the start of the reaction.
From 0.20Kg/cm 2 G, it rose slightly as days passed, but finally reached 0.24Kg/cm 2 on the 45th day after the start of the reaction.
Reached G.

比較例 2 比較例1と同様の反応器において、目皿を使わ
ずに縦型多管式反応生成ガス冷却器の上部管板上
に、直接、線径が1.8mm、目開きが6.7mmの銅網を
6枚しいた。次に50メツシユの銅網1枚をしき、
その上方には比較例1と同様10乃至40メツシユの
電解銀を厚さが20mmになるようしきつめた。
Comparative Example 2 In a reactor similar to Comparative Example 1, a wire with a diameter of 1.8 mm and an opening of 6.7 mm was directly placed on the upper tube plate of a vertical multi-tubular reaction product gas cooler without using a perforated plate. I made 6 pieces of copper mesh. Next, place a piece of copper netting of 50 mesh,
As in Comparative Example 1, 10 to 40 meshes of electrolytic silver were placed above it to a thickness of 20 mm.

この反応器を用いて、比較例1と同様にホルム
アルデヒド生成反応を進めた結果、メタノール供
給量毎時1000Kgに対し、ホルムアルデヒド37重量
%換算のホルムアルデヒド水溶液を毎時2150Kgを
得た。反応開始後第3日目に運転を停止し、点検
したところ、冷却管の上部管板上にカーボンが析
出し、管板はところどころ赤褐色を呈し、局部加
熱があつたことを認めた。
Using this reactor, the formaldehyde production reaction was carried out in the same manner as in Comparative Example 1, and as a result, 2150 kg of a formaldehyde aqueous solution equivalent to 37% by weight of formaldehyde was obtained per hour per 1000 kg of methanol supplied per hour. On the third day after the start of the reaction, the operation was stopped and inspected. Carbon was deposited on the upper tube sheet of the cooling tube, and the tube sheet took on a reddish-brown color in some places, indicating local heating.

比較例 3 比較例1と同様の反応器において、目皿を使わ
ずに縦型多管式反応生成ガス冷却器の上部管板上
に直接線径が12mm、目開きが60mmの銅網を1枚し
き、その上に直径が5mm、目開きが10mmの銅網を
1枚、更にその上に直径が3mm、目開きが6mmの
銅網を1枚しいた。次に50メツシユの銅網を1枚
しき、その上方には比較例1と同様10乃至40メツ
シユの電解銀を厚さが20mmになるようしきつめ
た。
Comparative Example 3 In a reactor similar to Comparative Example 1, a copper mesh with a wire diameter of 12 mm and an opening of 60 mm was placed directly on the upper tube plate of a vertical multi-tube reaction product gas cooler without using a perforated plate. A piece of copper mesh with a diameter of 5 mm and an opening of 10 mm was placed on top of that, and a copper mesh with a diameter of 3 mm and an opening of 6 mm was placed on top of that. Next, one 50-mesh copper net was placed, and 10 to 40 meshes of electrolytic silver were placed above it to a thickness of 20 mm, as in Comparative Example 1.

この反応器を用いて、比較例1と同様にホルム
アルデヒド生成反応を進めた結果、メタノール供
給量毎時1000Kgに対し、ホルムアルデヒド37重量
%換算のホルムアルデヒド水溶液を毎時2130Kgを
得た。
Using this reactor, the formaldehyde production reaction was carried out in the same manner as in Comparative Example 1, and as a result, 2130 kg of formaldehyde aqueous solution was obtained per hour in terms of 37% by weight of formaldehyde for 1000 kg of methanol supplied per hour.

比較例 4 比較例1と同様の反応器において、目皿を使わ
ずに縦型多管式反応生成ガス冷却器の上部管板上
に直接線径が5mm目開きが10mmの銅網を1枚し
き、更にその上に線径が3mm、目開きが6mmの銅
網を1枚しいた。次に線径が0.06mm目開きが0.09
mmの銅網を2枚しき、その上方には比較例1と同
様10乃至40メツシユの電解銀を厚さが20mmになる
ようしきつめた。
Comparative Example 4 In a reactor similar to Comparative Example 1, one piece of copper mesh with a wire diameter of 5 mm and an opening of 10 mm was placed directly on the upper tube plate of the vertical multi-tube reaction product gas cooler without using a perforated plate. Then, on top of that, a piece of copper mesh with a wire diameter of 3 mm and an opening of 6 mm was placed. Next, the wire diameter is 0.06mm, and the opening is 0.09.
Two copper nets of 1 mm thick were placed above them, and 10 to 40 meshes of electrolytic silver were tightly packed above them to a thickness of 20 mm, as in Comparative Example 1.

