JP2653402B2 - Ultra high strength cement composition - Google Patents

Ultra high strength cement composition

Info

Publication number
JP2653402B2
JP2653402B2 JP12375087A JP12375087A JP2653402B2 JP 2653402 B2 JP2653402 B2 JP 2653402B2 JP 12375087 A JP12375087 A JP 12375087A JP 12375087 A JP12375087 A JP 12375087A JP 2653402 B2 JP2653402 B2 JP 2653402B2
Authority
JP
Japan
Prior art keywords
weight
strength
ultra
parts
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12375087A
Other languages
Japanese (ja)
Other versions
JPS63288935A (en
Inventor
勉 木田
悦郎 坂井
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP12375087A priority Critical patent/JP2653402B2/en
Publication of JPS63288935A publication Critical patent/JPS63288935A/en
Application granted granted Critical
Publication of JP2653402B2 publication Critical patent/JP2653402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超高強度セメント組成物に関する。さらに詳
しくは水硬性物質、超微粉、高性能減水剤、フエロクロ
ムスラグ粉砕品及び水を主成分とすることを特徴とする
超高強度セメント組成物に関する。
The present invention relates to an ultra-high strength cement composition. More specifically, the present invention relates to an ultra-high-strength cement composition comprising a hydraulic substance, an ultrafine powder, a high-performance water reducing agent, a pulverized ferrochrome slag, and water as main components.
〔従来の技術とその問題点〕[Conventional technology and its problems]
セメント、超微粉、高性能減水剤及び水よりなる高強
度セメント組成物は公知である(特公表昭55−500863号
公報)。一般に高強度部材は上記組成物などに骨材を組
み合せた複合材料であることから、その圧縮強度は骨材
の強度にも大きく左右される。従つて、高強度で、か
つ、長期間にわたり強度発現性のある、入手容易で経済
的な骨材を組合せた摩耗性の少なく曲げ強度が高い、超
高強度セメント組成物の開発が切望されている。
A high-strength cement composition comprising cement, ultrafine powder, a high-performance water reducing agent, and water is known (Japanese Patent Publication No. 55-508863). Generally, a high-strength member is a composite material obtained by combining the above composition or the like with an aggregate. Therefore, the compressive strength of the high-strength member largely depends on the strength of the aggregate. Therefore, development of ultra-high-strength cement compositions that combine high-strength, high-strength properties over a long period of time, low abrasion and high flexural strength by combining easily available and economical aggregates has been desired. I have.
〔問題点を解決するための手段〕[Means for solving the problem]
本発明は、水硬性物質、超微粉、高性能減水剤、フェ
ロクロムスラグ粉砕品及び水を主成分とし、水硬性物質
と超微粉の合計100重量部に対して、高性能減水剤が10
重量部以下、水が12.5〜30重量部であることを特徴とす
る超高強度セメント組成物である。
The present invention comprises a hydraulic substance, an ultrafine powder, a high-performance water reducing agent, a ferrochrome slag pulverized product and water as main components, and a total of 100 parts by weight of the hydraulic substance and the ultrafine powder;
It is an ultra-high-strength cement composition characterized in that water is 12.5 to 30 parts by weight or less by weight.
以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明で云う水硬性物質としては、普通・早強・超早
強・白色・耐硫酸塩等各種ポルトランドセメント、さら
には高炉スラグ、フライアッシュ及びシリカ等を混合し
た混合セメントあるいはアルミナセメントが挙げられ
る。また、急冷高炉スラグ粉末に、水酸化カルシウム、
セツコウあるいは、アルカリ金属塩などのアルカリ刺激
剤を組み合せたものも用いられる。さらには膨張セメン
トを使用することもでき、乾燥収縮低減剤を用いて収縮
補償したり、急硬セメントを用いて短時間に所要強度を
発現させたり、石膏系の高強度混和材を併用したりする
こともできる。
Examples of the hydraulic substance referred to in the present invention include various portland cements such as ordinary / early high strength / ultra early strength / white / sulfuric acid-resistant salts, and further, blast furnace slag, fly ash, and mixed cement or alumina cement mixed with silica and the like. . In addition, calcium hydroxide,
