JPS632652B2 - - Google Patents

Info

Publication number
JPS632652B2
JPS632652B2 JP54066895A JP6689579A JPS632652B2 JP S632652 B2 JPS632652 B2 JP S632652B2 JP 54066895 A JP54066895 A JP 54066895A JP 6689579 A JP6689579 A JP 6689579A JP S632652 B2 JPS632652 B2 JP S632652B2
Authority
JP
Japan
Prior art keywords
gas
waste gas
catalyst
volume
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54066895A
Other languages
Japanese (ja)
Other versions
JPS55160733A (en
Inventor
Yoshiaki Toyoda
Yoshihiro Ikeda
Tadaharu Hase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6689579A priority Critical patent/JPS55160733A/en
Publication of JPS55160733A publication Critical patent/JPS55160733A/en
Publication of JPS632652B2 publication Critical patent/JPS632652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Incineration Of Waste (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、メタノールを原料としてホルムアル
デヒドを製造する際に生じる生成物から水への吸
収成分を分離した後の廃ガスからの熱回収方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering heat from waste gas after separating water-absorbing components from the product produced when formaldehyde is produced using methanol as a raw material.

メタノールを原料としてホルムアルデヒドを製
造するプロセスは、大別して酸化法(空気過剰
法)と脱水素法(メタノール過剰法)に分けられ
るが、最も広範囲に採用されている方法は脱水素
法であり、空気とメタノール蒸気を爆発範囲上限
以上で銀網または銀の結晶粒子上を通過せしめる
方法である。
The process of producing formaldehyde using methanol as a raw material can be roughly divided into oxidation method (excess air method) and dehydrogenation method (excess methanol method), but the most widely adopted method is the dehydrogenation method, This is a method in which methanol vapor is passed through a silver mesh or silver crystal particles at a temperature above the upper limit of the explosive range.

脱水素法による反応生成物は、一般に一段ない
し数段の吸収塔に送られ、大部分のホルムアルデ
ヒドは水に吸収分離され、その後に廃ガスが残留
する。該廃ガスの組成は、大部分が窒素である
が、その他にもメタノールの脱水素の結果生じる
水素及び副生成物である一酸化炭素、二酸化炭素
等が含まれている。従来、該廃ガスは、そのまま
煙突などにより大気中に拡散放出されたり、有害
物質である一酸化炭素を除去するために直接燃焼
により燃焼処理後大気中に拡散放出されてきた。
しかしながら、この様な方法では、前者では有害
物質の除去がなされず、後者では有害物質の除去
は可能であるが、一般的には熱回収を行なわず、
また熱回収を行なつても熱損失が大きいと共に装
置が過大となり、省エネルギーの観点から改良す
べき点であつた。
The reaction product obtained by the dehydrogenation method is generally sent to one or several stages of absorption towers, where most of the formaldehyde is absorbed and separated by water, after which waste gas remains. The composition of the waste gas is mostly nitrogen, but also contains hydrogen produced as a result of methanol dehydrogenation and by-products such as carbon monoxide and carbon dioxide. Conventionally, the waste gas has been diffused into the atmosphere as it is through a chimney or the like, or has been directly combusted to remove carbon monoxide, which is a harmful substance, and then diffused and released into the atmosphere.
However, with these methods, the former does not remove harmful substances, and the latter, although it is possible to remove harmful substances, generally does not perform heat recovery.
Furthermore, even if heat is recovered, the heat loss is large and the equipment becomes oversized, which should be improved from the viewpoint of energy saving.

本発明者らは、有害物質である一酸化炭素を除
去するとともに可燃性物質である水素、一酸化炭
素等の燃焼熱を有効に回収するために鋭意研究を
進めた結果本発明を完成するに至つた。
The present inventors have completed the present invention as a result of intensive research in order to remove carbon monoxide, which is a harmful substance, and to effectively recover the combustion heat of flammable substances, such as hydrogen and carbon monoxide. I've reached it.