この反応器を用いて、比較例1と同様にホルム
アルデヒド生成反応を進めた結果、反応開始後30
分後に廃ガス中に酸素0.3%を認め、生成ホルム
アルデヒド水溶液中にギ酸380ppmを認めた。
Using this reactor, the formaldehyde production reaction was carried out in the same manner as in Comparative Example 1. As a result, 30 minutes after the start of the reaction,
After a few minutes, 0.3% oxygen was found in the exhaust gas, and 380 ppm of formic acid was found in the formaldehyde aqueous solution produced.

運転を停止し、点検したところ、線径が0.06
mm、目開きが0.09mmの銅網の一部が損傷してい
た。
When the operation was stopped and inspected, the wire diameter was 0.06.
A part of the copper mesh with an opening of 0.09 mm was damaged.

Claims (1)

【特許請求の範囲】[Claims] 1 下部で縦型多管式反応生成ガス冷却器と直接
結合した、触媒層の直径が500乃至4000mmの反応
器において、金属銀触媒の存在下にメタノールか
らホルムアルデヒドを製造するに際し、該冷却器
の上部管板上に、線径が2乃至10mmの金属網の1
乃至5枚と目開きが0.1乃至4mmの金属網の1乃
至5枚とを組み合せて積み重ね、該金属銀触媒の
支持体とすることを特徴とするホルムアルデヒド
の製造法。
1. When producing formaldehyde from methanol in the presence of a metal silver catalyst in a reactor with a catalyst layer diameter of 500 to 4000 mm, which is directly connected to a vertical multi-tubular reaction product gas cooler at the bottom, the temperature of the cooler is Place a piece of metal mesh with a wire diameter of 2 to 10 mm on the upper tube plate.
1. A method for producing formaldehyde, which comprises combining and stacking 1 to 5 sheets of metal mesh and 1 to 5 sheets of metal mesh having an opening of 0.1 to 4 mm to serve as a support for the metal silver catalyst.
JP46080A 1980-01-07 1980-01-07 Preparation of formaldehyde Granted JPS5697243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP46080A JPS5697243A (en) 1980-01-07 1980-01-07 Preparation of formaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP46080A JPS5697243A (en) 1980-01-07 1980-01-07 Preparation of formaldehyde

Publications (2)

Publication Number Publication Date
JPS5697243A JPS5697243A (en) 1981-08-05
JPS6237024B2 true JPS6237024B2 (en) 1987-08-10

Family

ID=11474405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP46080A Granted JPS5697243A (en) 1980-01-07 1980-01-07 Preparation of formaldehyde

Country Status (1)

Country Link
JP (1) JPS5697243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454169Y2 (en) * 1987-10-13 1992-12-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454169Y2 (en) * 1987-10-13 1992-12-18

Also Published As

Publication number Publication date
JPS5697243A (en) 1981-08-05

Similar Documents

Publication Publication Date Title
EP1839735B1 (en) A transverse tubular heat exchange reactor and a process for catalytic synthesis therein
JP4669126B2 (en) Method and apparatus for obtaining enhanced production rates of thermochemical reactions
US5527756A (en) Catalyst assembly providing high surface area for nitric acid and/or HCN synthesis
US2607663A (en) Catalyst unit
IE46121B1 (en) Process for producing n-phosphonomethylglycine salts
US4260817A (en) Process for the purification of terephthalic acid
JP2004043292A5 (en)
US4422961A (en) Raney alloy methanation catalyst
JP2004529068A (en) Process for hydrogenating unsubstituted or alkyl-substituted aromatic hydrocarbons using a catalyst having a structured carrier or an integral carrier
RU2005140089A (en) METHOD FOR PRODUCING PHALYTIC ACID ANHYDRIDE
CA2428548A1 (en) Methanol-steam reformer
FI78121B (en) FOERFARANDE FOER TILLVARATAGANDE AV PLATINA I EN KVAEVESYRAANLAEGGNING.
US5262145A (en) Catalyst for ammonia conversion to HCN
JPS6237024B2 (en)
US20100119423A1 (en) Apparatus and process for removing carbon monoxide from a hydrogenous gas stream
JPS58246A (en) Catalyst for carbonylation of alcohol
US4424397A (en) Formaldehyde process
JP2659841B2 (en) Methanol reformer
EP1086744B1 (en) Iron containing catalyst
JPS6114862B2 (en)
CA1133680A (en) Catalytic process for synthesis of ammonia
SU300057A1 (en)
JP3541448B2 (en) Method for producing acetamide
JPS6212775B2 (en)
JPS632652B2 (en)