A combination of an alkali stimulant such as a gypsum or an alkali metal salt is also used. In addition, expanded cement can also be used, and shrinkage compensation can be performed using a drying shrinkage reducing agent, required strength can be developed in a short time using a rapidly hardened cement, or a gypsum-based high-strength admixture can be used in combination. You can also.
膨張セメントの膨張成分としては、エトリンガイト系
のもの、例えば、電気化学工業(株)製商品名「CSA2
0」、又は焼成CaOが好ましく、焼成CaO中でも1,100〜1,
300℃で焼成され、平均結晶径が10μ以下のものが好ま
しい。
As the expansion component of the expansion cement, an ettringite-based one such as “CSA # 2” manufactured by Denki Kagaku Kogyo KK
0 '' or calcined CaO is preferable, and even calcined CaO is 1,100 to 1,
It is preferable that the powder is fired at 300 ° C. and has an average crystal diameter of 10 μm or less.
急硬セメントの急硬成分としては、カルシウムアルミ
ネート系のものがよく、例えば、4CaO−Al2O3−Fe2O3
12CaO・7Al2O3、及び12CaO−7Al2O3とセツコウの組み合
せたものが挙げられ、具体的には電気化学工業(株)製
商品名「デンカES」や小野田セメント(株)製商品名
「ジエツトセメント」などが用いられる。
The sudden hard component of rapid cement, they are preferably calcium aluminate based, example, 4CaO-Al 2 O 3 -Fe 2 O 3,
12CaO · 7Al 2 O 3, and 12CaO-7Al 2 O 3 and Setsukou of the combined thing, and the like, specifically, Denki Kagaku Kogyo Co., Ltd. trade name "Denka ES" and Onoda Cement Co., Ltd. Product Name "Jet cement" is used.
また、高強度混和材はセツコウ系のものであり、例え
ば、電気化学工業(株)製商品名「デンカΣ−1000」、
日本セメント(株)製商品名「アサノスーパーミツク
ス」等が有効である。
The high-strength admixture is a wood-based material, for example, "Denka II-1000" manufactured by Denki Kagaku Kogyo Co., Ltd.
Nippon Cement Co., Ltd. brand name "Asano Super Mixes" is effective.
本発明で使用する超微粉は、平均粒径20〜30μ程度で
ある水硬性物質より少なくとも1オーダー細かい平均粒
径を有するものであり、平均粒径が2オーダー低いもの
が混練物の流動特性の面から好ましい。具体的にはシリ
コン、含シリコン合金及びジルコニアを製造する際に副
生するシリカダスト(シリカヒユーム)やシリカ質ダス
トが特に好適であり、炭酸カルシウム、シリカゲル、オ
パール質硅石、フライアツシユ、スラグ、酸化チタン、
酸化アルミニウム及び上述の水硬性物質の超微粉なども
使用できる。
The ultrafine powder used in the present invention has an average particle size that is at least one order of magnitude smaller than a hydraulic material having an average particle size of about 20 to 30 μm, and the average particle size is two orders of magnitude lower than the flow characteristics of the kneaded material. It is preferable from the viewpoint. Specifically, silica dust (silica hyume) or siliceous dust by-produced in producing silicon, silicon-containing alloys and zirconia is particularly suitable, and calcium carbonate, silica gel, opal silica, fly ash, slag, titanium oxide,
Aluminum oxide and ultrafine powder of the above-mentioned hydraulic substance can also be used.
超微粉の製造は、分級器と粉砕機を組み合せて粉砕す
る方法もある。又粉砕工程でバグフイルターにより回収
したものはより粒径の細かいものを得ることができる。
For the production of ultrafine powder, there is also a method of crushing by combining a classifier and a crusher. In addition, those collected by a bag filter in the pulverizing step can obtain finer particles.
超微粉の使用量は、好ましくは、水硬性物質60〜95重
量部に対して5〜40重量部、さらに好ましくは、水硬性
物質65〜90重量部に対して10〜35重量部である。5重量
部未満では高強度を得ることが困難であり、又、40重量
部を超えると混練物の流動性が著しく低下し、成形する
ことが困難となり、かつ、強度発現も不充分となる。
The use amount of the ultrafine powder is preferably 5 to 40 parts by weight with respect to 60 to 95 parts by weight of the hydraulic substance, and more preferably 10 to 35 parts by weight with respect to 65 to 90 parts by weight of the hydraulic substance. If the amount is less than 5 parts by weight, it is difficult to obtain high strength. If the amount exceeds 40 parts by weight, the fluidity of the kneaded material is remarkably reduced, molding becomes difficult, and the strength development is insufficient.
本発明で使用する高性能減水剤(以下減水剤という)
とは、水硬性物質に多量添加しても凝結の過遅延や過度
の空気連行を伴なわない分散能力の大きな界面活性剤で
あつて、ナフタリンスルホン酸ホルムアルデヒド縮合物
の塩、メラミンスルホン酸ホルムアルデヒド縮合物の
塩、高分子量リグニンスルホン酸塩及びポリカルボン酸
塩などを主成分とするものがあげられる。
High performance water reducing agent used in the present invention (hereinafter referred to as water reducing agent)
Is a surfactant with a large dispersing ability that does not cause excessive delay in setting or excessive air entrainment even when added in large amounts to hydraulic substances. And those containing a high-molecular weight lignin sulfonate, a polycarboxylate and the like as main components.
減水剤は、混練物を低水−水硬性物質比で得るために
必要なものであり、従来の使用量はセメントに対し固形
分として0.3〜1重量%が使用されているが、本発明に
おいてはそれよりも多量に使用することが好ましい。具
体的には水硬性物質と超微粉との混合物(以下粉体とい
う)100重量部に対し固形分として10重量部程度まで使
用され、それよりも多量に使用すると、硬化反応にかえ
つて悪影響を与える。特に好ましい使用量は1〜5重量
部である。このような減水剤の使用量において水硬性物
質と超微粉と組み合せることにより、水粉体比が25%以
下でも、通常の方法により成形可能な流動性のある混練
物を得ることができる。
The water reducing agent is necessary in order to obtain a kneaded material at a low water-hydraulic substance ratio, and the conventional amount used is 0.3 to 1% by weight as a solid content with respect to cement. Is preferably used in a larger amount. Specifically, it is used up to about 10 parts by weight as a solid content with respect to 100 parts by weight of a mixture of a hydraulic substance and an ultrafine powder (hereinafter referred to as powder), and when used in a larger amount, adversely affects the curing reaction. give. A particularly preferred amount is 1 to 5 parts by weight. By combining the hydraulic substance and the ultrafine powder in such an amount of the water reducing agent, a fluid kneaded material which can be molded by a usual method can be obtained even when the water powder ratio is 25% or less.
本発明で混合物を調整する際に使用する水は成形上必
要なものであるが、超高強度硬化体を得るためにはでき
るだけ少量にするのが良く、粉体100重量部に対し、12.
5〜30重量部であり、15〜28重量部が好ましい。
Water used when preparing the mixture in the present invention is necessary for molding, but it is better to use as little as possible in order to obtain an ultra-high-strength cured product.For 100 parts by weight of powder, 12.
It is 5 to 30 parts by weight, preferably 15 to 28 parts by weight.
水量が30重量部より多いと高強度硬化体を得ることが
困難であり、12.5重量部より少ないと通常の流し込み等
の成形が困難となる。尚、圧密成形等においてはこれに
制限されるものではなく、12.5重量部より少ない場合に
おいても成形が可能となる。
If the amount of water is more than 30 parts by weight, it is difficult to obtain a high-strength cured product, and if the amount is less than 12.5 parts by weight, it becomes difficult to form such as ordinary casting. It should be noted that the present invention is not limited to the compaction molding and the like, and molding can be performed even when the amount is less than 12.5 parts by weight.
本発明の超高硬度セメント組成物を使用した成形方法
は、特に限定されるものではなく、例えば、流し込みや
押し出し等の通常、セメントコンクリートに用いられて
いる成形方法などが可能である。
The molding method using the ultra-high hardness cement composition of the present invention is not particularly limited, and for example, a molding method usually used for cement concrete such as pouring or extrusion can be used.
本発明におけるフエロクロムスラグ粉砕品は所定の粒
度に調整したものである。粒度は一般のモル用骨材とし
て使用されているものと同程度で良く、5mm程度以下が
好ましい。フエロクロムスラグの化学成分はMgO25〜36
重量%、SiO225〜35重量%、Al2O323〜30重量%、Cr2O3
3.0〜3.23重量%、CaO0.2〜1.8重量%、FeO0.8重量%、