すなわち、本発明は、ホルムアルデヒド製造工
程から排出される水素及び一酸化炭素を主体とす
る廃ガスに、その1.0〜5.0容量倍の空気を補給し
たガスを、空間速度10000〜100000 1/hr、触媒
層入口ガス温度0〜200℃の条件下に、断熱的に
貴金属担持触媒に接触させて気相接触酸化反応を
行なわせることにより、触媒層出口ガス温が600
〜800℃であるガス体となした後、該ガス体を熱
交換器に通じて熱交換することを特徴とするホル
ムアルデヒド製造廃ガスからの熱回収方法を提供
するものである。
That is, in the present invention, waste gas mainly composed of hydrogen and carbon monoxide discharged from the formaldehyde manufacturing process is supplemented with air in an amount of 1.0 to 5.0 times the volume of the waste gas, and the gas is fed to the catalyst at a space velocity of 10,000 to 100,000 1/hr. By bringing the gas phase catalytic oxidation reaction into contact with the noble metal supported catalyst adiabatically under the condition that the gas temperature at the bed inlet is 0 to 200°C, the gas temperature at the catalyst bed exit can be raised to 600°C.
The present invention provides a method for recovering heat from formaldehyde production waste gas, which comprises converting the gas into a gas having a temperature of ~800°C and then passing the gas through a heat exchanger for heat exchange.

本発明の方法によつて処理される廃ガスは、空
気とメタノール蒸気をメタノールの爆発範囲上限
以上で混合して銀触媒を通過せしめ、生成した大
部分のホルムアルデヒドを水に吸収させて分離し
た後の廃ガスであり、一酸化炭素0.1〜5.0容量
%、二酸化炭素1.0〜10.0容量%、水素10.0〜30.0
容量%、若干量の未吸収ホルムアルデヒド、副生
ギ酸、水及び窒素から成る。該廃ガス中には酸素
が殆んど含まれていないため、可燃性物質を燃焼
処理するためには酸素が必要であり、そのため、
本発明の方法においては廃ガスに空気を補給す
る。空気を補給する割合は、廃ガス中の一酸化炭
素、水素、ホルムアルデヒド、ギ酸等、可燃性物
質を完全燃焼させるに足る量以上であればよい
が、該廃ガスの特性上、空気の補給量が少なすぎ
ると水素の爆発範囲に入り、多すぎるとガス量が
増加しすぎ、廃ガスからの熱回収後のガスがもち
去る熱量の増加をきたし、熱回収を経済的に行な
うことができない。そのため通常の脱水素法によ
るホルムアルデヒド製造工程よりの廃ガスへの空
気の補給量は、廃ガスの1.0〜5.0容量倍の範囲が
好ましく、気相接触酸化反応を多段で行なう場
合、1.0〜2.0容量倍の範囲が特に好ましい。廃ガ
スと空気とを混合する方法としては、一段で混合
後反応器に供給してもよいが、多段に分割充填し
た触媒層を有する反応器の入口部より空気を流入
させ、廃ガスは多流に分割して各段の触媒層入口
部に供給して空気流に混合する方法が好ましい。
すなわち、一段で混合する場合は、廃ガス中の可
燃性成分濃度を爆発範囲下限以下とするのに多量
の空気を必要とし、燃焼熱が同一であつたとして
も熱回収量が減少するとともに、気相接触酸化反
応に使用する触媒量を増さねばならず、経済性が
劣る。また廃ガスを多流に分割して空気流に供給
混合する方法の代りに、空気流を多流に分割して
廃ガス流に供給混合する方法をとる場合には、可
燃性成分濃度が爆発範囲に入るとともに使用触媒
の劣化が著しくなるので好ましくない。廃ガスの
分割割合は、主に廃ガス中の水素濃度に着目し決
定すればよく、触媒層各段での可燃成分の濃度が
爆発範囲下限値以下になるようにすればよい。
The waste gas treated by the method of the present invention is obtained by mixing air and methanol vapor above the upper limit of the explosive range of methanol and passing it through a silver catalyst, and most of the formaldehyde produced is absorbed by water and separated. waste gas, carbon monoxide 0.1-5.0% by volume, carbon dioxide 1.0-10.0% by volume, hydrogen 10.0-30.0%
% by volume, consisting of some amount of unabsorbed formaldehyde, by-product formic acid, water and nitrogen. Since the waste gas contains almost no oxygen, oxygen is required to burn combustible substances, so
In the method of the invention, the waste gas is supplemented with air. The rate of air replenishment may be at least sufficient to completely burn combustible substances such as carbon monoxide, hydrogen, formaldehyde, formic acid, etc. in the waste gas, but due to the characteristics of the waste gas, the amount of air replenishment may vary. If it is too small, it will fall within the explosive range of hydrogen, and if it is too large, the amount of gas will increase too much, causing an increase in the amount of heat carried away by the gas after heat recovery from the waste gas, making it impossible to recover heat economically. Therefore, the amount of air supplied to the waste gas from the formaldehyde manufacturing process using the normal dehydrogenation method is preferably in the range of 1.0 to 5.0 times the volume of the waste gas, and when performing the gas phase catalytic oxidation reaction in multiple stages, the amount of air supplied to the waste gas from the formaldehyde production process by the normal dehydrogenation method is preferably in the range of 1.0 to 5.0 times the volume. A double range is particularly preferred. As a method of mixing waste gas and air, it is possible to mix the waste gas in one stage and then supply it to the reactor. A preferred method is to divide the mixture into streams and supply them to the inlets of the catalyst layers in each stage and mix them with the air stream.
In other words, when mixing in one stage, a large amount of air is required to bring the concentration of flammable components in the waste gas below the lower limit of the explosion range, and even if the heat of combustion is the same, the amount of heat recovery decreases. The amount of catalyst used in the gas phase catalytic oxidation reaction must be increased, resulting in poor economic efficiency. In addition, instead of dividing the waste gas into multiple streams and supplying and mixing them to the air stream, if a method is adopted in which the air stream is divided into multiple streams and the mixture is supplied to the waste gas stream, the concentration of combustible components may be explosive. As the temperature falls within this range, the deterioration of the catalyst used becomes significant, which is not preferable. The division ratio of the waste gas may be determined mainly by focusing on the hydrogen concentration in the waste gas, and may be determined so that the concentration of combustible components in each stage of the catalyst layer is below the lower limit of the explosion range.

廃ガスの気相接触酸化反応に用いる触媒として
は、アルミナ、シリカ、チタニア等の金属酸化物
から成る担体上に白金、パラジウム、ルテニウ
ム、ロジウム、レニウム、オスミウム、イリジウ
ムの如き貴金属の少なくとも一種を触媒1あた
り0.1〜5.0g、好ましくは0.5〜3.0g担持させた
ものが用いられるが、実用上は白金又は/及びパ
ラジウムを含有する触媒が好ましい。さらに好ま
しくは、ハニカム型担体上に貴金属を担持させた
触媒が適する。ハニカム型担体は、市販の種々の
型のものが採用できるが、これにアルミナ及び/
又はシリカ質の微粉末を担持させたものが好まし
い。
The catalyst used in the gas phase catalytic oxidation reaction of waste gas is a catalyst containing at least one noble metal such as platinum, palladium, ruthenium, rhodium, rhenium, osmium, or iridium on a carrier made of a metal oxide such as alumina, silica, or titania. A catalyst supported in an amount of 0.1 to 5.0 g, preferably 0.5 to 3.0 g per catalyst is used, but a catalyst containing platinum or/and palladium is preferred in practice. More preferably, a catalyst in which a noble metal is supported on a honeycomb type carrier is suitable. Various types of commercially available honeycomb carriers can be used, including alumina and/or
Alternatively, it is preferable that fine siliceous powder be supported.

一般の卑金属酸化物触媒は、ホプカライト系触
媒に代表される如く、低温域での使用には好適な
ものもあるが、500℃以上の高温に晒した場合に
酸化物の形態が変ることが多く、触媒寿命の点で
好ましくない。
Some common base metal oxide catalysts, such as hopcalite catalysts, are suitable for use in low temperature ranges, but the form of the oxide often changes when exposed to high temperatures of 500°C or higher. , which is unfavorable in terms of catalyst life.

また貴金属担持触媒であつても600℃以上のよ
り高温域で使用する場合には、ハニカム型担体上
に貴金属を担持させた触媒が活性及び触媒寿命の
点から好ましいばかりでなく、圧損が小さく、設
備上も好ましい。さらに、白金及び/又はパラジ
ウムを担持させた触媒を使用することにより、従
来この種の気相接触酸化反応に不可欠であつた混
合ガスの予熱を省略することも可能となつた。
Even if a catalyst is supported on a precious metal, when it is used in a higher temperature range of 600°C or higher, a catalyst in which the precious metal is supported on a honeycomb type carrier is preferable not only from the viewpoint of activity and catalyst life, but also because it has low pressure loss and It is also preferable in terms of equipment. Furthermore, by using a catalyst on which platinum and/or palladium is supported, it has become possible to omit the preheating of the mixed gas, which has conventionally been indispensable for this type of gas phase catalytic oxidation reaction.

気相接触酸化反応に用いる触媒量は少ない方が
経済的であるが、全ガス量が空間速度で10000〜
100000 1/hrになるような触媒量が好ましい。
空間速度が10000 1/hr未満では設備的に不経済
であり、100000 1/hrを超すと、廃ガス中の可
燃性物質の燃焼が不充分となり好ましくない。本
発明の方法において、気相接触酸化反応は断熱的
に行われ、触媒層入口ガス温度は通常0〜200℃
であり、10〜100℃が特に好ましい。触媒層入口
ガス温度が0℃未満では、着火が困難となり、
200℃を超すとガス予熱器が大きくなるとともに
断熱温度上昇範囲が狭くなるため空気の補給量が
増加し、不経済である。
It is more economical to use a smaller amount of catalyst in the gas phase catalytic oxidation reaction, but if the total gas amount is 10,000~
The amount of catalyst is preferably 100,000 1/hr.
If the space velocity is less than 10,000 1/hr, it is uneconomical in terms of equipment, and if it exceeds 100,000 1/hr, the combustion of combustible substances in the waste gas will be insufficient, which is undesirable. In the method of the present invention, the gas phase catalytic oxidation reaction is carried out adiabatically, and the gas temperature at the inlet of the catalyst layer is usually 0 to 200°C.
and 10 to 100°C is particularly preferable. If the gas temperature at the inlet of the catalyst layer is less than 0°C, ignition becomes difficult.
If the temperature exceeds 200°C, the gas preheater becomes larger and the adiabatic temperature increase range becomes narrower, so the amount of air replenishment increases, which is uneconomical.

上記条件下に気相接触酸化反応を行うことによ
り廃ガス中の水素、一酸化炭素等の可燃性物質は
安全に且つ完全に燃焼するとともに、触媒層出口
ガス温は熱回収に適した600〜800℃となるために
反応熱を有効に回収することが可能となる。上記
条件が満足されず、触媒層出口ガス温が600℃未
満となる場合は断熱温度上昇範囲が狭くなり、空
気の補給量を増加せざるを得ず不経済であり、
800℃を超える場合には、触媒の劣化が著しく好
ましくない。
By performing the gas phase catalytic oxidation reaction under the above conditions, combustible substances such as hydrogen and carbon monoxide in the waste gas are safely and completely combusted, and the gas temperature at the exit of the catalyst layer is 600~600°C, which is suitable for heat recovery. Since the temperature is 800°C, it becomes possible to effectively recover the reaction heat. If the above conditions are not satisfied and the gas temperature at the outlet of the catalyst layer is less than 600°C, the adiabatic temperature increase range will be narrowed and the amount of air replenishment will have to be increased, which is uneconomical.
If the temperature exceeds 800°C, the catalyst deteriorates significantly, which is undesirable.

気相接触酸化反応により高温で排出されるガス
は、通常の熱交換器により熱回収される。熱回収
の方法としては多段に分割した触媒層間に熱交換
器に設置する方法も知られているが、本発明の方
法においては設備的にも熱経済的にも好ましいも
のではなく、廃ガス中の可燃性物質の燃焼後に熱
回収を行なうのが好ましい。
The gas discharged at high temperature by the gas phase catalytic oxidation reaction is heat-recovered by a conventional heat exchanger. As a heat recovery method, a method of installing a heat exchanger between catalyst layers divided into multiple stages is also known, but the method of the present invention is not preferable in terms of equipment or thermoeconomics, and Preferably, heat recovery is performed after combustion of the combustible material.

以上の説明から明らかな如く、本発明方法はホ
ルムアルデヒド製造工程から排出される廃ガスを
処理する際、補給する空気量をできる限り少なく
し、かつ廃ガスの気相接触酸化反応により生じる
反応熱を有効に回収することにより、極めて経済
性の高い方法を提供するものである。
As is clear from the above explanation, the method of the present invention minimizes the amount of supplemented air when treating waste gas discharged from the formaldehyde production process, and reduces the reaction heat generated by the gas phase catalytic oxidation reaction of the waste gas. This provides an extremely economical method through effective recovery.

一般のプロセス、例えば炭化水素の酸化反応プ
ロセスよりの廃ガスを気相接触酸化反応により処
理する場合、必要な温度いわゆる着火温度は通常
250℃とされている。本発明の方法においては、
これらの条件とは大幅に相違した、ホルムアルデ
ヒド製造工程よりの廃ガスからの熱回収に特有の
条件下で気相接触酸化反応を行なうことにより、
廃ガスからの効率的な熱回収が始めて可能となつ
た。
When treating waste gas from a general process, such as a hydrocarbon oxidation reaction process, by gas phase catalytic oxidation reaction, the required temperature, the so-called ignition temperature, is usually
It is said to be 250℃. In the method of the present invention,
By conducting a gas phase catalytic oxidation reaction under conditions that are significantly different from these conditions and are unique to heat recovery from waste gas from the formaldehyde manufacturing process,
For the first time, efficient heat recovery from waste gas has become possible.

ホルムアルデヒド製造工程よりの廃ガスを煙突
上で着火し、燃焼させるような方法では熱回収を
行なうことは困難であり、またボイラーへの熱源
として該廃ガスを供給燃焼させ、熱回収を行う場
合は、被燃焼成分に対する理論空気量では完全燃
焼が困難であるので一般的には空気比で1.1〜1.3
と過剰の空気を必要とするため、熱経済的に不利
になり、また装置的にも過大な費用が必要となる
のに対して、本発明方法は極めて経済性の高い熱
回収方法を提供するものである。
It is difficult to recover heat by igniting waste gas from the formaldehyde manufacturing process in a chimney and burning it. Since complete combustion is difficult with the theoretical amount of air for the components to be combusted, the air ratio is generally 1.1 to 1.3.
However, the method of the present invention provides an extremely economical heat recovery method. It is something.

以下、実施例によつて本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 メタノールの脱水素によりホルムアルデヒドを
合成する際排出された廃ガスを以下に記すように
して気相接触酸化し、熱を回収した。使用した廃
ガスの組成は水素21.0容量%、一酸化炭素1.0容
量%、二酸化炭素4.0容量%、炭化水素類0.5容量
%、ホルムアルデヒド及びギ酸が痕跡量であり、
他は水及び窒素であつた。
Example 1 Waste gas discharged during synthesis of formaldehyde by dehydrogenation of methanol was subjected to gas phase catalytic oxidation as described below, and heat was recovered. The composition of the waste gas used was 21.0% by volume of hydrogen, 1.0% by volume of carbon monoxide, 4.0% by volume of carbon dioxide, 0.5% by volume of hydrocarbons, and trace amounts of formaldehyde and formic acid.
The others were water and nitrogen.

3BのSus―304製反応管に、ハニカム型担体上
にアルミナの微粉末を担持させ、その上に触媒1
に対して2gの白金を担持させた触媒を、75mm
φ×50mmに成型し、これを3段に分けて充填し
た。それぞれの触媒層間にノズルを設置し、廃ガ
スを分割供給できるようにした。
In the Sus-304 reaction tube of 3B, fine alumina powder was supported on a honeycomb type carrier, and catalyst 1 was placed on top of it.
A catalyst supporting 2g of platinum on a 75mm
It was molded into a diameter of 50 mm and filled in three stages. A nozzle was installed between each catalyst layer, allowing waste gas to be supplied in parts.

この反応管に、空気を反応管の上方から32N
m3/hrで導入し、廃ガスを、まず5.6Nm3/hr、
次いで6.9Nm3/hr、8.5Nm3/hrと三分割して触
媒層の上方及び触媒層間のノズルから導入し、気
相接触酸化反応を行つた。反応器入口ガス温は35
℃で、反応器出口ガス温は690℃に保持され、反
応管出口ガス中の可燃性成分は水素が0.09容量%
検出されたのみで他は検出されなかつた。反応管
から出たガスを1.2m2の伝熱面積を有する多管式
熱交換器に通じて熱交換することにより、熱交換
器出口からは195℃に冷却されたガスが排出され
た。
Inject air into this reaction tube at 32N from above the reaction tube.
m 3 /hr, and the waste gas was first introduced at 5.6Nm 3 /hr,
Next, the mixture was divided into three parts, 6.9 Nm 3 /hr and 8.5 Nm 3 /hr, and introduced from the nozzle above the catalyst layer and between the catalyst layers to perform a gas phase catalytic oxidation reaction. Reactor inlet gas temperature is 35
℃, the reactor outlet gas temperature is maintained at 690℃, and the combustible component in the reaction tube outlet gas is hydrogen at 0.09% by volume.
Only one was detected, others were not detected. The gas discharged from the reaction tube was passed through a shell-and-tube heat exchanger having a heat transfer area of 1.2 m 2 for heat exchange, and gas cooled to 195°C was discharged from the heat exchanger outlet.

熱交換器のシエル側には30℃の水をポンプで供
給し、常圧下蒸発させたが、液面を一定にさせた
時の水の供給量は12.3Kg/hrであつた。
Water at 30°C was supplied to the shell side of the heat exchanger by a pump and evaporated under normal pressure, and when the liquid level was kept constant, the amount of water supplied was 12.3 kg/hr.

実施例 2 触媒1に対して2gのパラジウムを担持させ
た触媒を用いて実施例1と同様な条件で、ホルム
アルデヒド廃ガスの気相接触酸化反応を行つた。
Example 2 A gas phase catalytic oxidation reaction of formaldehyde waste gas was carried out under the same conditions as in Example 1 using a catalyst in which 2 g of palladium was supported on catalyst 1.

反応器入口ガス温は20℃で、反応器出口ガス温
は680℃に保持され、反応器出口ガス中の可燃性
成分は、水素が0.07容量%検出されたのみで他は
検出されなかつた。
The reactor inlet gas temperature was maintained at 20°C, and the reactor outlet gas temperature was maintained at 680°C, and only 0.07% by volume of hydrogen and no other combustible components were detected in the reactor outlet gas.

実施例1と同様な方法で熱回収を行つたとこ
ろ、熱交換器出口ガス温は、180℃となり、水の
供給量は12.4Kg/hrであつた。
When heat was recovered in the same manner as in Example 1, the gas temperature at the exit of the heat exchanger was 180° C., and the amount of water supplied was 12.4 Kg/hr.

Claims (1)

【特許請求の範囲】[Claims] 1 貴金属担持触媒を多段に分割充填してなる複
数の触媒層を有する反応器を準備し、ホルムアル
デヒド製造工程から排出される水素10.0〜30.0容
量%、一酸化炭素0.1〜5.0容量%を含む水素及び
一酸化炭素を主体とする廃ガスを多流に分割して
該反応器の分割された各触媒層にそれぞれ供給す
ると共に、該廃ガスの1.0〜5.0容量倍の空気を該
反応器の入口部に供給し、ガス空間速度10000〜
100000hr-1触媒層入口温度0〜200℃の条件下に
断熱的に気相接触酸化反応を行わしめ、触媒層出
口ガス温度が600〜800℃であるガス体となした
後、該ガス体を熱交換器に通じて熱交換すること
を特徴とするホルムアルデヒド製造廃ガスからの
熱回収方法。
1. Prepare a reactor having a plurality of catalyst layers formed by dividing and filling noble metal supported catalysts in multiple stages, and collect hydrogen containing 10.0 to 30.0 volume % of hydrogen and 0.1 to 5.0 volume % of carbon monoxide discharged from the formaldehyde manufacturing process. The waste gas mainly composed of carbon monoxide is divided into multiple flows and supplied to each divided catalyst layer of the reactor, and air in an amount of 1.0 to 5.0 times the volume of the waste gas is supplied to the inlet of the reactor. gas space velocity 10000 ~
100000 hr -1 After carrying out the gas phase catalytic oxidation reaction adiabatically under the conditions of catalyst bed inlet temperature 0 to 200°C to form a gas body with catalyst bed exit gas temperature of 600 to 800°C, the gas body is A method for recovering heat from formaldehyde production waste gas, characterized by exchanging heat through a heat exchanger.
JP6689579A 1979-05-31 1979-05-31 Recovery of heat from waste gas in production process of formaldehyde Granted JPS55160733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6689579A JPS55160733A (en) 1979-05-31 1979-05-31 Recovery of heat from waste gas in production process of formaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6689579A JPS55160733A (en) 1979-05-31 1979-05-31 Recovery of heat from waste gas in production process of formaldehyde

Publications (2)

Publication Number Publication Date
JPS55160733A JPS55160733A (en) 1980-12-13
JPS632652B2 true JPS632652B2 (en) 1988-01-20

Family

ID=13329105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6689579A Granted JPS55160733A (en) 1979-05-31 1979-05-31 Recovery of heat from waste gas in production process of formaldehyde

Country Status (1)

Country Link
JP (1) JPS55160733A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413438A (en) * 1986-03-17 1995-05-09 Turchan; Manuel C. Combined hole making and threading tool
US4651374A (en) * 1986-03-17 1987-03-24 Turchan Manuel C Combined hole making and threading tool
CN108671742A (en) * 2017-11-21 2018-10-19 南京钟腾化工有限公司 Normal butane method produces the exhaust treatment system and method for cis-butenedioic anhydride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153870A (en) * 1976-06-16 1977-12-21 Osaka Sanso Kougiyou Kk Method of treating exhaust gases by catalytic oxidation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153870A (en) * 1976-06-16 1977-12-21 Osaka Sanso Kougiyou Kk Method of treating exhaust gases by catalytic oxidation

Also Published As

Publication number Publication date
JPS55160733A (en) 1980-12-13

Similar Documents

Publication Publication Date Title
JP2516676B2 (en) Process for producing monoolefin by catalytic oxidative dehydrogenation of gaseous paraffinic hydrocarbon having two or more carbon atoms
US6524550B1 (en) Process for converting carbon monoxide and water in a reformate stream
JP4833435B2 (en) Hydrothermal catalytic steam reforming of hydrocarbons
US4618451A (en) Synthesis gas
US6403049B1 (en) Hydrogen purification
US20050180914A1 (en) Two-stage catalytic process for recovering sulfur from an H2S-containing gas stream
CA2374950C (en) Method and device for the reduction of nitrogen protoxide
US4034062A (en) Removal of oxygen from gas stream with copper catalyst
RU2000112163A (en) METHOD AND DEVICE FOR PREVENTING GLOBAL HEATING
US3467492A (en) Elimination of nitrogen oxides from gas streams
US3988423A (en) Method for removing harmful materials from waste gas
US4973457A (en) Method for the reduction of nitrogen oxide
US4988431A (en) Process for performing catalytic reactions
US3425803A (en) Nitric acid tail gas purification
CN1131322C (en) Apparatus for producing heat treatment atmospheres
US5262145A (en) Catalyst for ammonia conversion to HCN
JPS632652B2 (en)
US6113871A (en) Catalytic decomposition of ammonia and hydrogen cyanide in coke-oven gas
NL2030905B1 (en) Hybrid ammonia decomposition system
US3567367A (en) Method of removing nitrogen oxides from gases
US4219534A (en) Method for removing nitrogen oxides from a gas stream
US4039622A (en) Catalytic process for NOX reduction under lean conditions
KR100499860B1 (en) Process for high performance synthetic gas generation using the catalysts
US3244479A (en) Method of catalytically producing hydrogen cyanide and regenerating the catalyst therefor in situ
JP5498169B2 (en) Method for removing NO and N2O from a gas mixture