JPS6236047A - Production of optical fiber core - Google Patents

Production of optical fiber core

Info

Publication number
JPS6236047A
JPS6236047A JP60172482A JP17248285A JPS6236047A JP S6236047 A JPS6236047 A JP S6236047A JP 60172482 A JP60172482 A JP 60172482A JP 17248285 A JP17248285 A JP 17248285A JP S6236047 A JPS6236047 A JP S6236047A
Authority
JP
Japan
Prior art keywords
optical fiber
lcp
fiber core
secondary coating
fiber strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60172482A
Other languages
Japanese (ja)
Inventor
Fumio Yamamoto
山本 二三男
Yoshito Shiyudo
義人 首藤
Yoshiaki Takeuchi
善明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60172482A priority Critical patent/JPS6236047A/en
Publication of JPS6236047A publication Critical patent/JPS6236047A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0075Light guides, optical cables

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To obtain the titled optical fiber core consisting of a molten liq. crystalline high molecular substance exhibiting a stabilized characteristic by evacuating the space between an optical fiber strand and a molten thermoplastic resin and simultaneously compressing from the outer side of the thermoplastic resin. CONSTITUTION:In the production of an optical fiber core by forming the secondary coated layer 4 of a molten liq. crystalline high molecular substance (hereinafter referred to as LCP) on the outer periphery of an optical fiber strand 3, the space between the optical fiber strand 3 and the molten LCP is evacuated 5 and simultaneously the optical fiber strand 3 and the secondary coated layer 4 of LCP are firmly attached by compression 8 from the outside of LCP. By this method, since the attached point 9 between the optical fiber strand 3 and the secondary coated layer 4 of LCP is controlled by both evacuation and compression, the movement of the attached point 9 causing the variations of the diameter of the optical fiber core and the inclusion of air bubbles can be easily controlled and an optical fiber core exhibiting a stabilized characteristic can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低線膨張率にして高弾性率な熱可塑性樹脂で被
覆された光ファイバ心線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an optical fiber coated with a thermoplastic resin having a low coefficient of linear expansion and a high modulus of elasticity.

〔従来の技術〕[Conventional technology]

光7アイパはその直径が150μm以下のぜい弱な材料
であるので、その製造中又はケーブル化の工程において
、その表面に傷が発生し易く、これが応力集中源となり
、外部から応力が加わると容易に破断する欠点がある。
Hikari 7 Eyepa is a fragile material with a diameter of 150 μm or less, so it is easy to get scratches on its surface during its manufacturing or cable production process, which becomes a source of stress concentration, and easily deteriorates when external stress is applied. It has the disadvantage of breaking.

このため、光ファイバ初期表面を保護し、その初期強度
を維持することを目的とし、光ファイバの紡糸直後に、
ファイバ表面にプラスチックを被覆することが行われて
いる。
Therefore, in order to protect the initial surface of the optical fiber and maintain its initial strength, immediately after spinning the optical fiber,
Coating the fiber surface with plastic has been practiced.

このプラスチック被覆は一般に1次被覆層と2次被覆層
からなる。1次被覆層は低ヤング率材料であシ、光ファ
イバの初期強度の維持及び2次被覆の不均一によるファ
イバのマイクロベンディングロス増を防ぐことを目的と
する。一方、2次被覆層はポリアミド、ポリエチレンの
ような熱可塑性樹脂から成シ、ケーブル化等におけるハ
ンドリングを容易にし、側圧に抗してファイバのマクロ
及びマイクロベンディングロス増を防ぐことを目的とす
る。しかしながら、従来の2次被覆材料の線膨張率は1
0−4℃−1オーダーであシ、この値はファイバ自体の
線膨張率10−7℃″″1オーダーに比較してはるかに
大きい。
This plastic coating generally consists of a primary coating layer and a secondary coating layer. The primary coating layer is made of a material with a low Young's modulus, and is intended to maintain the initial strength of the optical fiber and to prevent an increase in fiber microbending loss due to non-uniformity of the secondary coating. On the other hand, the secondary coating layer is made of a thermoplastic resin such as polyamide or polyethylene, and is intended to facilitate handling during fabrication and cable production, and to resist lateral pressure and prevent increases in macro and micro bending loss of the fiber. However, the coefficient of linear expansion of the conventional secondary coating material is 1
This value is on the order of 0-4°C-1, which is much larger than the coefficient of linear expansion of the fiber itself, which is on the order of 10-7°C''1.

このため、温度変化による2次被覆層の膨張・収縮によ
りファイバに曲がりが生じ、マイクロベンディングロス
増があつ°た。上記欠点を解決するためには、2次被覆
層自体が光ファイバと同等の低い線膨張率をもつことが
必要である。
As a result, the fiber was bent due to expansion and contraction of the secondary coating layer due to temperature changes, resulting in an increase in microbending loss. In order to solve the above-mentioned drawbacks, it is necessary that the secondary coating layer itself has a coefficient of linear expansion as low as that of the optical fiber.

本発明者等は、既に10″″6℃−1以下の低線膨張率
を有し、現用押出被覆方法で高速被覆が可能な2次被覆
材料として溶融液晶性を示す芳香族ポリエステルを提案
し、この材料を用いて押出法による光ファイバ素線への
被覆を検討した。
The present inventors have already proposed an aromatic polyester that exhibits melt liquid crystallinity as a secondary coating material that has a low coefficient of linear expansion of 10''''6℃-1 or less and can be coated at high speed using the current extrusion coating method. We investigated the use of this material to coat optical fibers by extrusion.

その結果、特願昭59−104675号明細書に記載さ
れているように、該2次被覆層は10−6℃−オーダー
の低線膨張率を示し、また、該2次被覆層を有する光フ
ァイバ心線は一60℃から80℃の広い温度範囲におい
て、極めて安定な伝送損失温度特性を示した。
As a result, as described in Japanese Patent Application No. 59-104675, the secondary coating layer exhibits a low coefficient of linear expansion on the order of 10-6°C, and the optical The fiber core showed extremely stable transmission loss temperature characteristics over a wide temperature range of -60°C to 80°C.

上記溶融液晶性高分子物*(以下、LOPと略記)を2
次破覆した元ファイバ心線(以下、LOP心線と略記)
において、その2次被榎ラインは従来のナイロン2次被
覆ラインとおおむね同じである。しかし、LOP被慢に
おいては、その被覆工程において、分子鎖を光ファイバ
長手方向に配向させ、それによってLCP被覆層の低線
膨張率化を図っているため、ナイロン被覆に比較してよ
り高精度の被覆条件の制御が要求される。LOP分子鎖
の配向け、押出機ヘッド内におけるダイス−ニップル間
のせん断応力及びダイリップから吐出された直後のL(
3Fの引落としによって生じる。引落とし時の分子配向
け、ダイス・ニップルの大きさと最終的な2次被覆層の
断面の大きさの比である引落とし比(λ)と、引落とし
の速度によって決まる。そのため、従来、安定な引落と
し条件を達成するため、光ファイバ素線と溶融状態にあ
る2次被覆樹脂の間を真空引きすることにより、両者を
密着させ、比較的短時間で引落としを完了するようにし
てきた。しかし、光ファイバ心線の引取シ速度を変える
と、引落とし部分での形状が変化し、LOPの分子配向
状態も変化することが判明した。これを第2図に基づい
て説明する。
The above molten liquid crystalline polymer* (hereinafter abbreviated as LOP) is
The original fiber core that broke down (hereinafter abbreviated as LOP core)
In this case, the secondary coated line is generally the same as the conventional nylon secondary coated line. However, in LOP coating, the molecular chains are oriented in the longitudinal direction of the optical fiber in the coating process, thereby lowering the coefficient of linear expansion of the LCP coating layer, resulting in higher precision compared to nylon coating. Control of coating conditions is required. The orientation of LOP molecular chains, the shear stress between the die and nipple in the extruder head, and the L(
This is caused by the withdrawal of 3F. It is determined by the molecular orientation during drawdown, the drawdown ratio (λ), which is the ratio of the size of the die nipple to the cross-sectional size of the final secondary coating layer, and the speed of drawdown. Conventionally, in order to achieve stable withdrawal conditions, a vacuum is drawn between the optical fiber and the molten secondary coating resin to bring them into close contact and complete the withdrawal in a relatively short time. I've been trying to do that. However, it has been found that when the drawing speed of the optical fiber is changed, the shape at the drawing part changes and the molecular orientation state of the LOP also changes. This will be explained based on FIG.

第2図は従来の光ファイバ2次被覆ラインにおける押出
機ヘッドのグイリップ部分の断面概略図であり、第2図
において符号1は押出機ヘッドのダイス、2はニップル
、3は光ファイバ素線、4はLOP2次被覆層、5は真
空引きの方向、6は低速引取り時における光ファイバ素
線とLOP2次被覆層の密着点、6′は高速引取り時に
おける光ファイバ素線とLCP2次被覆層の密着点を意
味する すなわち、第2図で示すように、引落とし部に
おいて、光ファイバ素線とLOPの密着する場所が光フ
ァイバ心線の引取り速度によって変化する。このように
両者の密着する場所が変化したり、変動したプすると、
光ファイバ心線の外径の変動が大きくなる。また、光7
アイパ素線と2次被覆層の間に気泡を抱き込む原因とも
なる1、上記欠点を解決するため、光ファイバ心線の引
取り速度の増加と共に、真空引きを強め、光ファイバ素
線とLCP2次被覆樹脂の密着する場所が移動しないよ
うにしてきた。
FIG. 2 is a schematic cross-sectional view of the grip part of the extruder head in a conventional optical fiber secondary coating line. In FIG. 4 is the LOP secondary coating layer, 5 is the direction of evacuation, 6 is the contact point between the optical fiber strand and the LOP secondary coating layer during low-speed pulling, and 6' is the optical fiber strand and the LCP secondary coating during high-speed pulling. In other words, as shown in FIG. 2, the location where the optical fiber and the LOP come into close contact with each other changes depending on the drawing speed of the optical fiber core at the drawing-off section. If the place where the two come into close contact changes or fluctuates in this way,
The variation in the outer diameter of the optical fiber becomes large. Also, light 7
It also causes air bubbles to be trapped between the IPA wire and the secondary coating layer 1. In order to solve the above disadvantages, the pulling speed of the optical fiber core wire is increased and the vacuum is strengthened, and the optical fiber wire and the LCP2 Next, we made sure that the area where the coating resin adhered did not move.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、真空度を強めるだけでは十分な制御がで
きず、その結果、LCP2次被覆特性が変化することが
明らかになった。本発明はLCP2次被覆工程における
前記の問題点を解決するためになされたものであり、そ
の目的は、安定した特性を示すLap心線を提供するこ
とにある。
However, it has become clear that simply increasing the degree of vacuum does not provide sufficient control, and as a result, the LCP secondary coating characteristics change. The present invention was made to solve the above-mentioned problems in the LCP secondary coating process, and its purpose is to provide a Lap core wire that exhibits stable characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明は光ファイバ心線の製造方
法に関する発明であって、光ファイバ素線の外周に熱可
塑性樹脂Mを形成してなる光ファイバ心線を製造するに
際し、光ファイバ素線と溶融状態にある熱可塑性樹脂の
間を真空引きすると同時に、該熱可塑性樹脂の外側より
加圧することにより、光ファイバ素線と熱可塑性樹脂と
の密着を図ることを特徴とする、本発明はLCP心線を
製造するに際し、その引落とし部分において、光ファイ
バ素線とLOP2次被覆樹脂間を真空引きすると同時に
、LCP2次被覆樹脂の外側より圧力を加えることを最
も主要な特徴とする。そのため、真空引きと加圧の両方
の効果によυ、1気圧以上の圧力差か利用でき、それに
よって光ファイバ素線とLcP2次被覆樹脂の密着点が
容易に制御できることが従来技術と異なる点である。
To summarize the present invention, the present invention relates to a method for manufacturing an optical fiber coated wire. This invention is characterized in that the optical fiber strand and the thermoplastic resin are brought into close contact by drawing a vacuum between the strand and the thermoplastic resin in a molten state and at the same time applying pressure from the outside of the thermoplastic resin. The main feature of the invention is that when manufacturing an LCP core wire, a vacuum is drawn between the optical fiber and the LOP secondary coating resin at the drawing part, and at the same time, pressure is applied from the outside of the LCP secondary coating resin. . Therefore, the difference from the conventional technology is that a pressure difference of 1 atm or more can be used due to the effects of both evacuation and pressurization, and thereby the contact point between the optical fiber and the LcP secondary coating resin can be easily controlled. It is.

第1図は本発明の構成を示した断面概略図である。第1
図は押出機ヘッドの内、特にダイリップの部分を示した
もので、符号1〜5は第2図と同義であシ、7は加圧用
のアタッチメント、8は加圧の方向、9は光ファイバ素
線とLOP2次被覆層の密着点である。第1図において
、光ファイバ素線とLC!P2次被覆層の密着点9は真
空引き5と空気による加圧8の両方によって1tjll
 IfKlされる。特に加圧力としてガスボンベあるい
はコンプレッサーにより、高い圧力を作用させることが
可能であり、真空引き5のみに比較して、はるかに容易
に密着点9を制御することができる。
FIG. 1 is a schematic cross-sectional view showing the configuration of the present invention. 1st
The figure shows the extruder head, especially the die lip, where numerals 1 to 5 have the same meanings as in Fig. 2, 7 is an attachment for pressurization, 8 is the direction of pressurization, and 9 is an optical fiber. This is the contact point between the wire and the LOP secondary coating layer. In FIG. 1, the optical fiber and LC! The adhesion point 9 of the P secondary coating layer is 1tjll by both the vacuum 5 and the air pressure 8.
IfKl is done. In particular, it is possible to apply a high pressure using a gas cylinder or a compressor as a pressurizing force, and the contact point 9 can be controlled much more easily than by only evacuation 5.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はとれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1及び2、比較例1及び2 表1に本発明の実施例を従来の方法と比較して示す。Examples 1 and 2, Comparative Examples 1 and 2 Table 1 shows examples of the present invention in comparison with conventional methods.

A1 従来法においても光ファイバ心線の引取り速度が低速の
場合には、光ファイバ素線とLOP2次被覆層の密着点
を十分に制御することが可能である。しかし、引取り速
度の増加によって、真空引き5のみでは制御不可能にな
る その結果、密着点6が移動し、光ファイバ心線径の
変動が生じた。一方、本発明の実施例においては、引取
シ速度が高い場合においても真空引きと加圧力の両方を
制御することにより、密着点9は移動しない。その結果
、光ファイバ心線径の変動もなく、また気泡の抱き込み
も生じなかった。
A1 Even in the conventional method, when the take-up speed of the optical fiber core is low, it is possible to sufficiently control the point of contact between the optical fiber strand and the LOP secondary coating layer. However, as the take-up speed increases, it becomes impossible to control the vacuum using only the vacuum 5. As a result, the contact point 6 moves and the diameter of the optical fiber varies. On the other hand, in the embodiment of the present invention, even when the take-up speed is high, the contact point 9 does not move by controlling both the evacuation and the pressing force. As a result, there was no variation in the diameter of the optical fiber, and no air bubbles were trapped.

〔発明の効果〕〔Effect of the invention〕

以上説明し友ように、本発明によれば、光ファイバ素線
とLOP2次被覆層の密着点を、光ファイバ素線とLO
P2次被覆層間の真空引き、並びにLC!P2次被覆層
の外側からの加圧力の両方によって制御するため、光フ
ァイバ心線径の変動及び気泡の抱き込みの原因となる密
着点の移動を容易に抑えることができるという利点があ
る。
As explained above, according to the present invention, the point of contact between the optical fiber strand and the LOP secondary coating layer is set between the optical fiber strand and the LOP
Vacuuming between the P secondary coating layers and LC! Since the control is performed using both the pressure applied from the outside of the P secondary coating layer, there is an advantage in that it is possible to easily suppress movement of the adhesion point that causes fluctuations in the diameter of the optical fiber and entrapment of air bubbles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光ファイバ2次被覆ラインにおける押
出機ヘッドのダイリップ部分の断面概略図そして第2図
は従来の光ファイバ2次被覆ラインにおける押出機ヘッ
ドのダイリップ部分の断面概略図である。 1・・・押出機ヘッドのダイス、2・・・ニア7’k、
3・・・光ファイバ素線、4・・・LOP2次被覆層、
5・・・真空引きの方向、6・・・低速引取シ時におけ
る光ファイバ素線とLOP2次被覆層の密着点、6′・
・・高速引取9時における光ファイバ素線とで2次被覆
層の密着点、7・・・加圧用のアタッチメント、8・・
・加圧の方向、9・・・本発明における光ファイバ素線
とI、OP2次被覆層の密着点。
FIG. 1 is a schematic cross-sectional view of the die lip portion of the extruder head in the optical fiber secondary coating line of the present invention, and FIG. 2 is a cross-sectional schematic diagram of the die lip portion of the extruder head in the conventional optical fiber secondary coating line. . 1... Die of extruder head, 2... Near 7'k,
3... Optical fiber strand, 4... LOP secondary coating layer,
5...Direction of evacuation, 6...Point of contact between the optical fiber strand and the LOP secondary coating layer during low-speed drawing, 6'.
... Point of contact between the secondary coating layer and the optical fiber at high-speed take-up at 9 o'clock, 7... Attachment for pressurization, 8...
- Direction of pressurization, 9... point of contact between the optical fiber strand and the I, OP secondary coating layer in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、光ファイバ素線の外周に熱可塑性樹脂層を形成して
なる光ファイバ心線を製造するに際し、光ファイバ素線
と溶融状態にある熱可塑性樹脂の間を真空引きすると同
時に、該熱可塑性樹脂の外側より加圧することにより、
光ファイバ素線と熱可塑性樹脂との密着を図ることを特
徴とする光ファイバ心線の製造方法。
1. When producing a coated optical fiber by forming a thermoplastic resin layer around the outer periphery of an optical fiber, a vacuum is drawn between the optical fiber and the molten thermoplastic resin, and at the same time, the thermoplastic resin is By applying pressure from the outside of the resin,
1. A method for producing an optical fiber core, the method comprising achieving close contact between an optical fiber strand and a thermoplastic resin.
JP60172482A 1985-08-07 1985-08-07 Production of optical fiber core Pending JPS6236047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60172482A JPS6236047A (en) 1985-08-07 1985-08-07 Production of optical fiber core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60172482A JPS6236047A (en) 1985-08-07 1985-08-07 Production of optical fiber core

Publications (1)

Publication Number Publication Date
JPS6236047A true JPS6236047A (en) 1987-02-17

Family

ID=15942804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172482A Pending JPS6236047A (en) 1985-08-07 1985-08-07 Production of optical fiber core

Country Status (1)

Country Link
JP (1) JPS6236047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126783A (en) * 2005-11-04 2007-05-24 Mitsubishi Rayon Co Ltd Composite nozzle for hollow fiber membrane and method for producing composite hollow fiber membrane
CN105301694A (en) * 2015-11-30 2016-02-03 福建江夏学院 Pressure fiber and pressure cable formed by pressure fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126783A (en) * 2005-11-04 2007-05-24 Mitsubishi Rayon Co Ltd Composite nozzle for hollow fiber membrane and method for producing composite hollow fiber membrane
CN105301694A (en) * 2015-11-30 2016-02-03 福建江夏学院 Pressure fiber and pressure cable formed by pressure fiber

Similar Documents

Publication Publication Date Title
US4919513A (en) Plastic optical fiber
DK170240B1 (en) Reinforcement component of a highly oriented resin and method of making one
KR900002554B1 (en) Coated optical fiber
US4759784A (en) Method of manufacturing glass fiber strand
JPH07218786A (en) Modular optical fiber core tape that can be divided into plurality of tape pieces or modules, manufacture of tape thereof and optical fiber cable using tape thereof
JP3207924B2 (en) Plastic package optical fiber
JP2775966B2 (en) Optical fiber unit
WO1990008968A1 (en) Wide band coupler
JP4670218B2 (en) Fiber optic cable
CN1320381C (en) Highly-compacted optical-fiber communication optical cable
JPS6236047A (en) Production of optical fiber core
JPS59228204A (en) Tapelike optical fiber and its manufacture
JPS59107943A (en) Manufacture of optical fiber core
JPH0627887B2 (en) Fiber for optical transmission
JPS59217653A (en) Preparation of coated optical fiber
JPS62162655A (en) Production of core wire of coated optical fiber having low linear expansion coefficient
JPH02233537A (en) Production of optical fiber core
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
EP0263728B1 (en) Hose with a reduced linear expansion coefficient, its manufacturing process and apparatus for using it
JPS59206803A (en) Optical fiber core
JPH03114008A (en) Optical fiber ribbon
JPS61232408A (en) Loose tube core and its manufacture
JPH0549613B2 (en)
JPH02118608A (en) Coated optical fiber tape
JPS5917507A (en) Fiber for optical transmission