JPS6236579A - Optical current and magnetic field measuring apparatus - Google Patents

Optical current and magnetic field measuring apparatus

Info

Publication number
JPS6236579A
JPS6236579A JP17567585A JP17567585A JPS6236579A JP S6236579 A JPS6236579 A JP S6236579A JP 17567585 A JP17567585 A JP 17567585A JP 17567585 A JP17567585 A JP 17567585A JP S6236579 A JPS6236579 A JP S6236579A
Authority
JP
Japan
Prior art keywords
magnetic field
magneto
optical
optical element
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17567585A
Other languages
Japanese (ja)
Inventor
Masami Watanabe
渡邊 政美
Hisamitsu Takahashi
高橋 久光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17567585A priority Critical patent/JPS6236579A/en
Publication of JPS6236579A publication Critical patent/JPS6236579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable highly sensitive construction of the apparatus even in the use of a polarization beam splitter with the same shape as polarizer and analyzer, by building up a part or the hole of a light transmitting part of the magnetooptical element of a material having a natural optical rotary power. CONSTITUTION:A polarizer 3a is arranged between the output terminal of an optical fiber 2 and an incident surface 9d, and an analyzer 3b between an emission surface 9e and the input terminal of an optical fiber 7. A magnetic field 5 is applied so as to pass entirely through a magnetooptical element 9. Moreover, the magnetic field 5-wise length L of the magnetooptical element 9 is adjusted to the rage in which the polarization surface of the linearly polarized light incident into the magnetooptical element 9 turns by 45 deg. with a natural optical rotary power when the light emits from the magnetooptical element 9. As a result, the polarization surface of the polarizer and the analyzer can be square or parallel, thereby permitting a high sensitivity even in the use of a polarization beam splitter with the same shape is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気光学効果特にファラデー効果を利用し
て電流や磁界の大きさを測定する光応用電流・磁界測定
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical current/magnetic field measuring device that measures the magnitude of current or magnetic field by utilizing the magneto-optical effect, particularly the Faraday effect.

〔従来の技術〕[Conventional technology]

第3図は従来の光応用電流・磁界測定装置を示し1図に
2いて、1は光源、2は光源1からの光を伝搬する元フ
ァイバ%3は元ファイバ2から出射した光を直線偏光に
する偏光子、4は磁気光学効果例えばファラデー効果を
有する磁気光学素子。
Figure 3 shows a conventional optical applied current/magnetic field measurement device. Figure 1 and Figure 2 show 1 and 2, where 1 is the light source, 2 is the original fiber that propagates the light from the light source 1, and 3 is the linearly polarized light emitted from the original fiber 2. 4 is a magneto-optical element having a magneto-optic effect, such as a Faraday effect.

5は被測定用の印加磁界%6は磁気光学素子4を介して
偏光子3に対向配置された検光子、Tは検光子6からの
出射光を入射して伝搬する元ファイバ、8は元ファイバ
Tからの出射光を受けて電気的な信号量に変換する光受
信機である。
5 is the applied magnetic field to be measured % 6 is an analyzer placed opposite to the polarizer 3 via the magneto-optical element 4, T is the original fiber into which the light emitted from the analyzer 6 is incident and propagated, 8 is the original fiber This is an optical receiver that receives the light emitted from the fiber T and converts it into an electrical signal amount.

第4図は第3図の偏光子3、磁気光学素子4゜検光子6
で示される構成要素の部分をわかりやすく図示し念もの
で、偏光子3と検光子6とは互いに形状が異なっている
ことを示しており1両者は共に薄膜を積層した偏光ビー
ムスプリッタで構成されている。
Figure 4 shows polarizer 3, magneto-optical element 4° analyzer 6 in Figure 3.
This is a simple illustration of the component parts shown in the figure, and shows that the polarizer 3 and analyzer 6 have different shapes.1 Both are composed of polarizing beam splitters made of laminated thin films. ing.

次に動作について説明する。Next, the operation will be explained.

光源1から出射した光は元ファイバ2によって偏光子3
に導かれ、偏光子3によって直線偏光に変換される。こ
の直線偏光された元が第3図に示すような磁界5が印加
された磁気光学素子4内を透過すると、ファラデー効果
によrJ前記直線偏光の偏光面が磁界5の大きさに比例
して回転する。
The light emitted from the light source 1 is passed through the original fiber 2 to the polarizer 3
and is converted into linearly polarized light by the polarizer 3. When this linearly polarized light passes through the magneto-optical element 4 to which a magnetic field 5 as shown in FIG. Rotate.

この回転角をθとすると回転角θは θ=ve−L−H となる。ここでVeは磁気光学素子4のグエルデ定数で
あり、この値が大きい程、回転角θは大きくなる。Lは
磁気光学素子4中の光路の磁界5の方向の長さでおジ、
Hは印加磁界5である。
Letting this rotation angle be θ, the rotation angle θ becomes θ=ve−L−H. Here, Ve is the Guelde constant of the magneto-optical element 4, and the larger this value is, the larger the rotation angle θ becomes. L is the length of the optical path in the magneto-optical element 4 in the direction of the magnetic field 5;
H is the applied magnetic field 5.

磁気光学素子4から出射した元は検光子6に入射し、検
光子6によって回転角θに応、じた強度の元が抽出され
る。検光子6の偏光面は検出感度を最大とするため通常
、偏光子3の偏光面と45の角度を為すように配置され
ている。
The element emitted from the magneto-optical element 4 is incident on an analyzer 6, and the analyzer 6 extracts an element with an intensity corresponding to the rotation angle θ. The polarization plane of the analyzer 6 is normally arranged to form an angle of 45 with the polarization plane of the polarizer 3 in order to maximize detection sensitivity.

偏光ビームスプリッタを検光子6として用いる時には、
上述の45の角度をなすように、第5図の符号Bで示し
たように特殊な形状の検光子6が使用される。検光子6
から抽出された党は元ファイバ1で光受信機8に導かれ
光受信機8によシ光電変換される。すなわち、検光子6
から出てくる光強度を電気的に測定することにより、印
加磁界5(磁界発生源が電流であればその電流)の大き
さを知ることができる。
When using the polarizing beam splitter as the analyzer 6,
In order to form the above-mentioned angle 45, a specially shaped analyzer 6 is used, as indicated by reference numeral B in FIG. Analyzer 6
The components extracted from the optical fiber 1 are guided to the optical receiver 8 through the original fiber 1, and are photoelectrically converted by the optical receiver 8. That is, analyzer 6
The magnitude of the applied magnetic field 5 (if the magnetic field generation source is an electric current, the current) can be determined by electrically measuring the intensity of light emitted from the magnetic field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光応用電流・磁界測定装置は以上のように構成さ
れているので、特殊な形状で高価な偏光ビームスプリッ
タが必要となるが、これを避けるため同一形状の偏光ビ
ームスプリッタを2個使うようにすると検出感度が最低
のレベルに低下する問題点かあつ九。また、測定の検出
感度を上げるには、磁気光学素子の長さを長くしなけれ
ばならず光応用電流・磁界測定装置が大型化するなどの
問題点があった。
Conventional optical current/magnetic field measurement devices are configured as described above, and require a special shaped and expensive polarizing beam splitter.To avoid this, we recommend using two polarizing beam splitters of the same shape. The problem with this is that the detection sensitivity drops to the lowest level. Furthermore, in order to increase the detection sensitivity of the measurement, the length of the magneto-optical element must be increased, resulting in problems such as an increase in the size of the optical current/magnetic field measuring device.

この発明は、上記のような問題点を解消するためになさ
れたもので、用いる光学部品の構造を簡単化させると共
に廉価で高感度、しかも小型の光応用電流・磁界測定装
置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to simplify the structure of the optical components used, and to obtain an inexpensive, highly sensitive, and compact optical current/magnetic field measuring device. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る充電流・磁界測定装置はファラデー効果
を利用した光応用電流・磁気測定装置において、磁気光
学素子の光透過部の一部又は全部を自然旋光性を有する
材料で構成し、同一構造の偏光子2よび検光子を使用し
、磁気光学素子に磁気光学素子の透過光を反射して屈曲
させながら被測定用磁界の方向と直角な方向に往復して
通過させる反射手段を設けたものである。
The charging current/magnetic field measuring device according to the present invention is an optically applied current/magnetic measuring device using the Faraday effect, in which a part or all of the light transmitting part of the magneto-optical element is made of a material having natural optical rotation, and the same structure is used. The polarizer 2 and the analyzer are used, and the magneto-optical element is provided with a reflecting means that reflects and bends the light transmitted through the magneto-optical element and causes it to pass back and forth in a direction perpendicular to the direction of the magnetic field to be measured. It is.

〔作用〕 この発明における磁気光学素子は、その一部又は全部が
ファラデー効果に加えて自然旋光性を有するので、偏光
子と検光子とを同一構造の偏光ビームスプリッタで製作
しても1両者の偏光面の角度がずれて検出感度が増大す
る。しかも、どの発明における反射手段は、磁気光学素
子内の透過光を反射して屈曲させなから印加磁界と直角
な方向に往復して通過させるため、磁気光学素子の印加
磁界に沿った党略成分の長さを長くシ念のと同様の効果
があり、小型で高感度とする。
[Function] The magneto-optical element of the present invention has natural optical rotation in addition to the Faraday effect, in part or in whole, so even if the polarizer and analyzer are manufactured using a polarizing beam splitter with the same structure, one The angle of the polarization plane shifts and the detection sensitivity increases. Moreover, the reflecting means in each invention does not reflect and bend the transmitted light within the magneto-optical element, but allows it to pass back and forth in a direction perpendicular to the applied magnetic field. It has a long length and has the same effect as the Shinen, but it is small and has high sensitivity.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示し1図において、同一
符号は従来例と同溝成を示している。1は光源、2は尤
ファイバ、5は被測定用磁界、Tは元ファイバ、8は元
受信機である。3gは偏光子、3bは検光子であり、偏
光子3aと検光子3bとは同一構造をなしている。偏光
子3aにより直線偏光とされた元の振動面(偏光面)と
検光子3bにより検出された偏光の振動面(偏光面)と
が互いに直交もしくは平行となるよつに偏光子3aおよ
び検光子3bは配置されている。この偏光子3a3よび
検光子3bの配置は後述の磁気光学素子9の自然旋光性
が右旋性かもしくは左旋性かで決定される。9はファラ
デー効果および自然旋光性を有する磁気光学素子であり
、磁界5に略直交した一対の略平行な且つ外部との屈折
率差により形成された全反射面9a、9bを有し、磁気
光学素子9の一端面9cは全反射面9a、9bと略直交
している。また、磁気光学素子9の他端は、全反射面9
aj?よび同9bと夫々略135の角度をなす入射面9
d2よび出射面9eを有している。10は端面9c上に
密着し7て設けられた多層反射、噂であり1元反射性を
有し、各層にて反射された光が干渉して強め合うように
構成されている。なお。
FIG. 1 shows an embodiment of the present invention, and in FIG. 1, the same reference numerals indicate the same groove configurations as in the conventional example. 1 is a light source, 2 is an output fiber, 5 is a magnetic field to be measured, T is an original fiber, and 8 is an original receiver. 3g is a polarizer, 3b is an analyzer, and the polarizer 3a and analyzer 3b have the same structure. The polarizer 3a and the analyzer are arranged so that the original vibration plane (polarization plane) of the linearly polarized light by the polarizer 3a and the vibration plane (polarization plane) of the polarized light detected by the analyzer 3b are perpendicular or parallel to each other. 3b is placed. The arrangement of the polarizer 3a3 and the analyzer 3b is determined depending on whether the natural optical rotation of the magneto-optical element 9, which will be described later, is dextrorotatory or levorotatory. 9 is a magneto-optical element having a Faraday effect and natural optical rotation, and has a pair of substantially parallel total reflection surfaces 9a and 9b that are substantially orthogonal to the magnetic field 5 and formed by a difference in refractive index with the outside; One end surface 9c of the element 9 is substantially perpendicular to the total reflection surfaces 9a and 9b. Further, the other end of the magneto-optical element 9 is a total reflection surface 9
aj? and 9b, respectively, forming an angle of approximately 135.
d2 and an exit surface 9e. Reference numeral 10 denotes a multilayer reflective layer provided in close contact with the end surface 9c, which has one-dimensional reflective properties, and is configured so that the light reflected from each layer interferes and strengthens each other. In addition.

偏光子3aは元ファイバ2の出力端と入射面9dとの間
に配置され、検光子3bは出射面9eと光ファイバIの
入力端との間に配置され−Cいる。また、磁界5は磁気
光学素子9の全体を通過するように印加されている。さ
らに、磁気光学素子9の磁界5の方向の長さLは、磁気
光学素子9に入射した直線偏光の偏光面が磁気光学素子
9を出射するとぎに自然旋光で45回転する幅に調整さ
れている。このようにすれば1通常は検出感度を最大に
するために、自然旋光がない′場合にi光子3aと検光
子3bとの偏光面が4fの角度をなすよりに配置するが
、こ■角度に自然旋元分±45(但し。
The polarizer 3a is arranged between the output end of the original fiber 2 and the input surface 9d, and the analyzer 3b is arranged between the output surface 9e and the input end of the optical fiber I. Further, the magnetic field 5 is applied so as to pass through the entire magneto-optical element 9. Furthermore, the length L of the magneto-optical element 9 in the direction of the magnetic field 5 is adjusted to such a width that the polarization plane of the linearly polarized light incident on the magneto-optical element 9 rotates 45 times due to natural optical rotation upon exiting the magneto-optical element 9. There is. In this way, 1. Normally, in order to maximize the detection sensitivity, when there is no natural rotation, the i-photon 3a and the analyzer 3b are arranged so that their polarization planes form an angle of 4f. Natural rotation angle ±45 (however.

符号は胸元方向による。)が加わるので偏光子3a2よ
び検光子3bは上述した配置にすればよく同一構造にし
て使用することが可能となる。
The sign depends on the direction of the chest. ), the polarizer 3a2 and the analyzer 3b can be used with the same structure as long as they are arranged as described above.

次に、この実施例の動作について説明する。Next, the operation of this embodiment will be explained.

偏光子3aにより直線偏光にされた元は、入射面9dか
ら入射し、全反射面9aおよび同9bに臨界角以上の角
度をもって入射し全反射面9aおよび同9bとで交互に
多重全反射されながら進行する。この進行後、この元は
、多層反射膜1oにより反射されて折返され、再び、全
反射面9aおよび同9bとで交互に多重全反射されなが
ら磁界5と直角な方向に戻り、出射面9eから出射する
The light that has been linearly polarized by the polarizer 3a enters the incident surface 9d, enters the total reflection surfaces 9a and 9b at an angle greater than the critical angle, and is subjected to multiple total reflections alternately on the total reflection surfaces 9a and 9b. Proceed while doing so. After this progress, this source is reflected by the multilayer reflective film 1o and turned back, and again returns to the direction perpendicular to the magnetic field 5 while being subjected to multiple total reflections alternately on the total reflection surfaces 9a and 9b, and exits from the output surface 9e. Emits light.

この出射し之直線偏光は、自然旋光性pよびファラデー
効果によりその偏光面が磁界5の強度および磁界5に沿
った光路成分の長さに応じて回転している。ファラデー
効果による回転量に応じ九強度の党が検光子3bによっ
て抽出され、元ファイバ7によって元受信機8に導かれ
、光電変換される。
The plane of polarization of this emitted linearly polarized light is rotated in accordance with the strength of the magnetic field 5 and the length of the optical path component along the magnetic field 5 due to natural optical rotation p and the Faraday effect. Nine intensities are extracted by the analyzer 3b according to the amount of rotation due to the Faraday effect, guided to the source receiver 8 by the source fiber 7, and photoelectrically converted.

磁気光学素子9の印加磁界5の方向の長さをLとし、ヴ
エルデ定数をVeとし、印加磁界5をHとし、光が磁気
光学素子9内を印加磁界5に沿つて(n+”)往復し念
とすると、直線偏光の偏光面のファラデー効果による回
転角θは θ=(2n+1)・L−ve−H(但し、nは正数)と
なる。
The length of the magneto-optical element 9 in the direction of the applied magnetic field 5 is L, the Werde constant is Ve, and the applied magnetic field 5 is H, and light travels back and forth (n+'') inside the magneto-optical element 9 along the applied magnetic field 5. To be sure, the rotation angle θ of the polarization plane of linearly polarized light due to the Faraday effect is θ=(2n+1)·L−ve−H (where n is a positive number).

光の印加磁界5に沿つ之磁気光学素子9内での光路成分
の長さは(2n+1)・Lとなり、光を多重反射させな
い従来の場合に比べ偏光面の回転角は(2n+1 )倍
となり、それだけ電流および磁界の測定感度が増大する
The length of the optical path component in the magneto-optical element 9 along the applied magnetic field 5 of the light is (2n+1)·L, and the rotation angle of the polarization plane is (2n+1) times that of the conventional case where the light is not subjected to multiple reflections. , the measurement sensitivity of current and magnetic field increases accordingly.

磁気光学素子9を透過した直線偏光は、その偏光面がフ
ァラデー効果による回転角θに自然旋光性による旋光角
45を加えた4i十〇の角度だけ回転しており、検光子
3b、元ファイバ7を通って元受信機8に導かれて光電
変換され、印加磁界5(磁界発生源が電流であればその
電流)の大きさを測定することができる。
The linearly polarized light transmitted through the magneto-optical element 9 has its plane of polarization rotated by an angle of 4i10, which is the rotation angle θ due to the Faraday effect and the optical rotation angle 45 due to natural optical rotation. The applied magnetic field 5 (if the source of the magnetic field is a current, the current) can be measured by being guided to the original receiver 8 and subjected to photoelectric conversion.

第2図はこの発明の他の一実施例を示し、図に2いて、
同符号1.2,3a、3b、5.7〜10゜9a〜9e
は第1図に示した構成と同一構成を示している。この実
施例が、第1図に示した実施例と異なる点は、境界面で
ある全反射面9aおよび同9b上に密着して多層反射膜
11および同12を夫々設けた点である。この多層反射
膜11および同12は多層反射膜10と同等の特性を有
し。
FIG. 2 shows another embodiment of the present invention.
Same code 1.2, 3a, 3b, 5.7~10°9a~9e
indicates the same configuration as that shown in FIG. This embodiment differs from the embodiment shown in FIG. 1 in that multilayer reflective films 11 and 12 are provided in close contact with total reflection surfaces 9a and 9b, which are boundary surfaces, respectively. The multilayer reflective films 11 and 12 have the same characteristics as the multilayer reflective film 10.

多層反射膜10〜12は同一の多層反射膜であってもよ
い。この実施例においては、磁気光学素子9内の元は多
層反射膜112よび12により多重反射されて磁気光学
素子9内を磁界5の方向と直角な方向に往復する。この
実施例の場合においても上述の実施例と同じ原理により
同構成の偏光子3a2よび検光子3bを用いることがで
きるとともに測定感度が増す。この実施例の場合には、
境界面9a2よび同9bの臨界角の条件を考えなくとも
よいので磁気光学素子9の屈折率を考慮に入れなくとも
よく、磁気光学素子9の選択の自由度が大幅に拡がる。
The multilayer reflective films 10 to 12 may be the same multilayer reflective film. In this embodiment, the element within the magneto-optical element 9 is multiple-reflected by the multilayer reflective films 112 and 12 and reciprocates within the magneto-optical element 9 in a direction perpendicular to the direction of the magnetic field 5. In this embodiment as well, the polarizer 3a2 and analyzer 3b having the same configuration can be used based on the same principle as in the above embodiment, and the measurement sensitivity is increased. In this example,
Since there is no need to consider the critical angle conditions of the interfaces 9a2 and 9b, there is no need to take the refractive index of the magneto-optical element 9 into consideration, and the degree of freedom in selecting the magneto-optical element 9 is greatly expanded.

なお、上記各実施例に2いて磁気光学素子全体が自然旋
光性を有するように述べたが磁気光学素子の一部が自然
旋光性を有するように構成してもよい。この場合でも、
自然旋光性によシ偏光面が45の角度だけ回転するよう
に磁気光学素子の寸法が限定される。
In each of the above embodiments, the entire magneto-optical element has been described as having natural optical rotation, but a part of the magneto-optical element may have natural optical rotation. Even in this case,
The dimensions of the magneto-optical element are limited so that the plane of polarization rotates by an angle of 45 degrees due to natural optical rotation.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、光応用電流・磁界測
定装置の磁気光学素子の一部又は全部を自然旋光性を有
する材料で置換し、直線偏光の偏光面を所足角度回転す
ると共に磁気光学素子内で直線偏光を多重反射させるこ
とによりファラデー効果による回転角度を大きくとるよ
うに構成したので、偏光子、検光子として同一形状め偏
光ビームスプリッタを使用しても高感度にでき、それだ
け光学部品の構造が簡単で廉価となフ、且つ小型で高感
度のものが得られる効果がある。
As described above, according to the present invention, part or all of the magneto-optical element of the optical current/magnetic field measuring device is replaced with a material having natural optical rotation, and the plane of polarization of linearly polarized light is rotated by the required angle. By multiple-reflecting linearly polarized light within the magneto-optical element, the rotation angle due to the Faraday effect is increased, so even if a polarizing beam splitter with the same shape is used as a polarizer and analyzer, high sensitivity can be achieved. The optical components have a simple structure, are inexpensive, and have the advantage of being compact and highly sensitive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による光応用電流・磁界測
定装置を示す構成図、第2図はこの発明の他の一実施例
による光応用電流・磁界測定装置を示す構成図、第3図
および@4図は従来の党名用を流・磁界測定装置を示す
構成図である。 図に2いて、1は光源、2,7は元ファイバ。 3aは偏光子、3bは検光子、5は印加磁界、8は元受
信機、9は磁気光学素子、10〜12は多層反射膜であ
る。 なお1図中、同一符号は同一、又は相当部分を示す。 特許出願人  三菱電機株式会社 (外2名)−m− 0ノつニー−÷
FIG. 1 is a block diagram showing an optical current/magnetic field measuring device according to one embodiment of the present invention, FIG. 2 is a block diagram showing an optical current/magnetic field measuring device according to another embodiment of the present invention, and FIG. Figures 4 and 4 are configuration diagrams showing a conventional party name current/magnetic field measuring device. In the figure, 1 is the light source, and 2 and 7 are the original fibers. 3a is a polarizer, 3b is an analyzer, 5 is an applied magnetic field, 8 is an original receiver, 9 is a magneto-optical element, and 10 to 12 are multilayer reflective films. In addition, in FIG. 1, the same reference numerals indicate the same or equivalent parts. Patent applicant Mitsubishi Electric Corporation (2 others) - m - 0 knots - ÷

Claims (4)

【特許請求の範囲】[Claims] (1)ファラデー効果を有し被測定用磁界を印加された
磁気光学素子とこの磁気光学素子に配設された偏光子お
よび検光子とを有し、前記偏光子から前記磁気光学素子
中を透過させて前記検光子を介して得た光を光電変換す
ることにより電流および磁界の大きさを測定する光応用
電流・磁界測定装置において、光が前記磁気光学素子中
を透過するときに、この光を反射して屈曲させながら前
記被測定用磁界の方向と直角な方向に往復して透過させ
る反射手段を前記磁気光学素子に設け、前記磁気光学素
子の光透過部の少なくとも一部が自然旋光性を有し、こ
の自然旋光性による自然旋光を利用して前記偏光子と前
記検光子とを同一構造のものとしたことを特徴とする光
応用電流・磁界測定装置。
(1) It has a magneto-optical element having a Faraday effect and to which a magnetic field to be measured is applied, and a polarizer and an analyzer disposed on the magneto-optic element, and the light passes through the magneto-optical element from the polarizer. In an optical current/magnetic field measuring device that measures the magnitude of current and magnetic field by photoelectrically converting the light obtained through the analyzer, when light passes through the magneto-optical element, The magneto-optical element is provided with a reflecting means that reflects and bends the light while reciprocating and transmitting the light in a direction perpendicular to the direction of the magnetic field to be measured, and at least a part of the light transmitting part of the magneto-optical element has natural optical rotation. An optical current/magnetic field measurement device characterized in that the polarizer and the analyzer have the same structure by utilizing the natural optical rotation due to the natural optical rotation.
(2)前記反射手段は、前記被測定用磁界の方向に対し
て略直角な方向の一対の略平行な前記磁気光学素子の外
部に対する全反射面およびこの全反射面に略直角な前記
磁気光学素子の一端面上に密着して形成された多層反射
膜からなることを特徴とする特許請求の範囲第1項記載
の光応用電流・磁界測定装置。
(2) The reflecting means includes a pair of substantially parallel total reflection surfaces to the outside of the magneto-optical element in a direction substantially perpendicular to the direction of the magnetic field to be measured, and the magneto-optical device substantially perpendicular to the total reflection surfaces. 2. The optical current/magnetic field measuring device according to claim 1, characterized in that the device comprises a multilayer reflective film formed in close contact with one end surface of the device.
(3)前記反射手段は前記被測定用磁界の方向に対して
略直角な方向の一対の略平行な前記磁気光学素子の境界
面上およびこの境界面に略直角な前記磁気光学素子の一
端面上に夫々密着して形成された多層反射膜からなるこ
とを特徴とする特許請求の範囲第1項記載の光応用電流
・磁界測定装置。
(3) The reflecting means is arranged on a pair of substantially parallel boundary surfaces of the magneto-optical element in a direction substantially perpendicular to the direction of the magnetic field to be measured, and on one end surface of the magneto-optical element that is substantially perpendicular to the boundary surface. 2. The optical current/magnetic field measuring device according to claim 1, comprising a multilayer reflective film formed in close contact with each other.
(4)前記磁気光学素子の自然旋光性を有する部分の光
路の長さは直線偏光が前記光路を通過したとき前記直線
偏光の偏光面が45°回転するように調整されているこ
とを特徴とする特許請求の範囲第1項乃至第3項のいず
れか1項に記載の光応用電流・磁界測定装置。
(4) The length of the optical path of the portion of the magneto-optical element having natural optical rotation is adjusted so that the plane of polarization of the linearly polarized light is rotated by 45° when the linearly polarized light passes through the optical path. An optical current/magnetic field measuring device according to any one of claims 1 to 3.
JP17567585A 1985-08-12 1985-08-12 Optical current and magnetic field measuring apparatus Pending JPS6236579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17567585A JPS6236579A (en) 1985-08-12 1985-08-12 Optical current and magnetic field measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17567585A JPS6236579A (en) 1985-08-12 1985-08-12 Optical current and magnetic field measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6236579A true JPS6236579A (en) 1987-02-17

Family

ID=16000268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17567585A Pending JPS6236579A (en) 1985-08-12 1985-08-12 Optical current and magnetic field measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6236579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318825A (en) * 2006-05-23 2007-12-06 Yazaki Corp Electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318825A (en) * 2006-05-23 2007-12-06 Yazaki Corp Electronic apparatus

Similar Documents

Publication Publication Date Title
US5475489A (en) Determination of induced change of polarization state of light
JP4108040B2 (en) Current measuring device
JPH0475470B2 (en)
WO1982003914A1 (en) A temperature detector
JPS6236579A (en) Optical current and magnetic field measuring apparatus
JPH024864B2 (en)
CA2268913C (en) Apparatus with a retracing optical circuit for the measurement of physical quantities having high rejection of environmental noise
JPS6165168A (en) Optecal fiber type current sensor
JP3145798B2 (en) Optical magnetic field sensor and magnetic field measuring device
JPH0639341Y2 (en) Optical electric field detector
JPH0322595B2 (en)
JP2001208818A (en) Magnetic sensor
JPS61212773A (en) Photosensor
JP3215861B2 (en) Magneto-optical element and current measuring device using the same
JPH02281169A (en) Optical magnetic sensor
JPH0695049A (en) Magneto-optical field sensor
JPS6236578A (en) Optical current/magnetic field measuring apparatus
JPS58135465A (en) Photoelectric current magnetic field sensor
JPS61256205A (en) Optical fiber displacement sensor
JPH09274056A (en) Current measuring device for optical fiber
JPS6162882A (en) Magnetic field detector
JPH056539Y2 (en)
JPS58146858A (en) Optical current and magnetic field measuring device
JP2019090714A (en) Optical magnetic field and current measuring device
JPH06342048A (en) Magneto-optical sensor