JPS6236888A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS6236888A
JPS6236888A JP17582785A JP17582785A JPS6236888A JP S6236888 A JPS6236888 A JP S6236888A JP 17582785 A JP17582785 A JP 17582785A JP 17582785 A JP17582785 A JP 17582785A JP S6236888 A JPS6236888 A JP S6236888A
Authority
JP
Japan
Prior art keywords
type
active layer
recess
layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17582785A
Other languages
Japanese (ja)
Inventor
Yuichi Ono
小野 佑一
Naoki Kayane
茅根 直樹
Tadashi Fukuzawa
董 福沢
Toshihiro Kono
河野 敏弘
Shinichi Nakatsuka
慎一 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17582785A priority Critical patent/JPS6236888A/en
Publication of JPS6236888A publication Critical patent/JPS6236888A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform low returning light noise by providing a waveguide region of a refractive index guide at both ends of a light emitting region, and providing a portion having the waveguide region for mainly guiding a gain at least part of the interior to generate an effect of mode filter, thereby resultantly preventing an astigmatism. CONSTITUTION:A recess 2 is formed by selective chemical etching on an N-type GaAs substrate 1. Then, an N-type GaAlAs clad layer 3, an uncoped active layer 4, a P-type GaAlAs clad layer 5 and an N-type cap layer 6 are sequentially grown. Thereafter, a P<+> type region 7 is formed by a selective Zn diffusing method to deposit an Mo-Au electrode 8 and an AuGeNi-Au electrode 9. Subsequently, it is cleaved to form a reflecting surface. A recess is also formed on the active layer above the recess 2 to produce a refractive index difference between the striped interior and the outer edge. Thus, since the laser light is enclosed in this manner, an astigmatism is small. Since no step is formed on the active layer, it becomes a normal narrow striped laser structure in multimode of laser oscillation, thereby generating no returning light noise.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体レーザに係り、特に非点収差のない、
雑音特性の良好な素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor laser, and in particular to a semiconductor laser without astigmatism.
This invention relates to an element with good noise characteristics.

〔発明の背景〕[Background of the invention]

半導体レーザのレーザ光分布(横モード)を、ストライ
プ中央部と外縁部との間の屈折率差で閉込めたいわゆる
屈折率導波型素子では発振スペクトル線(縦モード)が
単一となる。このような素子を光ディスクに応用した場
合には、ディスクからの反射光による戻り光雑音が発生
する。一方屈折率差が小さい素子では、縦モードがマル
チ化し、戻り光雑音は発生しないが、活性層の垂直方向
と平行方向でビームウェイストの位置が異なるいわゆる
非点収差を生じ、レーザビームが絞り込めないという欠
点がある。このため、縦モードがマルチモードで非点収
差のない素子が望まれている。
In a so-called refractive index waveguide element in which the laser light distribution (transverse mode) of a semiconductor laser is confined by the refractive index difference between the center and outer edge of the stripe, the oscillation spectrum line (longitudinal mode) is single. When such an element is applied to an optical disk, return light noise is generated due to light reflected from the disk. On the other hand, in an element with a small refractive index difference, the longitudinal modes become multiple and return optical noise does not occur, but so-called astigmatism occurs in which the position of the beam waste is different in the vertical and parallel directions of the active layer, making it difficult to focus the laser beam. There is a drawback that there is no For this reason, an element with multi-mode longitudinal modes and no astigmatism is desired.

このためには、半導体レーザの光軸方向にストライプ構
造を変化させ、素子内部では、屈折率差を小さく、すく
なくとも一方のレーザ光出射端面附近で屈折率差を大き
くすれば、上記目的を達成することができる。このよう
な素子については既に島田側、″リブ光導波路モード・
フィルタ型GaA Q Asレーザの特性″″、第31
回応物講演会(昭59.3.29〜4.2)等がある。
To achieve this, the above objective can be achieved by changing the stripe structure in the optical axis direction of the semiconductor laser, making the refractive index difference small inside the element, and increasing the refractive index difference near at least one laser beam emitting end face. be able to. Regarding such devices, Shimada has already developed a ``rib optical waveguide mode.''
Characteristics of filter type GaA Q As laser, No. 31
There are lectures on reaction products (March 29 to April 2, 1982), etc.

しかし、こうした半導体レーザは安定性に欠ける難点が
ある。
However, such semiconductor lasers have the drawback of lacking stability.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、雑音特性の良好な、非点収差のない光
デイスク用の半導体レーザを提供することにある。
An object of the present invention is to provide a semiconductor laser for an optical disk that has good noise characteristics and is free from astigmatism.

〔発明の概要〕[Summary of the invention]

本発明においては、活性層にストライプ状の発光領域を
形成する際に、あらかじめストライプ端面部分に相当す
る基板に浅い凹み部を設け、ストライプ中央部には凹み
を形成せず平担にすることにより、前記ストライプ中央
部とその外縁部との間では屈折率差が小さく、前記スト
ライプ端面部とその外縁部では屈折率差が大きくなす手
段を設ける。
In the present invention, when forming striped light-emitting regions in the active layer, a shallow recess is provided in advance in the substrate corresponding to the end face of the stripe, and the central part of the stripe is left flat without forming a recess. , a means is provided for making the refractive index difference small between the stripe central portion and its outer edge portion, and the refractive index difference large between the stripe end face portion and its outer edge portion.

代表例を第1図〜第3図に示す。素子内部では通常の狭
ストライプ構造にする。一方端面附近では基板に設けた
浅い凹み部が活性層にも及ぶように有機金属熱分解法(
MOCVD法)もしくは分子ビームエピタキシャル法(
MBE法)により形成することにより、ストライプ部と
その外縁部で屈折率差を大きくすることができる。
Representative examples are shown in FIGS. 1 to 3. The inside of the element has a normal narrow stripe structure. On the other hand, near the end surface, metal-organic pyrolysis (
MOCVD method) or molecular beam epitaxial method (
(MBE method), it is possible to increase the difference in refractive index between the stripe portion and its outer edge portion.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図〜第3図を用いて詳細
に説明する。
Hereinafter, one embodiment of the present invention will be described in detail using FIGS. 1 to 3.

□゛−、−施例1 − 第1図は基板に設ける凹部を示す平面図、第2図お
よび第3図は第1図におけるA−A’線断面図およびB
−B’線断面図である。まず、n型GaAs基板1に選
択化学エッチにより第2図の如く深さ0.05−0.3
pm、長手方向幅50〜’1.00μm、狭方向幅5〜
10μmの間部分2を設ける。
□゛-, -Example 1 - Figure 1 is a plan view showing a recess provided in the substrate, Figures 2 and 3 are cross-sectional views taken along line A-A' in Figure 1 and B
-B' line sectional view. First, an n-type GaAs substrate 1 is etched by selective chemical etching to a depth of 0.05-0.3 as shown in FIG.
pm, longitudinal width 50~'1.00μm, narrow direction width 5~
A section 2 of 10 μm is provided.

この後第2図に示すようにn型GaA Q Asクラッ
ド層3.アンドープ活性層4(厚み0.04〜0.05
 p m ) 。
Thereafter, as shown in FIG. 2, an n-type GaA Q As cladding layer 3. Undoped active layer 4 (thickness 0.04-0.05
pm).

p型GaA Q Asクラッド層5.n型キャップ層6
を順次成長させる。次いで選択Zn拡散法によりp+領
域7を形成し、M o −A u電極8 、 AuGe
Nj、−All電極9を蒸着する。この後、第1図の一
点鎖線に従がって臂開し、反射面を形成する。第2図は
端面近傍の断面で、凹部2の上方の活性層にも凹みが形
成され、これによるストライプ内部と外縁部間の屈折率
段差を生じ、レーザ光がこれによって閉込められるため
に非点収差は小さい。屈折率段差を十分大きくするため
には凹み段差を0.05〜0.3 μm、活性層厚を0
 、04−−0 、15 p m 。
p-type GaA Q As cladding layer5. n-type cap layer 6
grow sequentially. Next, a p+ region 7 is formed by a selective Zn diffusion method, and a Mo-Au electrode 8, an AuGe
A Nj, -All electrode 9 is deposited. Thereafter, the arms are opened according to the dashed line in FIG. 1 to form a reflective surface. Figure 2 shows a cross section near the end face, where a recess is also formed in the active layer above the recess 2, which creates a refractive index step between the inside of the stripe and the outer edge, and the laser light is trapped by this, making it non-reactive. Point aberration is small. In order to make the refractive index step large enough, the recess step should be 0.05 to 0.3 μm and the active layer thickness should be 0.
, 04--0, 15 pm.

n型クラッド層厚を1.5〜2 μmとするのが良い。The thickness of the n-type cladding layer is preferably 1.5 to 2 μm.

またストライプ幅は凹部2を5〜10μmとすることに
より3〜5μmとなる。
Moreover, the stripe width becomes 3 to 5 μm by setting the concave portion 2 to 5 to 10 μm.

第3図はストライプ内部の素子断面図で、活性層には段
差がないため、通常の狭ストライプレーザ構造となリレ
ーザ発振はマルチモードとなり戻り光雑音は発生しない
FIG. 3 is a cross-sectional view of the element inside the stripe. Since there is no step in the active layer, relay laser oscillation with a normal narrow stripe laser structure becomes multi-mode and does not generate return optical noise.

また各層厚みはp型りラッド層5は1.5〜2μm、n
型キャップ層6は0.3〜0.5μmである。各層のA
 fl As組成は層3,5が35〜55%。
The thickness of each layer is 1.5 to 2 μm for the p-type rad layer 5, and n
The mold cap layer 6 has a thickness of 0.3 to 0.5 μm. A of each layer
fl As composition is 35 to 55% in layers 3 and 5.

層4が5〜20%である。Layer 4 is 5-20%.

本素子では、縦モードがマルチモードで、戻り光量にか
かわらず、相対雑音強度は1. X 10−13Hz−
1であった。また非点収差は5μm以下であった。
In this device, the longitudinal mode is multi-mode, and the relative noise intensity is 1.0 regardless of the amount of returned light. X 10-13Hz-
It was 1. Moreover, astigmatism was 5 μm or less.

実施例2 次に基板がp型GaAsを用いた実施例について第4図
、第5図を用いて説明する。
Example 2 Next, an example in which the substrate is made of p-type GaAs will be described with reference to FIGS. 4 and 5.

まず、p型基板1に第2図と同様の凹部2を設けた上に
p型GaA 11 Asクラッド層3.アンドープ活性
層4.n型GaA 11 Asクラッド層5.n型Ga
Asキャップ層6を設けた後、選択Zn拡散法によりp
+領域7を設け、次いでAuGeNj−Au電極8゜M
 o−A u電極9を蒸着した。実施例1−と同様第1
図の一点鎖線に従がって襞間し、反射面を形成したのち
、レーザ素子を組立て、発振させたところ非点収差は5
μm以下と小さく、相対雑音強度も戻り光量にかかわら
ず、I X 10−”Hz−1以下の低雑音、低収差レ
ーザが得られた。
First, a concave portion 2 similar to that shown in FIG. 2 is provided on a p-type substrate 1, and a p-type GaA 11 As cladding layer 3. Undoped active layer 4. n-type GaA 11 As cladding layer5. n-type Ga
After providing the As cap layer 6, p is deposited by selective Zn diffusion method.
+ region 7 is provided, then AuGeNj-Au electrode 8°M
An o-Au electrode 9 was deposited. Same as Example 1-1
After forming the folds according to the dashed line in the figure and forming a reflective surface, the laser element was assembled and oscillated, and the astigmatism was 5.
A low-noise, low-aberration laser with a relative noise intensity of I x 10-''Hz-1 or less was obtained, which was as small as μm or less, regardless of the amount of returned light.

実施例3 活性層の両脇を傾斜型屈折率分離とじ込め構造とした実
施例を述べる。
Example 3 An example will be described in which both sides of the active layer are provided with a gradient refractive index separation and confinement structure.

第6図、第7図、第8図は、第2図〜第5図における活
性層とその周辺クラッド層の組成断面構造図である。第
6図〜第8図において、11はn型クラッド層、もしく
はp型りラッド層であり、」、2はn型傾斜型屈折率層
、もしくはP型傾斜型屈折率層であり、13は厚み約0
.01〜0.02μmのアンドープ活性層であり、14
はp型傾斜型屈折率層、もしくはn型傾斜型屈折率層で
あり、1−5はp型りラッド層もしくはn型クラッド層
である。
FIG. 6, FIG. 7, and FIG. 8 are compositional cross-sectional structural diagrams of the active layer and its surrounding cladding layer in FIGS. 2 to 5. 6 to 8, 11 is an n-type cladding layer or a p-type cladding layer, 2 is an n-type graded refractive index layer or a p-type graded refractive index layer, and 13 is an n-type graded refractive index layer or a p-type graded refractive index layer. Thickness approx. 0
.. 01-0.02 μm undoped active layer, 14
is a p-type graded refractive index layer or an n-type graded refractive index layer, and 1-5 is a p-type rad layer or an n-type cladding layer.

このような傾斜型屈折率分離とじ込め構造とすることに
より、レーザ光は低雑音、低収差特性を示すのみでなく
、レーザ発振のスポット径を大きく出来るため、ストラ
イプ端面とストライプ内部の段差の程度の裕度が増すと
いう利点の他、発振しきい電流密度を小さく出来るとい
う利点もある。
By adopting such a tilted refractive index separation and confinement structure, the laser light not only exhibits low noise and low aberration characteristics, but also the laser oscillation spot diameter can be increased, so the level difference between the end face of the stripe and the inside of the stripe can be reduced. In addition to the advantage of increasing the margin, there is also the advantage of reducing the oscillation threshold current density.

以上の説明では、材料系をGaA Q As / Ga
As系として説明したが、他の材料、例えば、InGa
AsP/InP系、InGaP / GaAs系でも同
様の効果が期待できる。
In the above explanation, the material system is GaA Q As / Ga
Although explained as As-based, other materials such as InGa
Similar effects can be expected with AsP/InP and InGaP/GaAs systems.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明の半導体レーザは、発光領域の
両端に屈折率ガイドの導波領域を設け、これより内部の
少なくとも一部に利得ガイドを主とする導波領域を有す
る部分を設けである。
As explained above, in the semiconductor laser of the present invention, a waveguide region of a refractive index guide is provided at both ends of the light emitting region, and a portion having a waveguide region mainly composed of a gain guide is provided in at least a part of the interior thereof. be.

発光領域の両端の屈折率ガイドの導波領域で、モード・
フィルタの効果が生じ、結果的に(1,)非点収差がな
く、且(2)低戻り光ノイズを実現することができる。
In the waveguide regions of the refractive index guides at both ends of the emission region, the mode and
A filter effect is produced, resulting in (1) no astigmatism and (2) low return light noise.

本発明の半導体レーザは非点収差補正用のレンズを必要
としないので、ビデオ・ディスクやコンパクト・ディス
ク用等の光源として最適である。
Since the semiconductor laser of the present invention does not require a lens for correcting astigmatism, it is most suitable as a light source for video discs, compact discs, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は実施例を示す図で、第1図は、基体
に設ける溝を示す平面図、第2図、第3図は各々半導体
レーザ素子の第1図における八人′線断面図、BB’線
断面図である。第4図および第5図は実施例2を示す断
面図である。さらに第6図、第7図、第8図は実施例3
を示す活性層とその周辺部の組成断面構造図である。 1・・・基板、2・・・浅い凹部、3・・・p (n)
クラッド層、4・・・活性層、5・・・n (P)クラ
ッド層、6・・・キャップ層、7・・・Zn拡散層、8
,9・・・電極、1.1..15・・・panクラッド
層、1.2.14・・・p。 n傾斜型屈折率層、13・・・活性層。
1 to 3 are diagrams showing examples, and FIG. 1 is a plan view showing grooves provided in the base, and FIGS. 2 and 3 are 8' lines in FIG. 1 of the semiconductor laser device. It is a sectional view and a BB' line sectional view. FIGS. 4 and 5 are cross-sectional views showing the second embodiment. Furthermore, FIG. 6, FIG. 7, and FIG. 8 show Example 3.
FIG. 2 is a compositional cross-sectional structure diagram of an active layer and its surrounding area. 1...Substrate, 2...Shallow recess, 3...p (n)
Cladding layer, 4... Active layer, 5...n (P) cladding layer, 6... Cap layer, 7... Zn diffusion layer, 8
, 9... Electrode, 1.1. .. 15...pan cladding layer, 1.2.14...p. n graded refractive index layer, 13... active layer;

Claims (1)

【特許請求の範囲】 1、半導体基板内に矩形状の浅い凹部を形成し、これを
埋めるように活性層を含む多層の半導体層を積層した半
導体レーザにおいて、少なくとも一方の光出射端面近傍
を除いて活性層が平担に形成され、該少なくとも一方の
光出射端面近傍で活性層が基板に形成された凹部と同形
もしくは相似形の凹部が設けられていることを特徴とす
る半導体レーザ素子。 2、特許請求範囲第1項の半導体レーザ素子において、
基板内に設けた矩形状凹部の深さが0.05〜0.3μ
mで、活性層厚さが0.04〜0.15μmの範囲にあ
ることを特徴とする半導体レーザ素子。 3、特許請求範囲第1項もしくは第2項記載の半導体レ
ーザ素子において、各成長層が気相成長法によつて形成
された半導体レーザ素子。
[Claims] 1. A semiconductor laser in which a shallow rectangular recess is formed in a semiconductor substrate, and multiple semiconductor layers including an active layer are stacked to fill the recess, except for the vicinity of at least one light emitting end face. 1. A semiconductor laser device, wherein the active layer is formed flat, and the active layer is provided with a recess in the same shape or similar shape to the recess formed in the substrate near the at least one light emitting end face. 2. In the semiconductor laser device according to claim 1,
The depth of the rectangular recess provided in the substrate is 0.05 to 0.3μ
A semiconductor laser device characterized in that the thickness of the active layer is in the range of 0.04 to 0.15 μm. 3. A semiconductor laser device according to claim 1 or 2, in which each growth layer is formed by vapor phase growth.
JP17582785A 1985-08-12 1985-08-12 Semiconductor laser element Pending JPS6236888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17582785A JPS6236888A (en) 1985-08-12 1985-08-12 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17582785A JPS6236888A (en) 1985-08-12 1985-08-12 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS6236888A true JPS6236888A (en) 1987-02-17

Family

ID=16002910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17582785A Pending JPS6236888A (en) 1985-08-12 1985-08-12 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS6236888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203581A (en) * 1989-02-01 1990-08-13 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203581A (en) * 1989-02-01 1990-08-13 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JPS59144193A (en) Semiconductor laser
US6167074A (en) Monolithic independently addressable Red/IR side by side laser
JPH0646669B2 (en) Semiconductor laser and manufacturing method thereof
JPH0461514B2 (en)
US4347611A (en) Large optical cavity (LOC) mesa laser
JP2846668B2 (en) Broad area laser
JPS6236888A (en) Semiconductor laser element
JP2516953B2 (en) Method for manufacturing semiconductor laser device
JP2002111136A (en) Semiconductor laser device
JPH0671121B2 (en) Semiconductor laser device
JP2723888B2 (en) Semiconductor laser device
JPS641952B2 (en)
JPS6174384A (en) Semiconductor laser
JPH0587997B2 (en)
JPS61112392A (en) Semiconductor laser and manufacture thereof
JPS62249497A (en) Semiconductor laser device
JPH01132191A (en) Semiconductor laser element
JP2001119098A (en) Semiconductor laser and manufacturing method therefor
JPS61244082A (en) Semiconductor laser device
JP2002223038A (en) Semiconductor laser device
JPS59184585A (en) Semiconductor laser of single axial mode
JPS60164383A (en) Manufacture of semiconductor laser
JPS61253883A (en) Semiconductor laser device
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JPS61171188A (en) Semiconductor laser device