JPS62249497A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS62249497A
JPS62249497A JP9214186A JP9214186A JPS62249497A JP S62249497 A JPS62249497 A JP S62249497A JP 9214186 A JP9214186 A JP 9214186A JP 9214186 A JP9214186 A JP 9214186A JP S62249497 A JPS62249497 A JP S62249497A
Authority
JP
Japan
Prior art keywords
stripe
active layer
type
laser
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9214186A
Other languages
Japanese (ja)
Inventor
Yuichi Ono
小野 佑一
Kazuhisa Uomi
魚見 和久
Naoki Kayane
茅根 直樹
Takashi Kajimura
梶村 俊
Shinichi Nakatsuka
慎一 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9214186A priority Critical patent/JPS62249497A/en
Publication of JPS62249497A publication Critical patent/JPS62249497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the best semiconductor laser device as the device for an optical disk which has excellent noise characteristics and no non-point astigmation by a method wherein, when a stripe shape light emitting region is formed in an active layer, recessed parts are provided in the parts of a substrate which correspond to the end surfaces of the stripe and the center part of the stripe is made to be flat. CONSTITUTION:Recessed parts 2 are provided in an N-type GaAs substrate 1 by selective chemical etching. After that, an N-type GaAlAs cladding layer 3, an undoped active layer 4, a P-type GaAlAs cladding layer 5 and an N-type cap layer 6 are successively made to grow. Then a P<+>type region 7 is formed by selective Zn diffusion and an Mo-Au electrode 8 and an AuGeNi-Au electrode 9 are evaporated. After that, the laminated structure is cleft along the one-dot chain line in the figure to form a reflective surface. In the cross section near the end, a recessed part is formed also in the active layer above the recessed part 2 and difference in level of refrative index is produced between the inside of the stripe and the outside edge part by those recessed parts and a laser beam is confined. Therefore, non-point astigmation can be suppressed. Moreover, as the active layer has no difference in level in the device cross section inside the stripe, the normal narrow stripe laser structure is obtained and the laser oscillates multimode oscillation and noise of returning light can be eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザに係り、特に非点収差のない、
雑音特性の良好な素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor laser, and in particular, a semiconductor laser having no astigmatism.
This invention relates to an element with good noise characteristics.

〔従来の技術〕[Conventional technology]

従来の低雑音、低収差レーザ装置の構造は、第31回応
用物理学会講演会(昭和59年3月29日〜4月2日開
41III)予稿集30a−M−8にある「リブ光導波
路モード・フィルタ型GaAΩAs レーザの特性」に
記載のように、共振器の軸方向に屈折率ガイドと利得ガ
イド構造とを縦列接続した複合ガイド構造となっている
が、この様な素子は安定性に欠けるという問題点を有し
ていた。
The structure of the conventional low-noise, low-aberration laser device is described in "Ribbed Optical Waveguide" in Proceedings 30a-M-8 of the 31st Annual Conference of the Japan Society of Applied Physics (March 29 - April 2, 1980, 41 III). As described in "Characteristics of Mode Filter Type GaAΩAs Laser", it has a composite guide structure in which a refractive index guide and a gain guide structure are connected in cascade in the axial direction of the resonator, but such a device has a stability problem. It had the problem of being chipped.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

半導体レーザのレーザ光分布(横モード)を、ストライ
プ中央部と外縁部との間の屈折率差で閉込めたいわゆる
屈折率導波型素子では発振スペクトル線(縦モード)が
単一となる。このような素子を光ディスクに応用した場
合には、ディスクがらの反射光による戻り光雑音が発生
する。一方屈折率差が小さい素子では、縦モードがマル
チ化し、戻り光雑音は発生しないが、活性層の垂直方向
と平行方向でビームウェイストの位置が異なるいわゆる
非点収差を生じ、レーザビーt1が絞り込めないという
欠点がある。このため、縦モードがマルチモードで非点
収差のない素子が望まれている。
In a so-called refractive index waveguide element in which the laser light distribution (transverse mode) of a semiconductor laser is confined by the difference in refractive index between the center portion and the outer edge of the stripe, the oscillation spectrum line (longitudinal mode) is single. When such an element is applied to an optical disk, return light noise is generated due to light reflected from the disk. On the other hand, in an element with a small refractive index difference, the longitudinal mode becomes multiple and no return optical noise occurs, but so-called astigmatism occurs in which the position of the beam waste is different in the vertical and parallel directions of the active layer, making it difficult to focus the laser beam t1. There is a drawback that there is no For this reason, an element with multi-mode longitudinal modes and no astigmatism is desired.

このためには、半導体レーザの光軸方向にストライプ構
造を変化させ、素子内部では、屈折率差を小さく、すく
なくとも一方のレーザ光出射端面附近で屈折率差を大き
くすれば、上記目的を達成することができる。
To achieve this, the above objective can be achieved by changing the stripe structure in the optical axis direction of the semiconductor laser, making the refractive index difference small inside the element, and increasing the refractive index difference near at least one laser beam emitting end face. be able to.

つまり、本発明の目的は雑音特性の良好な、非点収差の
ない光デイスク用の半導体レーザを提供することにある
That is, an object of the present invention is to provide a semiconductor laser for an optical disk with good noise characteristics and no astigmatism.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、活性層にストライプ状の発光領域を
形成する際に、あらかじめストライプ端面部分に相当す
る基板に浅い凹み部を設け、ストライブ中央部は平坦に
することにより、前記ストライプ中央部とその外縁部と
の間では屈折率差が小さく、前記ストライプ端面部とそ
の外縁部では屈折率差が太きくなる手段を設ける。
In the present invention, when forming a striped light emitting region in the active layer, a shallow recess is provided in advance in the substrate corresponding to the end face of the stripe, and the central part of the stripe is flattened, so that the central part of the stripe is made flat. A means is provided in which the refractive index difference is small between the stripe end face portion and the outer edge portion, and the refractive index difference is large between the stripe end face portion and the outer edge portion.

〔作用〕[Effect]

以上、本発明は前記問題点を解決するため、以下に記述
する技術的手段により低雑音、低収差レーザを可能とし
たものである。
As described above, in order to solve the above-mentioned problems, the present invention has made possible a low-noise, low-aberration laser by the technical means described below.

代表例を第1図〜第3図に示す。素子内部では通常の狭
ストライプ構造にする。一方端面附近では基板に設けた
浅い凹み部が活性層にも及ぶように有機金属熱分解法(
MOCVD法)もしくは分子ビームエピタキシャル法(
MBE法)により形成することにより、ストライプ部と
その外縁部で屈折率差を大きくすることができる。
Representative examples are shown in FIGS. 1 to 3. The inside of the element has a normal narrow stripe structure. On the other hand, near the end surface, metal-organic pyrolysis (
MOCVD method) or molecular beam epitaxial method (
(MBE method), it is possible to increase the difference in refractive index between the stripe portion and its outer edge portion.

したがって活性層中央部では利得ガイド型レーザ構造で
低雑音性が実現でき、活性層端面付近では屈折率ガイド
型レーザ構造で低収差性を実現できるため、高性能な低
雑音・低収差レーザを実現することができる。
Therefore, a gain-guided laser structure can achieve low noise in the center of the active layer, and a refractive index-guided laser structure can achieve low aberrations near the active layer end facets, resulting in a high-performance, low-noise, low-aberration laser. can do.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第3図を用いて詳細
に説明する。
Hereinafter, one embodiment of the present invention will be described in detail using FIGS. 1 to 3.

実施例1 第1図は基板に設ける凹部を示す平面図、第2図および
第3図は第1図におけるA−A’線断面図およびB−B
’線断面図である。まず、n型GaAs基板1に選択化
学エッチにより第2図の如く深さ0.05〜0.3μm
の間部分2を設ける。この後第2図に示すようにn型G
aA Q Asクラッド層3、アンドープ活性層4(厚
み0.04〜0.05μm)+P型GaA Q Asク
ラッド層5.n型キャップ層6を順次成長させる。次い
で選択Zn拡散法によりp小領域7を形成し、M o 
−A u電極8、AuGeNj −Au電極9を蒸着す
る。この後、第1図の一点鎖線に従って襞間し1反射面
を形成する。第2図は端面近傍の断面で、凹部2の上方
の活性層にも凹みが形成され、これによるストライプ内
部と外縁部間の屈折率段差を生じ、レーザ光がこれによ
って閉込められるために非点収差は小さい。
Example 1 Fig. 1 is a plan view showing a recess provided in a substrate, and Figs. 2 and 3 are cross-sectional views taken along line A-A' and B-B in Fig. 1.
'It is a line cross-sectional view. First, an n-type GaAs substrate 1 is etched by selective chemical etching to a depth of 0.05 to 0.3 μm as shown in FIG.
An intermediate portion 2 is provided between the two. After this, as shown in Figure 2, the n-type G
aA Q As cladding layer 3, undoped active layer 4 (thickness 0.04 to 0.05 μm) + P-type GaA Q As cladding layer 5. An n-type cap layer 6 is sequentially grown. Next, a p small region 7 is formed by a selective Zn diffusion method, and M o
-Au electrode 8 and AuGeNj -Au electrode 9 are deposited. Thereafter, folds are formed according to the dot-dash line in FIG. 1 to form one reflective surface. Figure 2 shows a cross section near the end face, where a recess is also formed in the active layer above the recess 2, which creates a refractive index step between the inside of the stripe and the outer edge, and the laser light is confined by this, resulting in a non-conventional condition. Point aberration is small.

屈折率段差を十分大きくするためには凹み段差を0.0
5−0.3pm、活性層厚を0.04−0.05μm、
n型クラッド層厚を1.5〜2μmとするのが良い。ま
たストライプ幅は凹部2のうち端面部分を5〜10μm
とすることにより3〜5μmとなる。
In order to make the refractive index step large enough, the recess step should be 0.0.
5-0.3 pm, active layer thickness 0.04-0.05 μm,
The thickness of the n-type cladding layer is preferably 1.5 to 2 μm. In addition, the stripe width is 5 to 10 μm at the end surface part of the recess 2.
By setting it as, it becomes 3-5 micrometers.

第3図はストライプ内部の素子断面図で、活性層には段
差がないため、通常の狭ストライプレーザ構造となリレ
ーザ発振はマルチモードとなり戻り光雑音は発生しない
6 また各層厚みはp型りラッド層5は1.5〜2μm、n
型キャップ層6は0.3〜0.5μmである。各層のA
 Q As組成は層3,5が35〜55%、層4が5〜
20%である。
Figure 3 is a cross-sectional view of the device inside the stripe. Since there is no step in the active layer, relay laser oscillation with a normal narrow stripe laser structure becomes multi-mode and does not generate return optical noise. 6 In addition, the thickness of each layer is p-type. Layer 5 is 1.5-2 μm, n
The mold cap layer 6 has a thickness of 0.3 to 0.5 μm. A of each layer
QAs composition is 35% to 55% for layers 3 and 5, and 5% to 55% for layer 4.
It is 20%.

本素子では、縦モードがマルチモードで、戻り光量にか
かわらず、相対雑音強度はI X 10−13Hz−”
であった。また非点収差は5μm以下であった。
In this device, the longitudinal mode is multi-mode, and the relative noise intensity is I x 10-13Hz regardless of the amount of returned light.
Met. Moreover, astigmatism was 5 μm or less.

実施例2 次に基板がp型GaAsを用いた実施例について第4図
、第5図を用いて説明する。
Example 2 Next, an example in which the substrate is made of p-type GaAs will be described with reference to FIGS. 4 and 5.

まず、p型基板1に第2図と同様の凹部2を設けた上に
p型GaA Q Asクラッド層3.アンドープ活性層
4.n型GaA Q Asクラッド層5.n型GaAs
キャップ層6を設けた後、選択Zn拡散法によりp十領
域7を設け、次いでAuGeNi−Au電極8゜M o
 −A u電極9を蒸着した。実施例1と同様第1図の
一点鎖線に従って襞間し、反射面を形成したのち、レー
ザ素子を組立て、発振させたところ非点収差は5μm以
下と小さく、相対雑音強度も戻り光量にかかわらず、 
 L X 10−1aHz−”以下の低雑音、低収差レ
ーザが得られた。
First, a concave portion 2 similar to that shown in FIG. 2 is provided in a p-type substrate 1, and a p-type GaA Q As cladding layer 3. Undoped active layer 4. n-type GaA Q As cladding layer5. n-type GaAs
After providing the cap layer 6, a p region 7 is provided by a selective Zn diffusion method, and then an AuGeNi-Au electrode 8°Mo
-A u electrode 9 was deposited. As in Example 1, after forming the folds according to the dashed line in Figure 1 and forming a reflective surface, the laser element was assembled and oscillated, and the astigmatism was as small as 5 μm or less, and the relative noise intensity was also low regardless of the amount of returned light. ,
A laser with low noise and low aberration of less than L x 10-1 aHz-'' was obtained.

実施例3 活性層の両脇を傾斜型屈折率分離とじ込め構造とした実
施例を述べる。
Example 3 An example will be described in which both sides of the active layer are provided with a gradient refractive index separation and confinement structure.

第6図、第7図、第8図は、第2図〜第5図における活
性層とその周辺クラッド層の組成断面構造図である。第
6図〜第8図において、11はn型クラッド層、もしく
はn型クラッド層であり、12はn型傾斜型屈折率層、
もしくはp型傾斜型屈折率層であり、13は厚み約0.
01〜0.02μmのアンドープ活性層であり、14は
p型傾斜型屈折S$層、もしくはn型傾斜型屈折S$層
であり、15はP型クラッド層もしくはn型クラッド層
である。
FIG. 6, FIG. 7, and FIG. 8 are compositional cross-sectional structural diagrams of the active layer and its surrounding cladding layer in FIGS. 2 to 5. In FIGS. 6 to 8, 11 is an n-type cladding layer or an n-type cladding layer, 12 is an n-type graded refractive index layer,
Alternatively, it is a p-type graded refractive index layer, and 13 has a thickness of approximately 0.
14 is a p-type graded refraction S$ layer or an n-type graded refraction S$ layer, and 15 is a P-type cladding layer or an n-type cladding layer.

このような傾斜型屈折率分離とじ込め構造とすることに
より、レーザ光は低雑音、低収差特性を示すのみでなく
、レーザ発振のスポット径を大きく出来るため、ストラ
イプ端面とストライプ内部の段差の程度の裕度が増すと
いう利点の他、発振しきい電流密度を小さく出来るとい
う利点もある。
By adopting such a tilted refractive index separation and confinement structure, the laser light not only exhibits low noise and low aberration characteristics, but also the laser oscillation spot diameter can be increased, so the level difference between the end face of the stripe and the inside of the stripe can be reduced. In addition to the advantage of increasing the margin, there is also the advantage of reducing the oscillation threshold current density.

以上の説明では、材料系をGaAΩAs /GaAs系
として説明したが、他の材料1例えば、InGaAsP
 /InP系、 InGaP /GaAs系でも同様の
効果が期待できる。
In the above explanation, the material system was explained as GaAΩAs/GaAs, but other materials such as InGaAsP
Similar effects can be expected with /InP and InGaP /GaAs systems.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明の半導体レーザは、発光領域の
両端に屈折率ガイドの導波領域を設け、これより内部の
少なくとも一部に利得ガイドを主とする導波領域を有す
る部分を設けである。
As explained above, in the semiconductor laser of the present invention, a waveguide region of a refractive index guide is provided at both ends of the light emitting region, and a portion having a waveguide region mainly composed of a gain guide is provided in at least a part of the interior thereof. be.

発光領域の両端の屈折率ガイドの導波領域で、モード・
フィルタの効果が生じ、結果的に(1)非点収差がなく
、且(2)低戻り光ノイズを実現することができる。
In the waveguide regions of the refractive index guides at both ends of the emission region, the mode and
A filter effect is produced, and as a result, (1) there is no astigmatism and (2) low return light noise can be realized.

本発明の半導体レーザは非点収差補正用レンズを必要と
しないので、ビデオ・ディスクやコンパクト・ディスク
用等の光源として最適である。
Since the semiconductor laser of the present invention does not require an astigmatism correcting lens, it is most suitable as a light source for video discs, compact discs, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は実施例を示す図で、第1図は、基体
に設ける溝を示す平面図、第2図、第3図は各々半導体
レーザ素子の第1図におけるAA’線断面図、BB’線
断面図である。第4図および第5図は実施例2を示す断
面図である。さらに第6図、第7図、第8図は実施例3
を示す活性層とその周辺部の組成断面構造図である。 ]−・・・基板、2・・・浅い凹部、3・・・p (n
)クラッド層、4・・・活性層、5・・・n (p)ク
ラッド層、6・・・キャップ層、7・・・Zn拡散層、
8,9・・・電極、11.15−p、nクラッド層、1
2.14・ p。 早  1 日
1 to 3 are diagrams showing examples, and FIG. 1 is a plan view showing grooves provided in the base, and FIGS. 2 and 3 are cross sections taken along line AA' in FIG. 1 of the semiconductor laser device. Figure 1 is a sectional view taken along the line BB'. FIGS. 4 and 5 are cross-sectional views showing the second embodiment. Furthermore, FIG. 6, FIG. 7, and FIG. 8 show Example 3.
FIG. 2 is a compositional cross-sectional structure diagram of an active layer and its surrounding area. ]-...Substrate, 2...Shallow recess, 3...p (n
) cladding layer, 4... active layer, 5...n (p) cladding layer, 6... cap layer, 7... Zn diffusion layer,
8,9...electrode, 11.15-p, n cladding layer, 1
2.14・p. Early 1st day

Claims (1)

【特許請求の範囲】 1、半導体基板内に浅い凹部を形成し、これを埋める様
に活性層を含む多層の半導体層を積層した半導体レーザ
において、少なくとも一方の光出射端面近傍を除いて活
性層が平坦に形成され、該少なくとも一方の光出射端面
近傍で活性層が基板に形成された凹部と同形もしくは相
似形の凹部が設けられていることを特徴とする半導体レ
ーザ素子。 2、特許請求範囲第1項の半導体レーザ素子において、
基板内に設けた凹部の深さが0.05〜0.3μmで、
活性層厚さが0.04〜0.15μmの範囲にあること
を特徴とする半導体レーザ素子。 3、特許請求範囲第1項もしくは第2項記載の半導体レ
ーザ素子において、各成長層が分子ビーム成長法もしく
は気相成長法によつて形成された半導体レーザ素子。
[Claims] 1. In a semiconductor laser in which a shallow recess is formed in a semiconductor substrate and multiple semiconductor layers including an active layer are stacked so as to fill the recess, the active layer except for the vicinity of at least one light emitting end face. 1. A semiconductor laser device characterized in that the active layer is formed flat and has a recess in the same shape or similar shape to the recess formed in the substrate in the vicinity of at least one light emitting end face. 2. In the semiconductor laser device according to claim 1,
The depth of the recess provided in the substrate is 0.05 to 0.3 μm,
A semiconductor laser device characterized in that the active layer thickness is in the range of 0.04 to 0.15 μm. 3. A semiconductor laser device according to claim 1 or 2, in which each growth layer is formed by molecular beam growth or vapor phase growth.
JP9214186A 1986-04-23 1986-04-23 Semiconductor laser device Pending JPS62249497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9214186A JPS62249497A (en) 1986-04-23 1986-04-23 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9214186A JPS62249497A (en) 1986-04-23 1986-04-23 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62249497A true JPS62249497A (en) 1987-10-30

Family

ID=14046157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9214186A Pending JPS62249497A (en) 1986-04-23 1986-04-23 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62249497A (en)

Similar Documents

Publication Publication Date Title
JPS62249497A (en) Semiconductor laser device
JP2516953B2 (en) Method for manufacturing semiconductor laser device
JP2723888B2 (en) Semiconductor laser device
JPH0278291A (en) Semiconductor laser element
JPS6236888A (en) Semiconductor laser element
JPH0587997B2 (en)
JPS641952B2 (en)
JPS6174384A (en) Semiconductor laser
JPS61112392A (en) Semiconductor laser and manufacture thereof
JPS6358389B2 (en)
JPH0422033B2 (en)
JPS5911690A (en) Semiconductor laser device
JP2564343B2 (en) Semiconductor laser device
JP2515725B2 (en) Semiconductor laser equipment
JPH01132191A (en) Semiconductor laser element
JPS62256489A (en) Semiconductor laser device
JPS61244082A (en) Semiconductor laser device
JPH07193316A (en) Semiconductor laser
JPS61253883A (en) Semiconductor laser device
JPS63293989A (en) Semiconductor laser element and manufacture thereof
JPS61171188A (en) Semiconductor laser device
JPS61236187A (en) Semiconductor laser device and its manufacture
JPS6142188A (en) Semiconductor laser device
JPH02178987A (en) Semiconductor laser element
JPH02113586A (en) Semiconductor laser element