JPS6236059A - High strength cement composition - Google Patents

High strength cement composition

Info

Publication number
JPS6236059A
JPS6236059A JP60171825A JP17182585A JPS6236059A JP S6236059 A JPS6236059 A JP S6236059A JP 60171825 A JP60171825 A JP 60171825A JP 17182585 A JP17182585 A JP 17182585A JP S6236059 A JPS6236059 A JP S6236059A
Authority
JP
Japan
Prior art keywords
blast furnace
powder
cement
furnace slag
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60171825A
Other languages
Japanese (ja)
Other versions
JPH0231026B2 (en
Inventor
悦郎 坂井
柴山 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP60171825A priority Critical patent/JPS6236059A/en
Priority to KR1019860002422A priority patent/KR900002819B1/en
Priority to CN86102167A priority patent/CN1019099B/en
Publication of JPS6236059A publication Critical patent/JPS6236059A/en
Priority to US07/241,772 priority patent/US4933013A/en
Priority to KR1019900001841A priority patent/KR900002820B1/en
Publication of JPH0231026B2 publication Critical patent/JPH0231026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉スラグ微粉末を用いた高強度セメント組成
物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high strength cement composition using pulverized blast furnace slag powder.

〔従来の技術] 高炉スラグ微粉末は、製鉄所の高炉より副生されるスラ
グを水冷、空冷などの急冷によりガラス質としたものを
粉砕し、一般にf′1.2750cm27 を以上の粉
末度とし念ものである。このような高炉スラグ微粉末は
潜在水硬性を有し、水酸化カルシウム、セメント、カル
シウムサルフォアルミネート鉱物、各種アルカリ塩、石
膏などの塩基性刺激剤の少なくとも一種、あるいは二種
以上を添加することによってすみやかに水硬性を発現し
、強固に硬化することが知られており、これらの性質を
利用したものとして高硫酸塩スラグセメント、改良高炉
セメントなどの利用が検討されて来た。
[Prior Art] Blast furnace slag powder is produced by pulverizing slag by-produced from a blast furnace in a steelworks and making it glassy by rapid cooling such as water cooling or air cooling. It's just in case. Such pulverized blast furnace slag powder has latent hydraulic properties, and at least one or two or more basic stimulants such as calcium hydroxide, cement, calcium sulfoaluminate minerals, various alkali salts, and gypsum are added. It is known that this property quickly develops hydraulic properties and hardens strongly, and the use of high sulfate slag cement, improved blast furnace cement, etc. that takes advantage of these properties has been investigated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の高炉セメント微粉末とアルカリ刺激剤を組み合せ
之ものは、低発熱性であり熱によるひびわれ防止効果が
大きいことや、硬化・乾燥に際しての収縮が小さいこと
、又化学薬品抵抗性に優れていることなどの多くの利点
を有している。しかしながら、強度発現が緩やかであシ
、通常のセメント組成物に比べて一定の強度を祷るため
の材令が長くなることや、高強度を得ることが難しいな
どの欠点があった。今後のこれらの組成物を広範な分野
へ利用していくためには、上記欠点の改善が切望されて
いる。
The combination of the above-mentioned blast furnace cement powder and an alkaline stimulant has low heat generation and is highly effective in preventing cracking due to heat, has low shrinkage during hardening and drying, and has excellent chemical resistance. It has many advantages such as: However, the development of strength is slow, and there are drawbacks such as the need for a longer material life to achieve a certain level of strength compared to ordinary cement compositions, and the difficulty of obtaining high strength. In order to utilize these compositions in a wide range of fields in the future, it is strongly desired to improve the above-mentioned drawbacks.