MnO0.2重量%、Na2O0.2重量%、K2O0.1重量%等を含有
している。含有鉱物はスピネル(MgO・Al2O3)が主体で
フオルステライト(2MgO・SiO2)、エンスタタイト(Fe
O・SiO2)、マグネツオフエライト(MgO・Fe2O3)、ヘ
ルツナイト(FeO・Al2O3)等を含有し、モース硬度7〜
8と硬質で安定な物質である。
The pulverized ferrochrome slag in the present invention is adjusted to a predetermined particle size. The particle size may be the same as that used as a general aggregate for mol, and is preferably about 5 mm or less. The chemical composition of the ferrochrome slag is MgO 25-36
Wt%, SiO 2 25 to 35 wt%, Al 2 O 3 23~30 wt%, Cr 2 O 3
3.0 ~ 3.23wt%, CaO0.2 ~ 1.8wt%, FeO0.8wt%,
It contains 0.2% by weight of MnO, 0.2% by weight of Na 2 O, 0.1% by weight of K 2 O and the like. The minerals contained are mainly spinel (MgO.Al 2 O 3 ), forsterite (2MgO.SiO 2 ), enstatite (Fe
O.SiO 2 ), magnetofelite (MgO.Fe 2 O 3 ), hertzite (FeO.Al 2 O 3 ), Mohs hardness of 7 ~
8 is a hard and stable substance.
フエロクロムスラグ粉砕品は水硬性物質と超微粉の混
合物100重量部に対し、500重量部まで使用することが好
ましい。500重量部を越えると一定の流動性を得るため
の水量が増加し、超高硬度を得ることが難しい。
The pulverized ferrochrome slag is preferably used up to 500 parts by weight based on 100 parts by weight of the mixture of the hydraulic substance and the ultrafine powder. If it exceeds 500 parts by weight, the amount of water for obtaining a certain fluidity increases, and it is difficult to obtain ultra-high hardness.
以上の材料の他に、各種繊維や網の配合も可能であ
る。繊維としては、鋳鉄繊維、スチール繊維、ステンレ
ス繊維、高張力鋼繊維、石綿及びアルミナ繊維等各種天
然又は合成鉱物繊維、炭素繊維、ガラス繊維、さらには
ポリプロピレン、ビニロン、アクリロニトリル及びセル
ロース等天然又は合成の有機繊維等があげられる。ま
た、補強として従来より用いられている鋼棒やFRPロッ
ド棒を用いることも可能であり、特に大型のものにおい
てはそれらはなくてはならないものである。
In addition to the above materials, various fibers and meshes can be blended. As the fiber, various natural or synthetic mineral fibers such as cast iron fiber, steel fiber, stainless steel fiber, high tensile steel fiber, asbestos and alumina fiber, carbon fiber, glass fiber, and further natural or synthetic such as polypropylene, vinylon, acrylonitrile and cellulose. Organic fibers and the like. It is also possible to use steel rods or FRP rod rods which have been conventionally used as reinforcement, and especially in the case of large-sized ones, they are indispensable.
その他、熱伝導性、電気伝導性なとの特殊な性能を付
与するものを配合させることも可能である。
In addition, it is also possible to add a compound which imparts special properties such as heat conductivity and electric conductivity.
上記各材料の混合及び混練方法は均一に混合及び混練
できれば、いずれの方法でも良く、添加順序も特に制限
されるものではない。
Any method can be used for mixing and kneading the above materials as long as they can be uniformly mixed and kneaded, and the order of addition is not particularly limited.
成形物の養生は各種の養生方法が可能であり常温養
生、常圧蒸気養生、高温高圧養生、高温養生のいずれの
方法も採用することができ、必要ならば、これらの組み
合せを行つて超高強度硬化体を得ることができる。
Various curing methods are possible for curing the molded product, and any of normal temperature curing, normal pressure steam curing, high temperature and high pressure curing, and high temperature curing can be adopted. A hardened product can be obtained.
以上説明した水硬性物質、超微粉、高性能減水剤、フ
エロクロムスラグ粉砕品、及び水を組合せることによ
り、高強度でかつ長期間にわたり強度発現性のある、入
手容易で経済的な骨材を組合せた摩耗性の少ない、曲げ
強度が高い超高強度物質を得ることが可能となつた。
By combining the above-described hydraulic substance, ultra-fine powder, high-performance water reducing agent, pulverized ferrochrome slag, and water, it is easy to obtain a high-strength, long-lasting, readily available and economical bone. It has become possible to obtain an ultrahigh-strength substance having a low abrasion and a high bending strength by combining materials.
