JP2564343B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2564343B2
JP2564343B2 JP62323983A JP32398387A JP2564343B2 JP 2564343 B2 JP2564343 B2 JP 2564343B2 JP 62323983 A JP62323983 A JP 62323983A JP 32398387 A JP32398387 A JP 32398387A JP 2564343 B2 JP2564343 B2 JP 2564343B2
Authority
JP
Japan
Prior art keywords
layer
laser
stripe
semiconductor laser
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62323983A
Other languages
Japanese (ja)
Other versions
JPH01166585A (en
Inventor
慎一 中塚
敏弘 河野
勝利 斉藤
俊 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62323983A priority Critical patent/JP2564343B2/en
Publication of JPH01166585A publication Critical patent/JPH01166585A/en
Application granted granted Critical
Publication of JP2564343B2 publication Critical patent/JP2564343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低収差で低雑音な半導体レーザの構造及び
作製方法に関するもので特に、発光効率の変化の少ない
レーザ構造に係る。
The present invention relates to a structure of a semiconductor laser having low aberration and low noise and a method for manufacturing the same, and more particularly to a laser structure having a small change in luminous efficiency.

〔従来の技術〕[Conventional technology]

半導体レーザのレーザ光分布(横モード)をストライ
プ内部と外縁部との間の屈折率差で閉じ込めたいわゆる
屈折率導波型素子では発振スペクトル線(縦モード)が
単一となる。このような素子を光デイスクに応用した場
合には、デイスクからの反射光による戻り光雑音が発生
する。一方、屈折率差が小さい素子では、縦モードがマ
ルチ化し、戻り光雑音は発生しないが、活性層に水平な
方向と垂直な方向のビームウエストの位置が異なる、い
わゆる非点収差を閉じ、レーザビームを絞り込めないと
いう欠点がある。このため、縦モードがマルチモードで
非点収差のない素子がのぞまれる。このためには、半導
体レーザの光軸方向にストライプ構造を変化させ、素子
内部では屈折率差を小さく、少なくとも一方の端面近傍
で屈折率差を大きくすれば、上記目的を達成することが
できる。このような素子については既に報告があるが、
非点収差補正のための強導波領域の導入に伴い、発光効
率の低下が見られた。これは、利得ガイド領域と強ガイ
ド領域とのスポツトサイズの違いの起因したものと考え
られる。すなわち、ストライプ幅を同一に設計した場
合、強ガイド領域のスポツトサイズが利得ガイド領域の
スポツトサイズよりも小さくなるため、強ガイド領域で
レーザ光が強い損失を受けるためと考えられる。
In a so-called refractive index guided device in which the laser light distribution (transverse mode) of the semiconductor laser is confined by the refractive index difference between the inside of the stripe and the outer edge portion, the oscillation spectrum line (longitudinal mode) is single. When such an element is applied to an optical disc, return light noise occurs due to reflected light from the disc. On the other hand, in an element with a small difference in refractive index, the longitudinal modes are multi-stated and return optical noise does not occur, but the position of the beam waist in the direction perpendicular to the active layer is different, and so-called astigmatism is closed. The drawback is that the beam cannot be narrowed down. Therefore, it is desired to use an element having a multimode longitudinal mode and no astigmatism. To this end, the above object can be achieved by changing the stripe structure in the optical axis direction of the semiconductor laser so that the refractive index difference is small inside the element and the refractive index difference is large near at least one end face. There are already reports about such devices,
With the introduction of the strong waveguiding region for the correction of astigmatism, the emission efficiency was decreased. It is considered that this is due to the difference in spot size between the gain guide region and the strong guide region. That is, it is considered that when the stripe width is designed to be the same, the spot size of the strong guide region becomes smaller than the spot size of the gain guide region, so that the laser light is strongly lost in the strong guide region.

尚、リブ光導波路モードフイルタ型レーザについて
は、第31回応物講演会4−2(昭57.3.29),特開昭60
−198795号公報に公開となつている。
Regarding the rib optical waveguide mode filter type laser, the 31st meeting on conformity lecture 4-2 (Sho 57.3.29), Japanese Patent Laid-Open No. Sho 60
-Published in 198795.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明の目的は、雑音特性の良好な、非点収差のない
半導体レーザを提供することにあり、特にこの半導体レ
ーザのストライプ幅を領域ごとに最適化し、より高効率
の半導体レーザを得ることを目的とする。
An object of the present invention is to provide a semiconductor laser having good noise characteristics and no astigmatism, and particularly to optimize the stripe width of this semiconductor laser for each region to obtain a semiconductor laser with higher efficiency. To aim.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明では、半導体レーザの
中央部では利得導波であり、端面近傍では屈折率導波で
ある半導体レーザの端面近傍のストライプ幅を中央部に
比べ大、例えば0.5μm以上太くすることを考案した。
To achieve the above object, in the present invention, the stripe width in the vicinity of the end face of the semiconductor laser, which is the gain guide in the central part of the semiconductor laser and is the refractive index guide in the vicinity of the end face, is larger than that in the central part, for example, 0.5 μm or more. I devised to be thick.

即ち、本発明は次の如き構成を取る。 That is, the present invention has the following configurations.

少なくとも、半導体媒質に光利得を持たせるための、
異なる導電型の半導体の接合と、この接合面上に設けた
ストライプ状の光導波機構を有し、該光導波機構がレー
ザ中央部ではストライプ内外の利得差を主に利用したも
のであり、レーザ端面付近ではストライプ内外の屈折率
差を主に利用したものでかつ、該レーザ端面領域におけ
る光スポツトサイズがレーザ中央領域での光スポツトサ
イズより大きくなるように、レーザ端面領域のストライ
プ幅を広くしたことを特徴とする半導体レーザ装置。
At least to give the semiconductor medium optical gain,
It has a junction of semiconductors of different conductivity types and a stripe-shaped optical waveguide mechanism provided on this junction surface, and the optical waveguide mechanism mainly uses the gain difference between the inside and outside of the stripe at the center of the laser. The difference in refractive index between the inside and outside of the stripe is mainly used near the end face, and the stripe width of the laser end face region is widened so that the light spot size in the laser end face region is larger than the light spot size in the laser central region. A semiconductor laser device characterized by the above.

〔作用〕[Action]

本発明により、端面近傍のみを屈折率導波形の導波路
と半導体レーザでより低しきい値高効率のレーザが得ら
れるようになつた。
According to the present invention, a laser having a lower threshold and a higher efficiency can be obtained by using a refractive index waveguide type waveguide and a semiconductor laser only near the end face.

〔実施例〕〔Example〕

以下図に従い本発明の実施例を説明する。 An embodiment of the present invention will be described below with reference to the drawings.

[実施例1] 本発明第1の実施例の半導体レーザ構造を説明する。
p型GaAs基板(1)上に第1図のような凹み(2)を、
通常のフオトリソグラフ技術を用いて形成したSiO2マス
クを用いた化学エツチングにより形成し、MOCVD法によ
りn−GaAs層(3)を形成した。次に、第1図に示すよ
うな導波路となる溝(4)を形成した。この溝は基板の
凹みにはさまれた部分では5−7μmの幅に形成されて
おり、それ以外の領域では3−5μmの幅に形成されて
いる。溝、及び凹みの深さはそれぞれ2及び4μmとし
た。この後、第2図で示すように、p−Ga0.5Al0.5Asク
ラツド層(5)、アンドープGa0.86Al0.14As活性層
(6)、n−Ga0.5Al0.5Asクラツド層(7)、n−GaAs
キヤツプ層(8)を順次成長させる。次にAuGeNi/Cr/Au
電極(9)及びCr/Au電極(10)を蒸着する。この後、
第2図一点鎖線部分(a−a)においてへき開し、反斜
面を形成する。第2図(a)は、端面近傍の断面図で、
凹みの部分の影響で溝上に形成されたn−GaAlAsクラツ
ド層と活性層が、第2図(b)に示す如く素子中央部分
に比べ薄くなつている。第2図(a)は斜視図、第2図
(b)はa−a面での断面図である。このため、水平方
向に大きな屈折率差が生じ、レーザ光がこれにより閉じ
込められるので、非点収差は小さい。屈折率差を大きく
するためには、n−GaAs基板の影響を大きくする必要が
あるのでp型クラツド層の溝外縁部の厚さを0.4μm以
下、活性層6の厚さを0.7μm以下にする必要がある。
一方、第2図(b)に示す素子中央部分では、p−GaAl
Asクラツド層も活性層も厚いため屈折率差が小さくなる
ので、マルチモードとなり、戻り光雑音は生じない。屈
折率差を小さくするためには、p−GaAs基板の影響を小
さくする必要があるのでp型クラツド層の溝外縁部の厚
さを0.4μm以上、活性層6の厚さを0.07μm以上にす
る必要がある。また、前者が0.7μm以下、後者が0.1μ
m以下では、パルセーシヨンを伴うマルチモードとな
り、さらに雑音は低減する。その他の層の厚さは、n型
クラツド層が0.8−2.0μm,n型キヤツプ層が0.5−5.0μ
mである。各層のAlAs組成は、層5,7が0.35−0.55層6
が0.05−0.20である。この素子では、縦モードはマルチ
モードで、戻り光量に関わらず、相対雑音強度は1×10
-13Hz-1以下であつた。また、非点収差は5μm以下で
あつた。
Example 1 A semiconductor laser structure of Example 1 of the present invention will be described.
A recess (2) as shown in FIG. 1 is formed on the p-type GaAs substrate (1).
The n-GaAs layer (3) was formed by chemical etching using a SiO 2 mask formed by a normal photolithographic technique, and by MOCVD. Next, a groove (4) serving as a waveguide as shown in FIG. 1 was formed. The groove is formed to have a width of 5 to 7 μm in the portion sandwiched by the recesses of the substrate, and is formed to have a width of 3 to 5 μm in the other regions. The depth of the groove and the depth of the recess were 2 and 4 μm, respectively. After that, as shown in FIG. 2, a p-Ga 0.5 Al 0.5 As cladding layer (5), an undoped Ga 0.86 Al 0.14 As active layer (6), an n-Ga 0.5 Al 0.5 As cladding layer (7), n -GaAs
The cap layer (8) is grown sequentially. Next, AuGeNi / Cr / Au
The electrode (9) and the Cr / Au electrode (10) are deposited. After this,
FIG. 2 Cleaves at the alternate long and short dash line portion (aa) to form an anti-slope. FIG. 2 (a) is a sectional view near the end face,
Due to the influence of the recess, the n-GaAlAs cladding layer and the active layer formed on the groove are thinner than the central portion of the element as shown in FIG. 2 (b). FIG. 2 (a) is a perspective view, and FIG. 2 (b) is a sectional view taken along the plane aa. Therefore, a large difference in refractive index occurs in the horizontal direction, and the laser light is confined by this, so that the astigmatism is small. In order to increase the difference in refractive index, it is necessary to increase the influence of the n-GaAs substrate. Therefore, the thickness of the outer edge of the groove of the p-type cladding layer is 0.4 μm or less, and the thickness of the active layer 6 is 0.7 μm or less. There is a need to.
On the other hand, in the central portion of the element shown in FIG.
Since the As cladding layer and the active layer are both thick, the difference in the refractive index is small, so that the mode becomes multi-mode and no optical feedback noise occurs. In order to reduce the difference in refractive index, it is necessary to reduce the influence of the p-GaAs substrate. Therefore, the thickness of the outer edge of the groove of the p-type cladding layer should be 0.4 μm or more, and the thickness of the active layer 6 should be 0.07 μm or more. There is a need to. The former is 0.7μm or less and the latter is 0.1μm.
Below m, the mode becomes multi-mode with pulsation, and noise is further reduced. The thickness of other layers is 0.8-2.0μm for n-type cladding layer and 0.5-5.0μm for n-type capping layer.
m. The AlAs composition of each layer is such that layers 5 and 7 are 0.35-0.55 layer 6
Is 0.05-0.20. In this device, the longitudinal mode is multi-mode and the relative noise intensity is 1 × 10 regardless of the amount of returned light.
-13 Hz -1 or less. The astigmatism was 5 μm or less.

[実施例2] 本発明第2実施例として、実施例1と同様の効果をMO
CVD法を用いて実現した第3図のような構成を試作し
た。第3図(a)斜視図、第3図(b)はa−a面断面
図である。以下本発明の実施例を図に従い説明する。n
−GaAs基板(11)上にMOCVD法によりn−Ga0.5Al0.5As
クラツド層(7)、アンドープGa0.86Al0.14As活性層
(6)、p−Ga0.5Al0.5Asクラツド層(5)、p−Ga
0.7Al0.3As層(12)を順次結晶成長した。次に、通常フ
オトリソグラフ技術を用いてまず、Si3N4マスク(13)
とストライプに直交する方向に幅100μmのストライプ
状に形成した。さらに、熱CVD法によりSiO2膜を形成し
たのち、再びフオトレジスト工程を利用してSiO2マスク
(14)とホトレジストの2層マスクを設けた。SiO2のエ
ツチングはHF系のエツチング液を用い、SiO2に比べエツ
チング速度の遅いSi3N4のエツチングはCF4によるプラズ
マエツチングによりおこなつた。リン酸系のエツチング
液を用いて、ストライプ外部のp型クラツド層を0.1〜
0.3μm残してエツチングしさらにHF系のエツチング液
によりマスクのサイドエツチングを行つたところ、第4
図に示すような形状のマスクが得られる。このSiO2/Si3
N4複合膜を選択成長マスクとしてn−GaAs(3)の選択
結晶成長を行い、さらにSiO2/Si3N4複合膜をHF系エツチ
ング液で取り除いた後、表面状態向上のためのシヤロー
エツチを行つて再びMOCVD法によりp+−Ga0.5Al0.5As層
{p>1019cm-3}(17)、p−Ga0.5Al0.5As層(15)、
p−GaAsキヤツプ層(16)により埋込んだ。この構造に
p電極としてCr/Au(10)をn電極としてAuGeNi/Cr/Au
(9)を蒸着し300μm角にへきかいしてレーザチツプ
とした。本構造によればレーザ中央部においては電流狭
搾幅が狭いため利得導波型の導波路が形成され、レーザ
はマルチモード発振するがレーザ端面近傍では電流狭搾
幅が広いため屈折率導波が主要な導波機構となり、マル
チモードレーザのビーム形状及び非点収差を補正する。
しかも、本構造のレーザ端面部分の導波路の幅がレーザ
中央部に比べひろくなつているため、実施例1と同様と
発光効率向上の効果があつた。
[Second Embodiment] As a second embodiment of the present invention, the same effect as that of the first embodiment is obtained by MO.
A prototype as shown in Fig. 3 was realized by using the CVD method. FIG. 3 (a) is a perspective view, and FIG. 3 (b) is an aa plane sectional view. Embodiments of the present invention will be described below with reference to the drawings. n
N-Ga 0.5 Al 0.5 As on -GaAs substrate (11) by MOCVD
Cladding layer (7), undoped Ga 0.86 Al 0.14 As active layer (6), p-Ga 0.5 Al 0.5 As cladding layer (5), p-Ga
A 0.7 Al 0.3 As layer (12) was sequentially grown. Then, usually using photolithographic techniques, first the Si 3 N 4 mask (13)
Was formed in a stripe shape having a width of 100 μm in the direction orthogonal to the stripe. Further, after forming a SiO 2 film by the thermal CVD method, the photoresist process was used again to provide a two-layer mask of a SiO 2 mask (14) and a photoresist. Etching of SiO 2 was performed by using an HF-based etching solution, and etching of Si 3 N 4 , which has a slower etching rate than SiO 2, was performed by plasma etching with CF 4 . Using a phosphoric acid-based etching solution, the p-type cladding layer outside the stripe is 0.1 to
Etching was performed with 0.3 μm left, and side etching of the mask was performed with an HF-based etching solution.
A mask having a shape as shown in the figure is obtained. This SiO 2 / Si 3
Selective crystal growth of n-GaAs (3) is performed using the N 4 composite film as a selective growth mask, and after removing the SiO 2 / Si 3 N 4 composite film with an HF-based etching solution, a shear etch for improving the surface condition is performed. Then, again by the MOCVD method, a p + -Ga 0.5 Al 0.5 As layer {p> 10 19 cm -3 } (17), a p-Ga 0.5 Al 0.5 As layer (15),
It was filled with a p-GaAs cap layer (16). In this structure, Cr / Au (10) is used as the p electrode and AuGeNi / Cr / Au is used as the n electrode.
(9) was vapor-deposited and cut into a 300 μm square to make a laser chip. According to this structure, since the current narrowing width is narrow in the center of the laser, a gain waveguide type waveguide is formed. Is the main waveguiding mechanism and corrects the beam shape and astigmatism of the multimode laser.
Moreover, since the width of the waveguide in the laser end face portion of this structure is wider than in the laser central portion, the effect of improving the light emission efficiency is obtained as in the first embodiment.

[実施例3] 本発明第3の実施例として、実施例1,2と同様の性能
の素子をMOCVD法による2回成長により作製した例を示
す。第5図を用いて説明する。第5図(a)は斜視図、
第5図(b)はa−a面の断面図である。n−GaAs基板
(11)上にMOCVD法によりn−Ga0.5Al0.5Asクラツド層
(7)、アンドープGa0.86Al0.14As活性層(6)、p−
Ga0.5Al0.5Asクラツド層(5)、第1のp−Ga0.7Al0.3
As層(12)、第1のp−Ga0.5Al0.5As層(12)、第2の
p−Ga0.7Al0.3As層(12)、第2のp−Ga0.5Al0.5As層
(15)、p−GaAsキヤツプ層(16)を順次結晶成長した
後、通常のフオトリソグラフ技術を用いてストライプ状
のSiO2マスク(14)を設けた。次に、再びフオトグラフ
技術を用いてレーザ端面となる領域を保護するようにマ
スクを設けた後、化学エツチングによりp−GaAs層を除
去した。さらに、エツチングマスクに用いたSiO2をその
まま利用してArイオンエツチングを行いのp型選択エツ
チング層までエツチングしさらに、煮沸塩酸により残り
の選択エツチング層を取り除いた。煮沸塩酸はp−Ga
0.5Al0.5As層のみをエツチングしp−Ga0.7Al0.3As層を
エツチングしないため、正確にp−Ga0.7Al0.3As層の表
面でエツチングを停止することができる。この構造を、
表面状態向上のためシヤローエツチを行つた後再びMOCV
D法によりn−GaAs(3)により埋込んだ。レーザ中央
部では、サイドエツチングを受けたGaAs層が選択エツチ
ングのマスクとなるため、断面構造は第5図(a)の様
になり電流狭搾幅が、第5図(b)に示すレーザ端面領
域に比べ細くなる。このため、レーザ中央領域では利得
導波が主要な導波機構となるが、レーザ端面領域では屈
折率導波が主要な導波機構となる。このため、本実施例
の半導体レーザは実施例1,2と同様に高光出力まで低収
差で直線性の良好な光出力電流特性を示し、しかもマル
チモード発振を行うので雑音特性も良好であった。
[Third Embodiment] As a third embodiment of the present invention, an example in which an element having the same performance as that of the first and second embodiments is manufactured by double growth by the MOCVD method will be described. This will be described with reference to FIG. FIG. 5 (a) is a perspective view,
FIG. 5 (b) is a sectional view of the aa plane. An n-Ga 0.5 Al 0.5 As cladding layer (7), an undoped Ga 0.86 Al 0.14 As active layer (6), and a p- layer were formed on the n-GaAs substrate (11) by MOCVD.
Ga 0.5 Al 0.5 As cladding layer (5), first p-Ga 0.7 Al 0.3
As layer (12), first p-Ga 0.5 Al 0.5 As layer (12), second p-Ga 0.7 Al 0.3 As layer (12), second p-Ga 0.5 Al 0.5 As layer (15) , P-GaAs cap layer (16) was successively grown, and then a stripe-shaped SiO 2 mask (14) was provided by using a normal photolithographic technique. Next, a p-GaAs layer was removed by chemical etching after again providing a mask so as to protect the region to be the laser end face by using the photograph technique. Further, SiO 2 used for the etching mask was used as it was to etch to the p-type selective etching layer which was subjected to Ar ion etching, and the remaining selective etching layer was removed by boiling hydrochloric acid. Boiled hydrochloric acid is p-Ga
Since only the 0.5 Al 0.5 As layer is etched and the p-Ga 0.7 Al 0.3 As layer is not etched, etching can be accurately stopped at the surface of the p-Ga 0.7 Al 0.3 As layer. This structure
After performing shallow etching to improve the surface condition, MOCV again
It was filled with n-GaAs (3) by the D method. In the central part of the laser, the GaAs layer subjected to side etching serves as a mask for selective etching, so the sectional structure is as shown in Fig. 5 (a), and the current narrowing width is the laser end face shown in Fig. 5 (b). It becomes thinner than the area. Therefore, the gain guiding is the main guiding mechanism in the laser central region, but the refractive index guiding is the main guiding mechanism in the laser end face region. For this reason, the semiconductor laser of the present example has a similar optical output current characteristic with low aberration up to a high optical output and good linearity as in Examples 1 and 2, and also has good noise characteristics because it performs multimode oscillation. .

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明第一の実施例の構造の基本形状を示す
斜視図、第2図は本発明第1の実施例の半導体レーザの
断面構造を示す図、第3図は本発明第2の実施例の半導
体レーザの断面構造を示す図、第4図は本発明第2の実
施例のマスク形状を示す図、第5図は本発明第3の実施
例の半導体レーザの断面構造図である。第6図は従来の
半導体レーザの断面構造である。 (1)……p−GaAs基板、(2)……GaAs基板の凹み、
(3)……n−GaAs層、(4)……ストライプ層、
(5)……p−Ga0.5Al0.5Asクラツド層、(6)……ア
ンドープGa0.86Al0.14As活性層、(7)……n−Ga0.5A
l0.5Asクラツド層、(8)……n−GaAsキヤツプ層、
(9)……AuGeNi/Cr/Au電極、(10)……Cr/Au電極、
(11)……n−GaAs基板、(12)……p−Ga0.aAl0.3A
s、(13)……Si3N4、(14)……SiO2、(15)……p−
Ga0.5Al0.5As層、(16)……p−GaAs、(17)……p+
Ga0.5Al0.5As層。
FIG. 1 is a perspective view showing the basic shape of the structure of the first embodiment of the present invention, FIG. 2 is a view showing the sectional structure of a semiconductor laser of the first embodiment of the present invention, and FIG. 2 is a diagram showing a sectional structure of a semiconductor laser of Example 2, FIG. 4 is a diagram showing a mask shape of a second example of the present invention, and FIG. 5 is a sectional structure diagram of a semiconductor laser of a third example of the present invention. Is. FIG. 6 is a sectional structure of a conventional semiconductor laser. (1) ... p-GaAs substrate, (2) ... dent of GaAs substrate,
(3) ... n-GaAs layer, (4) ... stripe layer,
(5) ... p-Ga 0.5 Al 0.5 As cladding layer, (6) ... undoped Ga 0.86 Al 0.14 As active layer, (7) ... n-Ga 0.5 A
l 0.5 As cladding layer, (8) ... n-GaAs capping layer,
(9) …… AuGeNi / Cr / Au electrode, (10) …… Cr / Au electrode,
(11) …… n-GaAs substrate, (12) …… p-Ga 0.a Al 0.3 A
s, (13) …… Si 3 N 4 , (14) …… SiO 2 , (15) …… p−
Ga 0.5 Al 0.5 As layer, (16) …… p-GaAs, (17) …… p +
Ga 0.5 Al 0.5 As layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶村 俊 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 実開 平1−125569(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Satoshi Kajimura 1-280, Higashi Koikekubo, Kokubunji, Tokyo (56) References: Hitachi, Ltd. Central Research Laboratory (56)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも、半導体媒質に光利得を持たせ
るための、異なる導電型の半導体の接合と、この接合面
上に設けたストライプ状の光導波機構を有し、該光導波
機構がレーザ中央部ではストライプ内外の利得差を主に
利用したものであり、レーザ端面付近ではストライプ内
外の屈折率差を主に利用したものでかつ、該レーザ端面
領域における光スポツトサイズがレーザ中央領域での光
スポツトサイズより大きくなるように、レーザ端面領域
のストライプ幅を広くしたことを特徴とする半導体レー
ザ装置。
1. At least a junction of semiconductors of different conductivity types for imparting an optical gain to a semiconductor medium and a stripe-shaped optical waveguide mechanism provided on the junction surface, the optical waveguide mechanism being a laser. In the central part, the gain difference between the inside and outside of the stripe is mainly used, in the vicinity of the laser end face, the difference in refractive index between the inside and outside of the stripe is mainly used, and the optical spot size in the laser end face region is A semiconductor laser device characterized in that a stripe width of a laser end face region is widened so as to be larger than an optical spot size.
JP62323983A 1987-12-23 1987-12-23 Semiconductor laser device Expired - Lifetime JP2564343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62323983A JP2564343B2 (en) 1987-12-23 1987-12-23 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323983A JP2564343B2 (en) 1987-12-23 1987-12-23 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH01166585A JPH01166585A (en) 1989-06-30
JP2564343B2 true JP2564343B2 (en) 1996-12-18

Family

ID=18160809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323983A Expired - Lifetime JP2564343B2 (en) 1987-12-23 1987-12-23 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2564343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687449B2 (en) * 1988-06-23 1997-12-08 日本電気株式会社 Semiconductor laser and manufacturing method thereof

Also Published As

Publication number Publication date
JPH01166585A (en) 1989-06-30

Similar Documents

Publication Publication Date Title
US5416790A (en) Semiconductor laser with a self-sustained pulsation
JPS62257783A (en) Semiconductor laser element
JPH07162095A (en) Semiconductor laser
JP2005203589A (en) Semiconductor laser and manufacturing method of the same
JP2564343B2 (en) Semiconductor laser device
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
JPH0728102B2 (en) Semiconductor laser and manufacturing method thereof
JPH05211372A (en) Manufacture of semiconductor laser
JPH0710015B2 (en) Semiconductor laser device and method of manufacturing the same
JPH01192184A (en) Manufacture of buried type semiconductor laser
JPS61112392A (en) Semiconductor laser and manufacture thereof
JP3194616B2 (en) Semiconductor laser device
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JP2909133B2 (en) Semiconductor laser device
JP2946781B2 (en) Semiconductor laser
JP2794743B2 (en) Quantum well semiconductor laser device
JP2674594B2 (en) Semiconductor laser device
JP3144821B2 (en) Semiconductor laser device
JPH11251678A (en) Semiconductor laser and its manufacture
JP2538258B2 (en) Semiconductor laser
JP2528834B2 (en) Semiconductor laser device
JPH0575204A (en) Semiconductor luminous device and manufacture thereof
JPH077230A (en) Index counter guide type semiconductor laser
JPS61244082A (en) Semiconductor laser device
JPH0656910B2 (en) Semiconductor laser device and manufacturing method thereof