以上のことより、本発明者らは種々検討を加えた結果、
高炉スラグ微粉末とアルカリ刺激剤さらには水上外に超
微粉と高性能減水剤を組み合せ、低水セメント比とする
ことにより、上記欠点が解決でき、強度発現の優れた高
強度セメント組成物を得ることができる知見を得て本発
明を完成するに到った。
Based on the above, the inventors have conducted various studies, and as a result,
By combining pulverized blast furnace slag powder, an alkaline stimulant, ultrafine powder and a high-performance water reducing agent on and off the water, and achieving a low water-to-cement ratio, the above drawbacks can be solved and a high-strength cement composition with excellent strength development can be obtained. The present invention was completed based on the knowledge that the present invention can be achieved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高炉スラグ微粉末、アルカリ刺激剤、超微粉
、高性能減水剤および水を主取分とする高強度セメント
組成物である。
The present invention is a high-strength cement composition containing pulverized blast furnace slag, an alkaline stimulant, ultrafine powder, a high-performance water reducer, and water as main components.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における高炉スラグ粉末とに、製鉄所の高炉よシ
副生されるスラグを水冷、空冷などの急冷によシガラス
質とし、さらにそれを粉砕したもので、一般には、粉末
[2750ω2/2(ブレーン値)以上のものであるが
、活性を上げるため通常のセメントよシ粉末度を犬きく
し5500 cm”/ f (ブレーン値)としたもの
が多く使用されている。さらに、8000〜10000
cm”/ を程度のものも使用されている。こnらはそ
れ自身では水硬性を有していないが、アルカリ刺激剤の
組み合せによって強固に硬化する。
The blast furnace slag powder used in the present invention is made by making slag by-produced from a blast furnace in a steelworks into a glassy substance by rapid cooling such as water cooling or air cooling, and then pulverizing it. However, in order to increase the activity, cement powder with a fineness of 5,500 cm"/f (Blane value) is often used.
cm''/cm are also used. These do not have hydraulic properties by themselves, but they harden strongly when combined with an alkaline stimulant.

このような性質を潜在水硬性と云う。なお、予め少量の
石膏を加えて粉砕するような方法で製造されているもの
もある。
This property is called latent hydraulic property. Note that some products are manufactured by adding a small amount of gypsum in advance and pulverizing it.

本発明におけるアルカリ刺激剤とは従来よシ知られてい
るものであり、各種セメント、水酸化カルシウム、酸化
カルシウム、カルシウムサルフォアルミネート鉱物、各
種無機および有機アルカリ塩、石膏(各種形態の)の少
なくとも一種、あるいは二種以上の組み合せよシなるも
のである。添加量は、刺激剤のれ類、要求される性能に
よって大きく異なるが、高炉スラグ100重量部の内削
で50重量部以下、よυ好しくけ30重量部未満である
The alkaline irritants used in the present invention are conventionally known and include various cements, calcium hydroxide, calcium oxide, calcium sulfoaluminate minerals, various inorganic and organic alkali salts, and gypsum (in various forms). At least one type or a combination of two or more types is required. The amount added varies greatly depending on the type of stimulant and the required performance, but it is preferably 50 parts by weight or less, preferably less than 30 parts by weight, based on internal cutting of 100 parts by weight of blast furnace slag.

本発明で使用する超微粉とは、通常一般に使用されてい
る高炉スラグ粉末(平均10〜30μm程度〕よシも少
なくとも1オーダー細かい平均粒径を有するものを意味
し、平均粒径が少なくとも2オーダー細かいものが混練
物の流動性の面から好しい。また、超微粉の一部あるい
は全量としてアルカリ刺激剤を微粉砕したものを使用す
ることも可能である。
The ultrafine powder used in the present invention means one having an average particle size at least one order smaller than the commonly used blast furnace slag powder (about 10 to 30 μm on average), and the average particle size is at least two orders of magnitude smaller. A fine powder is preferable from the viewpoint of fluidity of the kneaded product.Furthermore, it is also possible to use a finely ground alkali stimulant as part or all of the ultrafine powder.

超微粉末としては、具体的にはシリコン、宮シリコン合
金およびジルコニアを製造する際の副生物であるシリカ
ダストやシリカ質ダストが特に好適であり、また炭酸カ
ルシウム、シリカゲル、酸化チタン、酸化アルミニウム
などの微粉末も使用できる。また、オパール質珪石、フ
ライアッシュ、スラグやセメントなどのアルカリ刺激剤
を分級品を用いて微粉砕したものを用いることもできる
。これらは単独で使用しても良<、2a1以上を併用し
ても良い。
As the ultrafine powder, specifically, silica dust and siliceous dust, which are by-products during the production of silicon, silicon alloy, and zirconia, are particularly suitable, and calcium carbonate, silica gel, titanium oxide, aluminum oxide, etc. Fine powder can also be used. Further, it is also possible to use an alkali stimulant such as opalescent silica stone, fly ash, slag or cement that has been pulverized using a classified product. These may be used alone or in combination with 2a1 or more.