本発明の超高強度セメント組成物は超高強度であり、
耐摩耗性及び曲げ強度などが要求されるカ所への利用が
可能である。利用の一例としては、工場、倉庫及びガソ
リンスタンド等の床、プレスなどの型、耐摩耗管あるい
はライニング、パネル等の建材さらには、金庫などが挙
げられる。
The ultra-high strength cement composition of the present invention has an ultra high strength,
It can be used in places where wear resistance and bending strength are required. Examples of uses include floors of factories, warehouses and gas stations, molds such as presses, wear-resistant pipes or linings, building materials such as panels, and safes.
〔実施例〕〔Example〕
以下実施例により本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.
実施例1 表−1の配合にて、モルタルミキサで混練後、4×4
×16cmの供試体を作成した。尚、養生は20℃80%RH1日
と、20℃水中養生と、50℃温水養生5日とした。結果は
表−1に示す。表−1から明らかなように、フエロクロ
ムスラグの粉砕品を骨材として使用することにより超高
強度が得られた。
Example 1 After kneading with a mortar mixer in the composition shown in Table 1, 4 × 4
A specimen of × 16 cm was prepared. The curing was performed at 20 ° C. and 80% RH for 1 day, 20 ° C. in water, and 50 ° C. in hot water for 5 days. The results are shown in Table 1. As is clear from Table 1, ultra-high strength was obtained by using a crushed product of ferrochrome slag as an aggregate.
<使用材料> セメントA:白色ポルトランドセメント(秩父セメント社
製) セメントB:「ハイアルミナセメント」(電気化学工業社
製) 超微粉:シリカヒユーム(日本重化製) 減水剤:β−ナフタレンスルホン酸塩ホルマリン縮合物
「セルフロ−110p」(第一工業製薬製) 骨材C:フエロクロムスラグ粉砕品、「NJサンド」(日本
磁力選鉱社製) 3、4、5、6号(35%、22.5%、22.5%、20%の混合
品) 骨材D:珪砂、3、4、5、6号珪砂(35%、22.5%、2
2.5%、20%の混合品) 水:水道水 Na2SO4:試薬一級。
<Materials> Cement A: White Portland cement (made by Chichibu Cement Co.) Cement B: "High alumina cement" (made by Denki Kagaku Kogyo Co., Ltd.) Ultra fine powder: Silica Hyum (made by Nippon Kayaku) Water reducing agent: β-naphthalene sulfonate Formalin condensate “Selflo-110p” (Daiichi Kogyo Pharmaceutical) Aggregate C: Pulverized ferrochrome slag, “NJ Sand” (Nippon Magnet Corp.) No. 3, 4, 5, 6 (35%, 22.5) %, 22.5%, 20%) Aggregate D: Silica sand No. 3, 4, 5, 6 (35%, 22.5%, 2
Water: tap water Na 2 SO 4 : First-class reagent.
実施例2 実験No.1及び7について、JIS K7218A法、摩擦、摩耗
試験に準じ、速度0.5m/s、荷重20kgf、相手材鋼(S45
C)、滑り距離3Kmの試験条件で摩耗試験を実施した。結
果を表−2に示す。
Example 2 For experiments Nos. 1 and 7, the speed was 0.5 m / s, the load was 20 kgf, and the mating steel (S45) was used according to the JIS K7218A method, friction and wear tests.
C), a wear test was performed under a test condition of a sliding distance of 3 km. Table 2 shows the results.
実施例3 実験No.7の配合を用いて、貯石場の土間を試験的に補
修施行(厚さ25mm)した。従来、鉱石落下による衝撃及
びブルトーザーのタイヤなどで、摩耗し、コンクリート
がけずりとられ、1年経過すると使用に耐えられないの
であつたが、本発明の超高強度セメント組成物を使用す
ると、1年を経過した現在も使用に耐えるものであつ
た。
Example 3 The composition of Experiment No. 7 was used to test and repair (25 mm thickness) the soil in the stone pit. Conventionally, it was worn by the impact of ore falling and tires of bulltozers, and the concrete was scraped off and could not be used after one year. However, when the ultra-high strength cement composition of the present invention was used, 1 Even after a year, it was still usable.
〔発明の効果〕〔The invention's effect〕
以上のごとく、本発明の超高強度セメント組成物を使
用することにより摩耗の少ない、曲げ強度が高い、超高
強度セメント組成物を経済的に得ることが可能となつ
た。
As described above, by using the ultra-high strength cement composition of the present invention, it has become possible to economically obtain an ultra-high strength cement composition with low wear and high bending strength.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 22:10 24:22 24:30 18:14) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C04B 22:10 24:22 24:30 18:14)

Claims (1)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】水硬性物質、超微粉、高性能減水剤、フェ
    ロクロムスラグ粉砕品及び水を主成分とし、水硬性物質
    と超微粉の合計100重量部に対して、高性能減水剤が10
    重量部以下、水が12.5〜30重量部であることを特徴とす
    る超高強度セメント組成物。
    1. A hydraulic substance, an ultrafine powder, a high-performance water reducing agent, a ferrochrome slag pulverized product and water as main components, and the high-performance water reducing agent is 10 parts by weight based on a total of 100 parts by weight of the hydraulic substance and the ultrafine powder.
    An ultra-high-strength cement composition characterized in that water is 12.5 to 30 parts by weight or less by weight.
JP12375087A 1987-05-22 1987-05-22 Ultra high strength cement composition Expired - Fee Related JP2653402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12375087A JP2653402B2 (en) 1987-05-22 1987-05-22 Ultra high strength cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12375087A JP2653402B2 (en) 1987-05-22 1987-05-22 Ultra high strength cement composition

Publications (2)

Publication Number Publication Date
JPS63288935A JPS63288935A (en) 1988-11-25
JP2653402B2 true JP2653402B2 (en) 1997-09-17

Family

ID=14868388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12375087A Expired - Fee Related JP2653402B2 (en) 1987-05-22 1987-05-22 Ultra high strength cement composition

Country Status (1)

Country Link
JP (1) JP2653402B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514875B2 (en) * 2000-01-28 2010-07-28 太平洋セメント株式会社 Transport pipe materials, transport pipes and lining materials
JP2005289719A (en) * 2004-03-31 2005-10-20 Ube Ind Ltd High-strength hydraulic composition
JP4575187B2 (en) * 2005-02-21 2010-11-04 電気化学工業株式会社 Mortar composition
CN101913822B (en) * 2010-08-18 2012-01-11 西安建筑科技大学 C150 (strength grade) concrete for section steel-concrete combined structure
CN101913816B (en) * 2010-08-18 2012-01-11 西安建筑科技大学 C130 (strength grade) concrete for section steel-concrete combined structure
CN103553458B (en) * 2013-10-18 2015-06-10 西安建筑科技大学 C180 strength-grade concrete for formed steel concrete composite structure
CN103553460B (en) * 2013-10-18 2015-06-10 西安建筑科技大学 C200 strength-grade concrete for formed steel concrete composite structure
CN103553494B (en) * 2013-10-18 2015-06-10 西安建筑科技大学 C170 strength-grade concrete for formed steel concrete composite structure
CN103539407B (en) * 2013-10-18 2015-06-10 西安建筑科技大学 Concrete for steel reinforced concrete combined structure with C160 strength level
CN103553459B (en) * 2013-10-18 2015-06-10 西安建筑科技大学 C190 strength-grade concrete for formed steel concrete composite structure
CN103979870A (en) * 2014-05-06 2014-08-13 北京凯盛建材工程有限公司 Method for preparing concrete with dry-process detoxified chromium slag as concrete mineral additive

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641590B2 (en) * 1977-11-30 1981-09-29
FI63926C (en) * 1978-04-18 1983-09-12 Outokumpu Oy FERROKROMSLAGG Foer AENDMAOL SOM KRAEVER ELDFASTHET OCH MEKANISK HAOLLFASTHET

Also Published As

Publication number Publication date
JPS63288935A (en) 1988-11-25

Similar Documents

Publication Publication Date Title
Roslan et al. Performance of steel slag and steel sludge in concrete
Zhang et al. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete
Li et al. Property improvement of Portland cement by incorporating with metakaolin and slag
US4933013A (en) Hydraulic material composition having high strength
Haque et al. Properties of high-strength concrete using a fine fly ash
Zareei et al. Recycled ceramic waste high strength concrete containing wollastonite particles and micro-silica: a comprehensive experimental study
KR100917117B1 (en) Filler for Iron reinforcing rod joint and construction method for filling-up of iron reinforcing rod joint using the same
JPH11130508A (en) Cement-based composition and its hardened body
JP2653402B2 (en) Ultra high strength cement composition
Nazari et al. The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder
Karthika et al. Structural properties of lightweight self-compacting concrete made with pumice stone and mineral admixtures
Fadaee et al. Investigation on using copper slag as part of cementitious materials in self compacting concrete
Yücel et al. Strength characteristics and microstructural properties of cement mortars incorporating synthetic wollastonite produced with a new technique
Gautam et al. A review on the utilization of ceramic waste in sustainable construction products
JP4464102B2 (en) High strength mortar composition
JP2565361B2 (en) Method for producing high strength hydraulically cured product
JPH07267697A (en) Hydraulic composition
Nguyen Enhancement of engineering properties of slag-cement based self-compacting mortar with dolomite powder
Ameri et al. Zero-cement vs. cementitious mortars: An experimental comparative study on engineering and environmental properties
JPH05238787A (en) High-strength cement composition
Mansour Behavior of self-compacting concrete incorporating calcined pyrophyllite as supplementary cementitious material
RU2186043C2 (en) Binding agent
JPH0625013B2 (en) Low shrinkage, high strength hydraulic composition
JPH0794341B2 (en) High strength mortar concrete
Metwally et al. Significance of blast furnace slag as coarse aggregate in concrete

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees