JPS6237021B2 - - Google Patents

Info

Publication number
JPS6237021B2
JPS6237021B2 JP54010556A JP1055679A JPS6237021B2 JP S6237021 B2 JPS6237021 B2 JP S6237021B2 JP 54010556 A JP54010556 A JP 54010556A JP 1055679 A JP1055679 A JP 1055679A JP S6237021 B2 JPS6237021 B2 JP S6237021B2
Authority
JP
Japan
Prior art keywords
pea
reaction
styrene
acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54010556A
Other languages
Japanese (ja)
Other versions
JPS55102521A (en
Inventor
Takashi Deguchi
Masahiro Usui
Yasuhiko Too
Susumu Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1055679A priority Critical patent/JPS55102521A/en
Publication of JPS55102521A publication Critical patent/JPS55102521A/en
Publication of JPS6237021B2 publication Critical patent/JPS6237021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はα−フエニルエチルアルコール(以下
α−PEAと称す)を液相で脱水触媒を用いて脱
水し、スチレンを製造するにあたり、180〜220℃
の温度範囲で有機スルホン酸を脱水触媒として用
いるとともに反応液相中のα−PEAを特定濃度
に保つて反応を行なわせることにより不純物混入
量の少ない高純度スチレンを高収率で製造する方
法に関するものである。 スチレンモノマーは一般にエチルベンゼンを脱
水素することにより製造されているが、α−
PEAを脱水することによりスチレンを製造する
方法が最近工業的に見なおされてきている。α−
PEAを触媒存在下で脱水してスチレンを製造す
る方法としては、気相法によるものあるいは液相
法によるものが種々提案されている。触媒存在下
にα−PEAを液相で脱水する方法については米
国特許第3526674号に記載されているが、同特許
によればα−PEAの液相脱水反応は220℃以上の
温度で、鉱酸、カルボン酸、アリールスルホン酸
あるいは表面積が15m2/g以上の固体触媒のいず
れかの存在下に行なうことにより進行し、なかで
もアルミナが脱水触媒として最も適していると記
載されている。 α−PEAを脱水してスチレンを製造する方法
において純度の高いスチレンを収率よく得ること
は工業的に非常に重要であり、スチレン中への不
純物のわずかな混入により、α−PEAの脱水に
よるスチレン製造法の工業的価値が大きく減ぜら
れる。 すなわちスチレンはポリスチレンあるいはその
他のポリマーを製造するためのモノマーとして広
く用いられているが、α−PEAを脱水する工程
において生成した副生成物が製品スチレン中に混
入すれば、ポリマー製造時の重合挙動が変化する
とかあるいは重合によつて得られたポリマーの品
質上に問題が発生することがあり、このような不
純物の混入を極力抑える必要がある。また製品ス
チレン中のエチルベンゼンやクメンのような非重
合性不純物の含量も厳しく制限されており、例え
ばエチルベンゼンは通常約500ppm(0.05%)以
下に抑えられている。ところがエチルベンゼンと
スチレンはその沸点が近いため蒸留による分離が
非常に困難である。従つてエチルベンゼンをスチ
レンから分離除去するためには多大な蒸留費用を
必要とするのが普通であり、かつこのような精留
を行なつた後でも数百ppmのエチルベンゼンの
混入がさけられない。またα−メチルスチレンも
スチレンとの分離が比較的困難な副生成物の一つ
であり、その除去のためにかなり蒸留費用を必要
とする。 α−PEAの脱水によりスチレンを製造する方
法において生成する軽沸副生物としてはエチルベ
ンゼンおよびα−メチルスチレンがその主なもの
であるが、その他にも原料α−PEA中に含まれ
る不純物の反応により種々の軽沸化合物が生成す
ることがある。 α−PEAの脱水反応においてエチルベンゼン
およびα−メチルスチレンが副生する機構につい
ては明らかでなく、これらの副生物の生成を抑え
る方法はこれまで知られていなかつた。 本発明者らはエチルベンゼンをはじめとする副
生成物の生成が少ないα−PEAの脱水方法につ
いて検討を進めた結果、本発明方法に到達したも
のである。すなわち本発明者らは、α−PEAを
液相で脱水してスチレンを製造するにあたり、
180ないし220℃の温度範囲で、触媒として有機ス
ルホン酸を用い、かつ反応液相中におけるα−
PEAの濃度を下式で表わされる値以下に保つこ
とによつて、エチルベンゼンをはじめとする副生
成物の生成比率を著しく低く抑えることができる
ことを見出した。 α−PEA濃度(重量%)=2×10-3×(260−t) ここにtは反応温度(℃)を表わす。 本発明方法において用いられる触媒は有機スル
ホン酸である。有機スルホン酸としては脂肪族ス
ルホン酸および芳香族スルホン酸がある。脂肪族
スルホン酸としては例えばメタンスルホン酸、エ
タンスルホン酸、1−プロパンスルホン酸、1−
ブタンスルホン酸、β−ヒドロキシエタンスルホ
ン酸、1・4−ブタンジスルホン酸、1・5−ペ
ンタンジスルホン酸あるいは高級アルカンスルホ
ン酸などが用いられる。また芳香族スルホン酸と
しては例えばベンゼンスルホン酸、p−トルエン
スルホン酸、エチルベンゼンスルホン酸、o−、
m−およびp−キシレンスルホン酸、メシチレン
スルホン酸、p−フエノールスルホン酸、o−ク
レゾールスルホン酸、p−クロルベンゼンスルホ
ン酸、スルフアニル酸、メタニル酸、スルホサリ
チル酸、ドデシルベンゼンスルホン酸、ベンゼン
−m−ジスルホン酸、1−ナフタレンスルホン
酸、2−ナフタレンスルホン酸、1−ナフトール
−4−スルホン酸、1−ナフトール−2−スルホ
ン酸、1−ナフチルアミン−4−スルホン酸、1
−ナフチルアミン−8−スルホン酸、2−ナフト
ール−3・6−ジスルホン酸、2−ナフトール−
6・8−ジスルホン酸、1−ナフトール−8−ア
ミノ−3・6−ジスルホン酸、8−ヒドロキシキ
ノリン−5−スルホン酸、1−ナフトール−6−
アミノ−3−スルホン酸あるいはジアミノスチル
ベンジスルホン酸などが用いられる。またこれら
の有機スルホン酸の誘導体で反応系内においてス
ルホン酸を遊離するものも本発明における有機ス
ルホン酸とみなされる。 以上の触媒は単独で用いてもよいし、組合せて
用いてもよい。また種々の化合物をこれらの触媒
と共存させて用いてもさしつかえない。例えばジ
フエニルアミン、ε−カプロラクタム、4・4′−
チオ−ビス−(6−t−ブチル−3−メチルフエ
ノール)、N−メチルピロリドン、フエニル−α
−ナフチルアミン、N・N′−ジフエニル−p−
フエニレンジアミン、ヘキサメチレンホスホトリ
アミド、キノリン、アンモニア、アルカリ金属
塩、その他の化合物をこれらの有機スルホン酸と
共存させることにより高沸副生物を減少させ、ス
チレンの収率を向上させることができる。 本発明方法に用いられる触媒の使用量について
は特に限定されるものではないが、通常反応媒体
中に0.02〜5.0重量%存在せしめて用いられ、よ
りのぞましくは、反応媒体中に0.1〜2.0重量%存
在せしめて用いられる。 触媒の添加方法については直接反応系に添加し
てもよいが、適当な溶媒に溶解させて供給するこ
ともできる。このような溶媒としては水あるいは
原料α−PEAが特に好ましく用いられる。 本発明方法においては180ないし220℃の温度範
囲で反応を行なうことが重要である。すなわち
220℃よりも高い反応温度を採用すると前述の通
りエチルベンゼンやα−メチルスチレンのような
好ましくない副生物の生成比率が高くなり、また
スチレン中にイオウ化合物が混入するという問題
がある。また180℃以下の温度では工業的に実施
するために充分な反応速度が得られず、また重質
副生物であるα−PEAの脱水二量体(以下DPE
と称す)の副生比率が高くなる。 反応圧力については、常圧条件下あるいは減圧
条件下に運転を行なつても軽沸副生物の生成は共
にほとんどなく本発明の目的を達成できるが、絶
対圧650mmHg以下の圧力で反応を行なうことによ
りα−PEAの転化率をほとんど低下させること
なく重質副生物の生成を抑え、スチレンの収率を
より向上させることができる。反応圧力の下限に
ついては特に限定されるものではないが、反応圧
力を100mmHg以下に下げても高沸副生物生成量減
少効果はそれほど大きくなく、また反応装置の製
造コストおよび運転コストの上昇を考慮すると、
絶対圧100mmHg以上で運転することが好ましい。
また反応圧力を下げるかわりに水蒸気あるいは窒
素、炭酸ガスのような不活性ガスを加えることに
より減圧にするのと同様の効果を得ることがで
き、減圧運転のかわりにこのような運転を行なつ
てもさしつかえがない。この場合反応系に導入さ
れる不活性ガスの量は供給されるα−PEAに対
してモル比で0.5以上であることが好ましい。 本発明方法を実施するに際しては反応媒体とし
て適当な溶媒を用いることができる。そのような
溶媒としては一般に沸点が200℃以上のものが好
ましい。適当な溶媒の例としてはアセトフエノ
ン、テトラヒドロナフタリン(テトラリン)、ジ
フエニルメタン、1・2−ジフエニルエタン、高
級アルキルベンゼン、アルキルナフタリン、ジフ
エニルエーテル、1−メチル−3−フエニルイン
ダン、1・3−ジフエニルブテン、1・1−ジフ
エニルエタンなどがあげられる。しかしながら反
応条件下に生成するスチレンのオリゴマーを主体
とする高沸副生物を反応媒体として用いることが
工業的実施形態として最も好ましい。 スチレンは極めて重合しやすい物質であり、反
応媒体中で生成した後できるだけ速やかに系外へ
除去することが好ましい。それを可能にする方法
としては反応と同時に蒸留によつてスチレンを系
外へ取り出す、いわゆる反応蒸留方式が有用であ
る。本発明方法は反応蒸留方式によるα−PEA
の脱水反応に対しても好都合に適用される。 本発明方法においては、反応液相中におけるα
−PEAの濃度を反応温度に応じて下式で計算さ
れる値以下に保つことが肝要である。 α−PEA濃度(重量%)=2×10-3×(260−t) ここにtは反応温度(℃)を表わす。代表的な
温度における上式の計算値は次の通りである。 温度(℃) α−PEA濃度(重量%) 180 12.8 190 9.8 200 7.2 210 5.0 220 3.2 230 1.8 240 0.8 本発明によれば、各反応温度において反応液相
中のα−PEAの濃度を上記の値以下に保つこと
によつてスチレンに対するエチルベンゼンの生成
比率を約0.1重量%以下に抑えることができる。
逆にα−PEAの濃度が上記の値を超える場合に
はエチルベンゼンの生成比率が高くなり、スチレ
ンからの分離のために多大な費用を必要とする。
より好ましくは、α−PEAの濃度を上式から計
算される値の半分以下に保つとよい。このことに
よつてエチルベンゼンを改めて分離除去する必要
がないばかりか、一般に流通している製品スチレ
ン中に含まれるエチルベンゼンの濃度よりも低い
程度にまでエチルベンゼンの生成比率を下げるこ
とができる。このことは前述の通りエチルベンゼ
ンの分離のための費用を必要としない上に、エチ
ルベンゼン含有量の少ない高品質の製品スチレン
の製造が可能なことを意味しており、その工業的
価値は極めて高いものである。 反応液相中のα−PEAの濃度は種々の要因の
組み合わせによつて決まるものである。このよう
な要因としては、触媒の種類と濃度、原料の組
成、反応媒体の種類、温度、圧力、反応形式など
があり、反応蒸留方式の場合にはさらに平均滞留
時間、蒸留塔の段数、還流比などがある。本発明
方法によれば、これらの要因の組みあわせの如何
によらず、反応液相中のα−PEAの濃度を前述
の値以下に保つことによつて所期の反応成績が達
成される。これらの要因が反応液相中のα−
PEA濃度に与える影響は、他の条件が同一とし
た場合、一般に次のようになる。すなわち触媒濃
度が高いほど、原料中のα−PEA濃度が低いほ
ど、温度が高いほど、圧力が低いほど、平均滞留
時間が長いほど、蒸留塔の段数が少ないほど、還
流比が小さいほど、それぞれ反応液相中における
α−PEA濃度が低くなる。他方これらの要因
は、α−PEAの反応率、重質副生物の生成比
率、触媒費用、運転費用あるいは装置費用とも関
連しているので、それらの点でも満足できるよう
に要因を組みあわせる必要がある。これらを適当
に組みあわせることによつて高反応率、高選択率
で高純度のスチレンを製造することができる。 本発明方法において用いられる原料のα−
PEAは必ずしも純粋である必要はなく、他の成
分を含んだ組成物であつてもよい。例えばエチル
ベンゼンをα−PEAの前駆体として用いる場合
には、通常アセトフエノンを含む組成物が得られ
る。原料α−PEA中のこれらの化合物の含有量
についてはこだわるものではなく、特にα−
PEAの精製を必要としない。 本発明方法による反応の終了後は反応生成物か
ら蒸留によつてスチレンが単離される。この際エ
チルベンゼンおよびα−メチルスチレンのような
その沸点がスチレンと近接した副生物の生成比率
が非常に小さいために極めて簡単な精留により従
来のスチレンよりも高純度のスチレンを容易にか
つ収率よく得られることが本発明方法の大きな効
果である。 次に実施例によつて本発明方法を説明するが、
本発明の範囲はこれらによつて制限を受けるもの
ではない。 実施例 1 還流装置をとりつけた300c.c.のフラスコに、溶
媒としてテトラリン200c.c.と触媒としてp−トル
エンスルホン酸0.02gをとり、加熱還流させた。
次に還流を続けながら所定量の濃度、すなわち10
%、24%、38%および53%のα−PEAを含むテ
トラリン溶液を毎時100gの速度で供給し、同時
に生成した水およびスチレンと未反応のα−
PEAならびにテトラリンを含む留出液を毎時100
gの速度で系外へ抜き出して反応を行なわせた。
反応液相および留出液をガスクロマトグラフイー
によつて分析し、反応を追跡した。 反応は約3時間で定常に達するが、この時の反
応温度は約205℃であつた。3時間目から6時間
目の分析値の平均から求めた反応液相中のα−
PEA濃度とスチレンおよびエチルベンゼンの生
成速度の関係を前記それぞれのα−PEA溶液に
ついて示すと第1図のようになつた。 実施例 2〜11 理論段数約5段の精留管をとりつけた500c.c.の
丸底フラスコにスチレンオリゴーマーを主体とす
る重質分とp−トルエンスルホン酸をそれぞれ所
定量仕込む。マントルヒーターによつて所定の温
度まで加熱昇温した後、α−PEAとアセトフエ
ノンの混合物を所定の速度で供給する。反応液相
の温度および圧力をそれぞれ所定の通り保ちなが
ら反応を行なわせ、同時に精留管を通して蒸留
し、主としてスチレン、α−PEA、アセトフエ
ノンおよび水よりなる留出液を取得する。またこ
の蒸留にあたつては精留管の上部に純水を所定の
速度で供給する。 反応によつて生成する重質分は適時フラスコか
ら抜き出してフラスコ内の反応液量を一定に保つ
た。この際同伴して抜き出される触媒はその相当
量をフラスコに供給する。 留出液は有機層をガスクロマトグラフイーによ
つて分離定量してα−PEAの反応率、スチレン
の選択率、エチルベンゼンの選択率を求めた。ま
たフラスコから抜き出した反応液相をガスクロマ
トグラフイーによつて分析して反応液相のα−
PEA濃度を求めた。こうして得られた結果を表
1に示す。なおこれら各実施例における反応の詳
細な条件は表2に示した。 以下に示す各表において用いられている記号等
はそれぞれ次に示す内容を意味するものとする。 原料純度:α−PEAとアセトフエノンの混合物
のうちα−PEAの占める割合(重量%) 反応温度:反応液相の温度(℃) 反応圧力:フラスコ内の圧力(mmHg) 触媒濃度:重量% SV:原料供給速度を反応液相重量で除した値
(hr-1) 還流比:純水供給速度を原料供給速度で除した値 〔PEA〕:反応液相中のα−PEA濃度(重量%) 反応率:α−PEAの反応率(%) SM:反応したα−PEAに対する生成スチレンの
割合(モル%) EB:反応したα−PEAに対する生成エチルベン
ゼンの割合(モル%) HB:反応したα−PEAに対する生成重質分の割
合(モル%)。但し重質分はスチレンに換算し
て計算する。
The present invention dehydrates α-phenylethyl alcohol (hereinafter referred to as α-PEA) in the liquid phase using a dehydration catalyst to produce styrene at a temperature of 180 to 220°C.
This invention relates to a method for producing high-purity styrene with a small amount of impurities in a high yield by using an organic sulfonic acid as a dehydration catalyst and maintaining a specific concentration of α-PEA in the reaction liquid phase in a temperature range of It is something. Styrene monomer is generally produced by dehydrogenating ethylbenzene, but α-
The method of producing styrene by dehydrating PEA has recently been reconsidered industrially. α−
Various methods have been proposed for producing styrene by dehydrating PEA in the presence of a catalyst, including a gas phase method and a liquid phase method. A method for dehydrating α-PEA in the liquid phase in the presence of a catalyst is described in U.S. Patent No. 3,526,674. The dehydration process is carried out in the presence of an acid, a carboxylic acid, an arylsulfonic acid, or a solid catalyst having a surface area of 15 m 2 /g or more, and it is stated that alumina is particularly suitable as the dehydration catalyst. In the process of producing styrene by dehydrating α-PEA, it is very important industrially to obtain high-purity styrene in good yield. The industrial value of the styrene production process is greatly reduced. In other words, styrene is widely used as a monomer for producing polystyrene and other polymers, but if by-products produced in the process of dehydrating α-PEA are mixed into the styrene product, the polymerization behavior during polymer production may be affected. This may cause a change in the quality of the polymer obtained by polymerization or may cause problems with the quality of the polymer obtained by polymerization, so it is necessary to suppress the contamination of such impurities as much as possible. The content of non-polymerizable impurities such as ethylbenzene and cumene in the styrene product is also strictly limited, and ethylbenzene, for example, is usually kept below about 500 ppm (0.05%). However, since ethylbenzene and styrene have similar boiling points, it is extremely difficult to separate them by distillation. Therefore, separating and removing ethylbenzene from styrene usually requires a large amount of distillation cost, and even after such rectification, several hundred ppm of ethylbenzene cannot be avoided. Furthermore, α-methylstyrene is one of the by-products that is relatively difficult to separate from styrene, and its removal requires considerable distillation costs. Ethylbenzene and α-methylstyrene are the main light-boiling byproducts produced in the process of producing styrene by dehydration of α-PEA, but other products are also produced by reactions with impurities contained in the raw material α-PEA. Various light boiling compounds may be formed. The mechanism by which ethylbenzene and α-methylstyrene are produced in the dehydration reaction of α-PEA is not clear, and no method for suppressing the production of these by-products has been known so far. The present inventors have conducted studies on a method for dehydrating α-PEA that produces fewer byproducts such as ethylbenzene, and as a result, they have arrived at the method of the present invention. That is, the present inventors dehydrated α-PEA in the liquid phase to produce styrene.
Using an organic sulfonic acid as a catalyst and α-
It has been found that by keeping the concentration of PEA below the value expressed by the following formula, the production ratio of by-products including ethylbenzene can be kept extremely low. α-PEA concentration (wt%)=2×10 −3 ×(260−t) 2 where t represents the reaction temperature (° C.). The catalyst used in the process of the invention is an organic sulfonic acid. Organic sulfonic acids include aliphatic sulfonic acids and aromatic sulfonic acids. Examples of aliphatic sulfonic acids include methanesulfonic acid, ethanesulfonic acid, 1-propanesulfonic acid, and 1-propanesulfonic acid.
Butanesulfonic acid, β-hydroxyethanesulfonic acid, 1,4-butanedisulfonic acid, 1,5-pentanedisulfonic acid, higher alkanesulfonic acid, etc. are used. Examples of aromatic sulfonic acids include benzenesulfonic acid, p-toluenesulfonic acid, ethylbenzenesulfonic acid, o-,
m- and p-xylenesulfonic acid, mesitylenesulfonic acid, p-phenolsulfonic acid, o-cresolsulfonic acid, p-chlorobenzenesulfonic acid, sulfanilic acid, metanilic acid, sulfosalicylic acid, dodecylbenzenesulfonic acid, benzene-m- Disulfonic acid, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 1-naphthol-4-sulfonic acid, 1-naphthol-2-sulfonic acid, 1-naphthylamine-4-sulfonic acid, 1
-Naphthylamine-8-sulfonic acid, 2-naphthol-3,6-disulfonic acid, 2-naphthol-
6,8-disulfonic acid, 1-naphthol-8-amino-3,6-disulfonic acid, 8-hydroxyquinoline-5-sulfonic acid, 1-naphthol-6-
Amino-3-sulfonic acid or diaminostilbendisulfonic acid is used. Furthermore, derivatives of these organic sulfonic acids that liberate sulfonic acid in the reaction system are also considered to be organic sulfonic acids in the present invention. The above catalysts may be used alone or in combination. Further, various compounds may be used in combination with these catalysts. For example, diphenylamine, ε-caprolactam, 4,4′-
Thio-bis-(6-t-butyl-3-methylphenol), N-methylpyrrolidone, phenyl-α
-naphthylamine, N・N'-diphenyl-p-
By coexisting phenylene diamine, hexamethylene phosphotriamide, quinoline, ammonia, alkali metal salts, and other compounds with these organic sulfonic acids, high-boiling byproducts can be reduced and the yield of styrene can be improved. . The amount of the catalyst used in the method of the present invention is not particularly limited, but it is usually present in the reaction medium in an amount of 0.02 to 5.0% by weight, more preferably 0.1 to 5.0% by weight in the reaction medium. It is used in the presence of 2.0% by weight. Regarding the method of adding the catalyst, it may be added directly to the reaction system, but it can also be supplied after being dissolved in an appropriate solvent. As such a solvent, water or raw material α-PEA is particularly preferably used. In the method of the present invention, it is important to carry out the reaction in a temperature range of 180 to 220°C. i.e.
If a reaction temperature higher than 220° C. is employed, as mentioned above, the production rate of undesirable by-products such as ethylbenzene and α-methylstyrene increases, and there is also the problem that sulfur compounds are mixed into the styrene. Furthermore, at temperatures below 180°C, a sufficient reaction rate cannot be obtained for industrial implementation, and the heavy by-product α-PEA dehydrated dimer (hereinafter referred to as DPE) cannot be obtained.
(referred to as ) increases in the by-product ratio. As for the reaction pressure, the purpose of the present invention can be achieved with almost no generation of light boiling by-products even if the operation is carried out under normal pressure conditions or reduced pressure conditions, but the reaction must be carried out at an absolute pressure of 650 mmHg or less. As a result, the production of heavy by-products can be suppressed without substantially reducing the conversion rate of α-PEA, and the yield of styrene can be further improved. The lower limit of the reaction pressure is not particularly limited, but even if the reaction pressure is lowered to 100 mmHg or less, the effect of reducing the amount of high-boiling byproducts produced is not so great, and the increase in manufacturing cost and operating cost of the reactor is taken into consideration. Then,
It is preferable to operate at an absolute pressure of 100 mmHg or higher.
Also, instead of lowering the reaction pressure, the same effect as reducing pressure can be obtained by adding steam or an inert gas such as nitrogen or carbon dioxide. I can't help it. In this case, the amount of inert gas introduced into the reaction system is preferably 0.5 or more in molar ratio to the supplied α-PEA. When carrying out the method of the present invention, a suitable solvent can be used as the reaction medium. As such a solvent, one having a boiling point of 200°C or higher is generally preferred. Examples of suitable solvents include acetophenone, tetrahydronaphthalene (tetralin), diphenylmethane, 1,2-diphenylethane, higher alkylbenzenes, alkylnaphthalenes, diphenyl ether, 1-methyl-3-phenylindane, 1,3-diphenylbutene, 1,1 -Diphenylethane, etc. However, it is most preferred as an industrial embodiment to use high-boiling by-products, mainly styrene oligomers, produced under the reaction conditions as the reaction medium. Styrene is a substance that polymerizes extremely easily, and it is preferable to remove it from the system as soon as possible after it is produced in the reaction medium. A useful method for making this possible is the so-called reactive distillation method, in which styrene is removed from the system by distillation at the same time as the reaction. The method of the present invention uses α-PEA using a reactive distillation method.
It is also conveniently applied to the dehydration reaction of In the method of the present invention, α in the reaction liquid phase is
- It is important to keep the concentration of PEA below the value calculated by the following formula depending on the reaction temperature. α-PEA concentration (wt%)=2×10 −3 ×(260−t) 2 where t represents the reaction temperature (° C.). The calculated values of the above equation at typical temperatures are as follows. Temperature (°C) α-PEA concentration (wt%) 180 12.8 190 9.8 200 7.2 210 5.0 220 3.2 230 1.8 240 0.8 According to the present invention, the concentration of α-PEA in the reaction liquid phase is set to the above value at each reaction temperature. By maintaining the following, the production ratio of ethylbenzene to styrene can be suppressed to about 0.1% by weight or less.
On the other hand, when the concentration of α-PEA exceeds the above value, the production ratio of ethylbenzene increases, requiring a large amount of cost for separation from styrene.
More preferably, the concentration of α-PEA is kept at half or less of the value calculated from the above formula. This not only eliminates the need to separate and remove ethylbenzene anew, but also allows the production ratio of ethylbenzene to be lowered to a level lower than the concentration of ethylbenzene contained in commonly available styrene products. As mentioned above, this means that there is no need for the expense of separating ethylbenzene, and it is possible to produce high-quality styrene with a low ethylbenzene content, and its industrial value is extremely high. It is. The concentration of α-PEA in the reaction liquid phase is determined by a combination of various factors. These factors include the type and concentration of the catalyst, the composition of the raw materials, the type of reaction medium, temperature, pressure, reaction type, and in the case of reactive distillation, the average residence time, number of plates in the distillation column, and reflux. There are ratios etc. According to the method of the present invention, regardless of the combination of these factors, the desired reaction results can be achieved by keeping the concentration of α-PEA in the reaction liquid phase below the above-mentioned value. These factors cause α− in the reaction liquid phase.
The effect on PEA concentration, all other things being the same, is generally as follows: In other words, the higher the catalyst concentration, the lower the α-PEA concentration in the raw material, the higher the temperature, the lower the pressure, the longer the average residence time, the fewer the number of plates in the distillation column, and the lower the reflux ratio, respectively. The α-PEA concentration in the reaction liquid phase decreases. On the other hand, these factors are also related to the reaction rate of α-PEA, the production ratio of heavy byproducts, catalyst cost, operating cost, or equipment cost, so it is necessary to combine the factors to satisfy these points as well. be. By appropriately combining these, high purity styrene can be produced with high reaction rate and high selectivity. α- of the raw material used in the method of the present invention
PEA does not necessarily have to be pure and may be a composition containing other ingredients. For example, when ethylbenzene is used as a precursor for α-PEA, a composition containing acetophenone is usually obtained. There are no particular restrictions on the content of these compounds in the raw material α-PEA;
Does not require purification of PEA. After the reaction according to the invention has ended, styrene is isolated from the reaction product by distillation. In this case, the production ratio of by-products such as ethylbenzene and α-methylstyrene, whose boiling points are close to that of styrene, is extremely small, so styrene with higher purity than conventional styrene can be produced easily and in high yield through extremely simple rectification. The great effect of the method of the present invention is that it can be obtained easily. Next, the method of the present invention will be explained with reference to Examples.
The scope of the present invention is not limited thereby. Example 1 In a 300 c.c. flask equipped with a reflux device, 200 c.c. of tetralin as a solvent and 0.02 g of p-toluenesulfonic acid as a catalyst were placed and heated to reflux.
Then, while continuing to reflux, the concentration of the predetermined amount, i.e. 10
%, 24%, 38%, and 53% of α-PEA at a rate of 100 g/hour, simultaneously produced water and styrene and unreacted α-PEA were fed at a rate of 100 g/hour.
100% of distillate containing PEA and tetralin per hour
The reaction was carried out by withdrawing the reaction mixture from the system at a rate of 1.5 g.
The reaction liquid phase and distillate were analyzed by gas chromatography to track the reaction. The reaction reached steady state in about 3 hours, and the reaction temperature at this time was about 205°C. α- in the reaction liquid phase determined from the average of analysis values from 3rd hour to 6th hour
The relationship between the PEA concentration and the production rate of styrene and ethylbenzene is shown in FIG. 1 for each of the above α-PEA solutions. Examples 2 to 11 A heavy fraction mainly composed of styrene oligomers and p-toluenesulfonic acid are charged in predetermined amounts into a 500 c.c. round bottom flask equipped with a rectification tube having approximately 5 theoretical plates. After heating to a predetermined temperature using a mantle heater, a mixture of α-PEA and acetophenone is supplied at a predetermined rate. The reaction is carried out while maintaining the temperature and pressure of the reaction liquid phase at predetermined values, and at the same time distillation is carried out through a rectifying tube to obtain a distillate mainly consisting of styrene, α-PEA, acetophenone, and water. Further, during this distillation, pure water is supplied to the upper part of the rectification tube at a predetermined rate. The heavy components produced by the reaction were taken out from the flask at appropriate times to keep the amount of reaction liquid in the flask constant. At this time, a considerable amount of the catalyst extracted along with the catalyst is supplied to the flask. The organic layer of the distillate was separated and quantified by gas chromatography to determine the α-PEA reaction rate, styrene selectivity, and ethylbenzene selectivity. In addition, the reaction liquid phase extracted from the flask was analyzed by gas chromatography, and the α-
The PEA concentration was determined. The results thus obtained are shown in Table 1. The detailed reaction conditions in each of these Examples are shown in Table 2. The symbols used in each table below have the meanings shown below. Raw material purity: Proportion of α-PEA in the mixture of α-PEA and acetophenone (wt%) Reaction temperature: Temperature of the reaction liquid phase (°C) Reaction pressure: Pressure inside the flask (mmHg) Catalyst concentration: wt% SV: Value obtained by dividing the raw material supply rate by the weight of the reaction liquid phase (hr -1 ) Reflux ratio: Value obtained by dividing the pure water supply rate by the raw material supply rate [PEA]: α-PEA concentration in the reaction liquid phase (wt%) Reaction Rate: Reaction rate of α-PEA (%) SM: Ratio of produced styrene to reacted α-PEA (mol%) EB: Ratio of produced ethylbenzene to reacted α-PEA (mol%) HB: Reacted α-PEA The ratio of heavy components produced to the total weight (mol%). However, the heavy content is calculated in terms of styrene.

【表】【table】

【表】 比較例 1〜9 実施例2〜11と比較するために、反応液相にお
けるα−PEAの濃度あるいは反応温度が本発明
の範囲の外にある場合の例について、反応を行な
つた。その結果を表3に、また反応の詳細な条件
を表4にそれぞれ示す。表に示された条件の他は
実施例2〜11と同様の操作による。
[Table] Comparative Examples 1 to 9 In order to compare with Examples 2 to 11, reactions were carried out in cases where the concentration of α-PEA in the reaction liquid phase or the reaction temperature was outside the range of the present invention. . The results are shown in Table 3, and detailed reaction conditions are shown in Table 4. The same operations as in Examples 2 to 11 were performed except for the conditions shown in the table.

【表】【table】

【表】 実施例 12〜18 触媒としてα−トルエンスルホン酸の代りに
種々のスルホン酸またはそのエステルを用いる以
外は実施例11と同様の操作を行なつた結果を表5
に示す。
[Table] Examples 12 to 18 Table 5 shows the results of the same operation as Example 11 except that various sulfonic acids or esters thereof were used instead of α-toluenesulfonic acid as a catalyst.
Shown below.

【表】 比較例 10および11 触媒としてスルホン酸類の代りに、アルミニウ
ムイソプロポキシドを加水分解した後500℃で6
時間焼成して調製したアルミナを用いて実験を行
なつた。結果を表6に示す。表6に記載されてい
る以外の条件は原料純度99.5%、触媒濃度10%、
SV1、還流比0.2である。
[Table] Comparative Examples 10 and 11 Instead of sulfonic acids as a catalyst, aluminum isopropoxide was hydrolyzed and then 6
Experiments were conducted using alumina prepared by time-calcining. The results are shown in Table 6. Conditions other than those listed in Table 6 are raw material purity 99.5%, catalyst concentration 10%,
SV1, reflux ratio 0.2.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例1において反応液
相中のα−フエニルエチルアルコールの濃度に対
するスチレンおよびエチルベンゼンの生成速度の
関係を示すものである。
FIG. 1 shows the relationship between the production rate of styrene and ethylbenzene and the concentration of α-phenylethyl alcohol in the reaction liquid phase in Example 1 of the method of the present invention.

Claims (1)

【特許請求の範囲】 1 触媒の存在下に液相でα−フエニルエチルア
ルコールを脱水してスチレンを製造するにあた
り、触媒が有機スルホン酸であり、反応温度が
180ないし220℃であり、反応液相中におけるα−
フエニルエチルアルコールの濃度を下式で表わさ
れる値以下に保つことを特徴とするスチレンの製
造方法。 濃度(重量%)=2×10-3×(260−t) (但しtは反応温度(℃)を表わす) 2 反応圧力を絶対圧650mmHg以下とすることを
特徴とする特許請求の範囲第1項記載の方法。
[Claims] 1. In producing styrene by dehydrating α-phenylethyl alcohol in a liquid phase in the presence of a catalyst, the catalyst is an organic sulfonic acid and the reaction temperature is
180 to 220℃, α-
A method for producing styrene, characterized in that the concentration of phenylethyl alcohol is maintained below a value expressed by the following formula. Concentration (wt%) = 2 x 10 -3 x (260 - t) 2 (where t represents reaction temperature (°C)) 2 Claim No. 2 characterized in that the reaction pressure is 650 mmHg or less absolute pressure. The method described in Section 1.
JP1055679A 1979-01-31 1979-01-31 Improved method for preparation of styrene Granted JPS55102521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055679A JPS55102521A (en) 1979-01-31 1979-01-31 Improved method for preparation of styrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055679A JPS55102521A (en) 1979-01-31 1979-01-31 Improved method for preparation of styrene

Publications (2)

Publication Number Publication Date
JPS55102521A JPS55102521A (en) 1980-08-05
JPS6237021B2 true JPS6237021B2 (en) 1987-08-10

Family

ID=11753519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055679A Granted JPS55102521A (en) 1979-01-31 1979-01-31 Improved method for preparation of styrene

Country Status (1)

Country Link
JP (1) JPS55102521A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967231A (en) * 1982-10-08 1984-04-16 Mitsui Toatsu Chem Inc Method for dehydrating methylphenylcarbinol
JPS61293936A (en) * 1985-06-21 1986-12-24 Kureha Chem Ind Co Ltd Liquid-phase dehydration of alcohol having aromatic side-chain at alpha-site
ES2712657T3 (en) * 2010-03-24 2019-05-14 Basf Se Procedure for the preparation of 2-methyl-4-phenyl-2-pentanol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526674A (en) * 1968-08-05 1970-09-01 Halcon International Inc Process for the dehydration of aralkanols
JPS5533443A (en) * 1978-08-30 1980-03-08 Sumitomo Chem Co Ltd Preparation of styrene by dehydration of alpha-phenylethyl alcohol
JPS5545664A (en) * 1978-09-27 1980-03-31 Sumitomo Chem Co Ltd Production of styrene by dehydration of alpha-phenylethyl alcohol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526674A (en) * 1968-08-05 1970-09-01 Halcon International Inc Process for the dehydration of aralkanols
JPS5533443A (en) * 1978-08-30 1980-03-08 Sumitomo Chem Co Ltd Preparation of styrene by dehydration of alpha-phenylethyl alcohol
JPS5545664A (en) * 1978-09-27 1980-03-31 Sumitomo Chem Co Ltd Production of styrene by dehydration of alpha-phenylethyl alcohol

Also Published As

Publication number Publication date
JPS55102521A (en) 1980-08-05

Similar Documents

Publication Publication Date Title
RU2282625C2 (en) Oxirane compounds preparing
US6114575A (en) Process for preparing 2,6-naphthalenedicarboxylic acid
US3526674A (en) Process for the dehydration of aralkanols
RU2333206C2 (en) Method of obtaining alkyleneoxide
KR20090123949A (en) Method for producing propylene oxide
CN109704910A (en) The separation method of mixture containing anthracene alkylation reaction product
US4251675A (en) Preparation of diphenylmethane
US3784618A (en) Hydroalkylation process
US4124634A (en) Process for producing methacrylic acid from isobutylene by two step oxidation
US4150059A (en) Dehydration of alpha-methylbenzyl alcohols over silica to form monovinylidene aromatic monomers
KR100584829B1 (en) Process for preparing styrenes
US2910511A (en) Processes for the purification of phenols
JPS6237021B2 (en)
JPS58124781A (en) Manufacture of epsilon-caprolactone
US3801620A (en) Separation of liquid isophthalonitrile
US5324868A (en) Method for preparing 4,4'-biphenol
US20030069459A1 (en) Integrated process for the production of 2, 6-dimethylnaphthalene
JPH04270249A (en) Purification of dimethyl carbonate
US3504046A (en) Alkylation of naphthalene with propylene in the presence of phosphoric acid catalyst
US3988424A (en) Method for decomposing an aromatic aldehyde-hydrogen fluoride-boron trifluoride complex
US8853444B2 (en) Processes for preparing 4-chlorobenzenesulfonic acid and 4,4′-dichlorodiphenyl sulfone
JP3582405B2 (en) Method for producing styrene
KR950000636B1 (en) Method of preparing 3-ethyl benzo-phenone
US3362987A (en) Process for producing acetic acid
US2769844A (en) Process for preparation of para-alphacumyl phenol