超微粉の使用量に、少なくとも1オーダー太き4粒子、
即ち、高炉スラグ微粉末の60〜95重量部に対し40
〜5重景部型皿しい。
In addition to the amount of ultrafine powder used, at least 4 particles that are one order of magnitude thick,
That is, 40 to 95 parts by weight of pulverized blast furnace slag powder
~ 5 Jukeibu-type dishes.

5重量部未満では高強度の発現効果が小さく、また、流
動性の改善が十分でなく、40重量部を越えると混線物
の流動性が著しく低下する。
If it is less than 5 parts by weight, the effect of developing high strength will be small and the improvement in fluidity will not be sufficient, and if it exceeds 40 parts by weight, the fluidity of the mixed wire material will be significantly reduced.

本発明における高性能減水剤とはセメントに多量添加し
ても凝結の著しい遅延や過度の空気連行を伴わない分散
能力の大きな界面活性剤であって、例えばナフタリンス
ルホン酸塩のホルムアルデヒド縮合物、メラミンスルホ
ン酸塩のホルムアルデヒド縮合物、高分子量りゲニンス
ルホン酸塩等を主成分とするものがあげられる。
The high-performance water reducing agent in the present invention is a surfactant with a large dispersion ability that does not cause significant delay in setting or excessive air entrainment even when added to cement in large quantities, such as formaldehyde condensate of naphthalene sulfonate, melamine, etc. Examples include formaldehyde condensates of sulfonates, high molecular weight trigenine sulfonates, etc. as main components.

高性能減水剤の使用量は従来、固体に対し固形分として
CL3〜1重量係が重量されているが、本発明において
は、それよシも多量に添加することが好しく、1〜5重
量部が更に好ましい。
Conventionally, the amount of high-performance water reducing agent used is 3 to 1 weight percent of CL as a solid content, but in the present invention, it is preferable to add a larger amount than that, and it is 1 to 5 weight percent. Part is more preferable.

なお、高炉スラグ粉末に対する高性能減水剤の効果は低
いが、これは、高炉スラグ粉末の水中でのρ−電位がH
であるためである。高性能減水剤の効果はCa”+ イ
オンの添加によって改善され、例えば水酸化カルシウム
を添加する場合、12〜2重量係重量の添加より好まし
くはα5重重量の添加によシ流動性は改善される。
The effect of high-performance water reducing agents on blast furnace slag powder is low, but this is because the ρ-potential of blast furnace slag powder in water is H.
This is because. The effectiveness of the superplasticizer is improved by the addition of Ca''+ ions; for example, when calcium hydroxide is added, the fluidity is improved by the addition of α5 weight, which is more preferable than the addition of 12-2 weight factor. Ru.

このような高性能減水剤の使用量において、超微粉を組
み合せることによシ水固体比が25僑以下でも通常の方
法により成形可能な流動性のある混線物を得ることがで
きる。
In such an amount of the high-performance water reducing agent used, by combining ultrafine powder, it is possible to obtain a fluid mixed material that can be molded by a conventional method even if the water-to-solid ratio is 25 or less.

本発明において使用する水は成形上必要なものであり、
高強度硬化体を得るためにはできる限り少量用いるのが
良く、固体(高炉スラグ、アルカリ刺激剤、超微粉の合
計〕100重景部型皿し水12.5〜30重量部がオ好
しく、15〜28重量部が更に好しい。水の量が30重
量部よシ多いと高強度硬化体を得ることが困難であり、
12.5重量部より少ないと通常の流し込み等の成形が
困難となる。なお、圧密成形等においてはこれに制限さ
れるものでなく、12.5重量部よυ少ない場合におい
ても成形が可能となる。また、押し出し成形等の通常セ
メントコンクリートに用いられている成形方法を用いる
ことも可能である。
The water used in the present invention is necessary for molding,
In order to obtain a high-strength hardened product, it is best to use as little as possible, and 12.5 to 30 parts by weight of solids (total of blast furnace slag, alkali stimulant, and ultrafine powder) of 100 parts by weight of dish water is preferred. , more preferably 15 to 28 parts by weight.If the amount of water is more than 30 parts by weight, it is difficult to obtain a high-strength cured product;
When the amount is less than 12.5 parts by weight, it becomes difficult to perform molding such as ordinary casting. Note that compression molding and the like are not limited to this, and molding is possible even when the amount is less than 12.5 parts by weight. Furthermore, it is also possible to use a molding method normally used for cement concrete, such as extrusion molding.

以上の配合の他に各種骨材を組み合せて使用するのが一
般的である。骨材としては一般に土木建築の分野におい
て用いられているもので良く、川砂、山砂、海砂、砕砂
、スラグ砂などや、砕石、川砂利、スラグ砕石、軽蓋骨
材などが用いられる。また、特に高強度を必要とする場
合には、モース硬度6以上あるいはヌープ圧子硬度70
0 kg7wa”以上のものを使用するのが良く、それ
らを例示すれば珪石、エメリー、黄鉄鉱、磁鉄鉱、黄玉
、ローソン石、コランダム、ツェナサイト、スピネル、
緑柱石、全縁石、電気石、花岡岩、緑柱石、十字石、ジ
ルコン、焼成ボーキサイト、炭化硼素、炭化タングステ
ン、フェロシリコンナイトライド、窒化硅素、溶融シリ
カ、電融マグネシア、炭化硅素、立方晶窒化硼素、陶磁
器粉砕品、鉄粉、鉄球、鉄くずなどである。
In addition to the above formulations, it is common to use a combination of various aggregates. As the aggregate, materials generally used in the field of civil engineering and construction may be used, such as river sand, mountain sand, sea sand, crushed sand, slag sand, crushed stone, river gravel, crushed slag stone, light aggregate, etc. In addition, if particularly high strength is required, the Mohs hardness is 6 or higher, or the Knoop indenter hardness is 70.
It is better to use 0 kg7wa" or more, examples of which include silica, emery, pyrite, magnetite, yellow jade, lawsonite, corundum, zenasite, spinel,
Beryl, full curb stone, tourmaline, Hanaoka rock, beryl, cross stone, zircon, calcined bauxite, boron carbide, tungsten carbide, ferrosilicon nitride, silicon nitride, fused silica, fused magnesia, silicon carbide, cubic nitride These include boron, crushed ceramics, iron powder, iron balls, and scrap iron.

その他に、繊維や網などの補強材を組み合せることも可
能である。繊維としては、スチール繊維、ステンレス繊
維、石綿やアルミナ繊維などの各種天然および合成鉱物
繊維、炭素繊維、ガラス繊維及びポリプロピレン、ビニ
ロン、アクリロニトリル、セルロース、ケブラーなトノ
天然又は合成の有機繊維等があげられる。又、補強材と
しては、従来より用いられている鋼棒や1’RPロツド
棒など?用いることも可能である。
In addition, it is also possible to combine reinforcing materials such as fibers and nets. Examples of fibers include steel fibers, stainless steel fibers, various natural and synthetic mineral fibers such as asbestos and alumina fibers, carbon fibers, glass fibers, and natural or synthetic organic fibers such as polypropylene, vinylon, acrylonitrile, cellulose, and Kevlar. . Also, as reinforcement materials, are there conventionally used steel rods or 1'RP rods? It is also possible to use

又、他の機能を有するもの、例えば固体潤滑剤や熱・電
気伝導性を付与するものなどを混合することも可能であ
る。
It is also possible to mix substances with other functions, such as solid lubricants and substances imparting thermal and electrical conductivity.

上記材料の混合および混線方法は均一に混合および混練
できる方法であればどのような方法でも良く、また、添
加順序も制限されるものではない。
Any method may be used for mixing and kneading the above-mentioned materials as long as they can be mixed and kneaded uniformly, and the order of addition is not limited.

成形物の養生には各種の養生方法を適用可能であり、常
温養生、常圧蒸気、高温高圧、高温養生のいずれの方法
でも良く、必要ならば、これらを組み合せて実施するこ
とも可能である。
Various curing methods can be applied to cure the molded product, and any of the following methods may be used: room temperature curing, normal pressure steam, high temperature and high pressure, and high temperature curing, and if necessary, it is also possible to carry out a combination of these methods. .

〔実施例〕〔Example〕

以下実施例をあげて本発明を更に拝細に説明する。 The present invention will be explained in more detail below with reference to Examples.

実施例1 表−1に示す配合にて、真空オムニミキサー(千代田技
研製)で混練、脱泡後、4X4X16百の供試体を作製
し、養生後圧輻強度を測定した。結果を表−2に示す。
Example 1 After kneading and defoaming using a vacuum omnimixer (manufactured by Chiyoda Giken) using the formulation shown in Table 1, 4×4×1600 specimens were prepared, and the compressive strength after curing was measured. The results are shown in Table-2.

なお、養生は20℃80SRHIEl後、20℃水中養
生7日、28日、50℃湿空養生7日、180℃で3時
間のオートクレーブ養生を行った。
For curing, after 80 SRHIEL at 20°C, curing in water at 20°C for 7 days and 28 days, curing in humid air at 50°C for 7 days, and curing in an autoclave at 180°C for 3 hours.

く使用材料〉 アルカリ刺激剤:白色ポルトランドセメント(秩父製) 2水石膏(試薬特級) [Σ1000 J  (j&化)無水 石膏系混和材 超微粉ニジリカヒユーム(日本重化製)高性能減水剤:
β−ナフタレンスルホンi1[ホルマリン縮合物系[セ
ルフ ロー110PJ (比−工業課 薬] 珪 砂=3.4.5号(等量混合) 水  :水道水 高炉スラグ粉末ニブレーン値4200 ctw”/ t
の高炉水砕スラグ粉砕品 表 −2 圧縮強度(ゆf 7cm勺 実施例2 実施例1におけるN002.4の配合を用いて、硬化収
縮および乾燥収縮ひずみを測定し、両者の合計より寸法
安定性の評価を行なった。硬化収縮は米国工兵隊法に準
じて実施し、乾燥収縮は水中養生7日後20℃50%R
Hにおいてコンタクトゲージ法によシ測定した。また、
比較例として高炉スラグ、セメント及び石膏の代りにセ
メントのみを用いた配合例(Nn1りについても、同様
の評価を行なった。配合組成及び評価結果を表−3及び
表−4に示す。
Materials used> Alkaline stimulant: White Portland cement (manufactured by Chichibu) Dihydrate gypsum (special grade reagent) [Σ1000 J (J&C) anhydrite-based admixture ultra-fine powder Nijirica hium (manufactured by Nippon Heavy Industries, Ltd.) High-performance water reducing agent:
β-Naphthalene sulfone i1 [Formalin condensate system [Cellflow 110PJ (specific industrial charge) Silica sand = No. 3.4.5 (mixed in equal amounts) Water: Tap water Blast furnace slag powder Nibrene value 4200 ctw”/t
Table of pulverized blast furnace slag -2 Compressive strength (Yuf 7cm) Example 2 Using the formulation of N002.4 in Example 1, curing shrinkage and drying shrinkage strain were measured, and the dimensional stability was calculated from the sum of both. The curing shrinkage was conducted in accordance with the U.S. Corps of Engineers method, and the drying shrinkage was measured at 20°C, 50% R after 7 days of curing in water.
Measurements were made using the contact gauge method. Also,
As a comparative example, the same evaluation was conducted for a formulation example (Nn1) using only cement instead of blast furnace slag, cement, and gypsum. The formulation composition and evaluation results are shown in Tables 3 and 4.

表−3 表−4 〔発明の効果〕 以上のごとく、本発明によれば、乾燥収縮の少ない高強
度セメント組成物を得ることが可能である。また、高炉
スラグを主成分とすることより耐薬品性にすぐれ、かつ
、高強度のものが得られるのでより堅ろう性にも優れた
コンクリート用セメント組成物の提供が可能となった。
Table 3 Table 4 [Effects of the Invention] As described above, according to the present invention, it is possible to obtain a high strength cement composition with little drying shrinkage. In addition, by using blast furnace slag as the main component, it is possible to provide a cement composition for concrete that has excellent chemical resistance and high strength, and therefore has even better fastness.

このようなセメント組成物は土木建築分野での利用はも
ちろんのこと、モールド、砥石、機械部材などの工業機
材への利用が可能となる。
Such a cement composition can be used not only in the field of civil engineering and construction, but also in industrial equipment such as molds, grindstones, and mechanical parts.

Claims (1)

【特許請求の範囲】[Claims] 1、高炉スラグ微粉末、超微粉、アルカリ刺激剤、高性
能減水剤および水を主成分とする高強度セメント組成物
1. A high-strength cement composition containing pulverized blast furnace slag powder, ultrafine powder, an alkali stimulant, a high-performance water reducer, and water as main components.
JP60171825A 1985-08-06 1985-08-06 High strength cement composition Granted JPS6236059A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60171825A JPS6236059A (en) 1985-08-06 1985-08-06 High strength cement composition
KR1019860002422A KR900002819B1 (en) 1985-08-06 1986-03-31 Hydraulic material composition having high strengh
CN86102167A CN1019099B (en) 1985-08-06 1986-03-31 High-strength water hard composite
US07/241,772 US4933013A (en) 1985-08-06 1988-09-07 Hydraulic material composition having high strength
KR1019900001841A KR900002820B1 (en) 1985-08-06 1990-03-31 Hydraulic material composition having highstrength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60171825A JPS6236059A (en) 1985-08-06 1985-08-06 High strength cement composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP14815791A Division JPH05238787A (en) 1991-05-24 1991-05-24 High-strength cement composition

Publications (2)

Publication Number Publication Date
JPS6236059A true JPS6236059A (en) 1987-02-17
JPH0231026B2 JPH0231026B2 (en) 1990-07-11

Family

ID=15930440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60171825A Granted JPS6236059A (en) 1985-08-06 1985-08-06 High strength cement composition

Country Status (1)

Country Link
JP (1) JPS6236059A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259562A (en) * 1985-09-06 1987-03-16 電気化学工業株式会社 Hydraulic composition
JPS6374943A (en) * 1986-09-19 1988-04-05 日本鋼管株式会社 Cement composition
US5342445A (en) * 1989-12-08 1994-08-30 Nippon Kayaku Kabushiki Kaisha Hydraulic compositions and high-strength composite materials
JP2001322842A (en) * 2000-05-09 2001-11-20 Kawasaki Steel Corp Underwater hardening body using steelmaking slag as raw material
JP2002020156A (en) * 2000-07-03 2002-01-23 Kawasaki Steel Corp Roadbed material using steelmaking slag as raw material
KR100464819B1 (en) * 2002-02-16 2005-01-06 기초소재 주식회사 An ultra-rapid setting inorganic binder compound based of alkali-activated alumino-silicate
JP2011527277A (en) * 2008-05-30 2011-10-27 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Mixtures containing slag sand, especially building material mixtures
JP2015180604A (en) * 2015-07-15 2015-10-15 株式会社大林組 Production method of admixture and production method of cement composition
JP6185682B1 (en) * 2017-02-08 2017-08-23 株式会社デイ・シイ Blast furnace slag fine powder and cement composition
JP6185681B1 (en) * 2017-02-08 2017-08-23 株式会社デイ・シイ Blast furnace slag fine powder and cement composition
JP2017193473A (en) * 2016-04-22 2017-10-26 宇部興産株式会社 Cement composition and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838376A (en) * 1981-08-28 1983-03-05 Mitsubishi Electric Corp Ignition device
JPS5930751A (en) * 1982-08-14 1984-02-18 電気化学工業株式会社 High acid-resistance heat-resistance binder
JPS59207858A (en) * 1983-05-13 1984-11-26 電気化学工業株式会社 High chemical resistance heat resistance binder
JPS59217658A (en) * 1983-05-06 1984-12-07 電気化学工業株式会社 Manufacture of super high strength hardened body
JPS61178462A (en) * 1985-02-05 1986-08-11 電気化学工業株式会社 High strength cement composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838376A (en) * 1981-08-28 1983-03-05 Mitsubishi Electric Corp Ignition device
JPS5930751A (en) * 1982-08-14 1984-02-18 電気化学工業株式会社 High acid-resistance heat-resistance binder
JPS59217658A (en) * 1983-05-06 1984-12-07 電気化学工業株式会社 Manufacture of super high strength hardened body
JPS59207858A (en) * 1983-05-13 1984-11-26 電気化学工業株式会社 High chemical resistance heat resistance binder
JPS61178462A (en) * 1985-02-05 1986-08-11 電気化学工業株式会社 High strength cement composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259562A (en) * 1985-09-06 1987-03-16 電気化学工業株式会社 Hydraulic composition
JPS6374943A (en) * 1986-09-19 1988-04-05 日本鋼管株式会社 Cement composition
US5342445A (en) * 1989-12-08 1994-08-30 Nippon Kayaku Kabushiki Kaisha Hydraulic compositions and high-strength composite materials
JP4560887B2 (en) * 2000-05-09 2010-10-13 Jfeスチール株式会社 Underwater hardened body made from steelmaking slag
JP2001322842A (en) * 2000-05-09 2001-11-20 Kawasaki Steel Corp Underwater hardening body using steelmaking slag as raw material
JP2002020156A (en) * 2000-07-03 2002-01-23 Kawasaki Steel Corp Roadbed material using steelmaking slag as raw material
KR100464819B1 (en) * 2002-02-16 2005-01-06 기초소재 주식회사 An ultra-rapid setting inorganic binder compound based of alkali-activated alumino-silicate
JP2011527277A (en) * 2008-05-30 2011-10-27 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Mixtures containing slag sand, especially building material mixtures
JP2015180604A (en) * 2015-07-15 2015-10-15 株式会社大林組 Production method of admixture and production method of cement composition
JP2017193473A (en) * 2016-04-22 2017-10-26 宇部興産株式会社 Cement composition and method for producing the same
JP6185682B1 (en) * 2017-02-08 2017-08-23 株式会社デイ・シイ Blast furnace slag fine powder and cement composition
JP6185681B1 (en) * 2017-02-08 2017-08-23 株式会社デイ・シイ Blast furnace slag fine powder and cement composition
JP2018127375A (en) * 2017-02-08 2018-08-16 株式会社デイ・シイ Blast furnace slag fine powder and cement composition
JP2018127374A (en) * 2017-02-08 2018-08-16 株式会社デイ・シイ Blast furnace slag fine powder and cement composition

Also Published As

Publication number Publication date
JPH0231026B2 (en) 1990-07-11

Similar Documents

Publication Publication Date Title
US4933013A (en) Hydraulic material composition having high strength
JPS6236059A (en) High strength cement composition
Hammat et al. Properties of self-compacting mortar containing slag with different finenesses
KR101612113B1 (en) Binder compositions for concrete and concrete compositions using the same
JP2653402B2 (en) Ultra high strength cement composition
JPS59217658A (en) Manufacture of super high strength hardened body
JPH07267697A (en) Hydraulic composition
KR101338502B1 (en) Shrinkage-reducing and Ultra High Early Strength Cement Binder Composition and Method for producing Secondary Goods of Precast Concrete using the same
JPH05238787A (en) High-strength cement composition
JPS61178462A (en) High strength cement composition
JP2001220201A (en) Fiber reinforced concrete
JPS62207744A (en) High strength mortar concrete
JPS62207754A (en) Low shrinkage high strength hydraulic composition
CN106517930B (en) A kind of production technology of PFA High Performance Concrete of High Replacement Levels
JPS6265962A (en) High strength cement composition
JPS6230652A (en) Machine member and tool
TW201904911A (en) Non-calcined cementitious compositions, non-calcined concrete compositions, non-calcined concrete and preparation methods thereof
JPH0544422B2 (en)
Singh et al. Portland slag cement using ground granulated blast furnace slag (GGBFS)-A review
JPS6259562A (en) Hydraulic composition
JPH0624812A (en) Cement composition for high strength mortar concrete
Kandoori et al. Performance of SCC with partial replacement of fine aggregate with waste glass powder
JPS60221355A (en) High strength non-shrink grout material
JP2001213654A (en) Quick-setting mortar or concrete with ultra high strength
JPS62270475A (en) Manufacture of high strength cement formed body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees