JPS59206803A - Optical fiber core - Google Patents

Optical fiber core

Info

Publication number
JPS59206803A
JPS59206803A JP58080797A JP8079783A JPS59206803A JP S59206803 A JPS59206803 A JP S59206803A JP 58080797 A JP58080797 A JP 58080797A JP 8079783 A JP8079783 A JP 8079783A JP S59206803 A JPS59206803 A JP S59206803A
Authority
JP
Japan
Prior art keywords
optical fiber
crystal
thermoplastic resin
secondary coating
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58080797A
Other languages
Japanese (ja)
Inventor
Yoshito Shiyudo
義人 首藤
Fumio Yamamoto
山本 二三男
Shinzo Yamakawa
山川 進三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58080797A priority Critical patent/JPS59206803A/en
Publication of JPS59206803A publication Critical patent/JPS59206803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To reduce the transmission loss over a long distance and to increase the strength by using aromatic polyester having about 10<-6> deg.C<-1> coefft. of linear expansion as a secondary coating material for an optical fiber. CONSTITUTION:A thermoplastic resin coating an optical fiber strand is aromatic polyester subjected to molecular orientation at >=10<2>sec<-1> shear rate, having <=400 deg.C crystal/liq. crystal transition point, and contg. at least one kind of ring selected among 1,4-,1,2,4- and 1,2,4,5-substituted benzene rings and 2,6-substituted polynuclear aromatic rings in the principal polymer chain. The thermoplastic resin forming a secondary coating layer is not restricted to a polyethylene terephthalate-p-oxybenzoic acid copolymer. The resin is required only to have <=400 deg.C crystal/liq. crystal transition point. The upper limit temp. of a general extruder is 400 deg.C.

Description

【発明の詳細な説明】 本発明は低線膨張率な熱可塑性樹脂で被覆された光フア
イバ心線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber coated with a thermoplastic resin having a low coefficient of linear expansion.

光ファイバはその直径が150μ常以下のぜい弱な材料
であるので、その製造中またはケーブル化の工程におい
て、その表面に傷が発生し易く、これが応力集中源とな
り、外部から応力が加わると容易に破断する欠点がある
。このため、光フアイバ表面を保護し、その初期強度を
維持することを目的とし、光ファイバの紡糸直後に、フ
ァイバ表面にプラスチックを被覆することが行われてい
る。
Optical fiber is a fragile material with a diameter of 150 μm or less, so it is easy to get scratches on its surface during its manufacturing or cable production process, which becomes a source of stress concentration, and easily deteriorates when external stress is applied. It has the disadvantage of breaking. For this reason, in order to protect the optical fiber surface and maintain its initial strength, the fiber surface is coated with plastic immediately after spinning the optical fiber.

このプラスチックMWは一般に1次被覆層と2次被覆層
からなる。1次被覆層は低ヤング率材料であり、光ファ
イバの初期強度の維持および2次被覆の不均一によるフ
ァイバのマイクロベンディングロス増を防ぐことを目的
とする。一方、2次被覆層はポリアミド、ポリエチレン
のような熱可塑性樹脂から成り、ケーブル化等における
ハンドリングを容易にすることを目的とする。
This plastic MW generally consists of a primary coating layer and a secondary coating layer. The primary coating layer is a material with a low Young's modulus, and its purpose is to maintain the initial strength of the optical fiber and to prevent an increase in fiber microbending loss due to non-uniformity of the secondary coating. On the other hand, the secondary coating layer is made of a thermoplastic resin such as polyamide or polyethylene, and is intended to facilitate handling in making cables and the like.

しかし従来の2次被覆材料はいずれもファイバ自体の線
膨張率(10℃ オーダ)に比べて、はるかに大きな線
膨張率(10℃ オーダ)を有しているので、温度変化
による2次被覆層の膨張・収縮によりファイバに曲がり
が生じ、マイクロベンディングによるロス増があった。
However, all conventional secondary coating materials have a much larger coefficient of linear expansion (on the order of 10°C) than that of the fiber itself (on the order of 10°C), so the secondary coating may Expansion and contraction of the fiber caused bending in the fiber, resulting in increased loss due to microbending.

この2次被覆材料とファイバの線膨張率の違いによるマ
イクロベンディングロス増を防止するため、シリコーン
被覆層を有するファイバ素線にガラス線維をファイバの
長さ方向に縦ぞえし、熱硬化性樹脂で硬化・固定し、2
次被覆層を形成したファイバ心線が提案されている。こ
のファイバ心線の2次被覆層の線膨張率はlO℃ のオ
ーダであり、マイクロベンディングロス増は著しく抑制
されている。しかしながら、この場合の2次被覆層の低
線膨張率はガラス繊維の線膨張率(10℃オーダ)によ
るもので、熱硬化性樹脂自体は10−4℃−1オーダの
大きな線膨張率を有していることに変わシはない。
In order to prevent an increase in microbending loss due to the difference in linear expansion coefficient between the secondary coating material and the fiber, glass fibers are arranged vertically in the length direction of the fiber with a silicone coating layer, and thermosetting resin is Harden and fix with
A fiber core having a second coating layer has been proposed. The coefficient of linear expansion of the secondary coating layer of this fiber core is on the order of 10° C., and the increase in microbending loss is significantly suppressed. However, the low coefficient of linear expansion of the secondary coating layer in this case is due to the coefficient of linear expansion of the glass fiber (on the order of 10°C), and the thermosetting resin itself has a large coefficient of linear expansion on the order of 10-4°C-1. There is no change in what I am doing.

本発明は溶融液晶性を示す芳香族ポリエステルの分子配
向方向の線膨張率が10  ℃ 以下になることに着目
し、この材料を光7アイパの2次被覆材料として用いる
ことを特徴とし、その目的は長尺にわたって・伝送損失
の優れた、かつ高強度である光フアイバ心線を提供する
ことにある。
The present invention focuses on the fact that the coefficient of linear expansion in the molecular orientation direction of an aromatic polyester exhibiting molten liquid crystallinity is 10°C or less, and is characterized in that this material is used as a secondary coating material for Hikari 7 Eyepa. The object of the present invention is to provide a coated optical fiber that has excellent transmission loss and high strength over a long length.

ある種の結晶性ポリマーは、加熱されるとき1融解して
液体となる前に、結晶の異方性と液体の流動性を有する
状態を経由することがある。との状態を液晶といい、結
晶から液晶へ(オたは液晶から結晶へ)変化する温度を
結晶/液晶転移点という。本発明者らは、すでに熱分解
湿度よりも低温側で結晶/液晶転移点を示す溶融液晶性
熱可塑性樹脂を用い、押出法による光フアイバ素線への
被覆を検討した。その結果、特願昭Is ?−2146
82号に記載されているように10 sec 以上の高
ぜん断速度下で押し出された樹脂がlO℃ オーダの低
線膨張率を示すことを見出した。
Certain crystalline polymers, when heated, may undergo a state of crystal anisotropy and liquid fluidity before melting and becoming a liquid. This state is called liquid crystal, and the temperature at which it changes from crystal to liquid crystal (or from liquid crystal to crystal) is called the crystal/liquid crystal transition point. The present inventors have already investigated coating an optical fiber wire by an extrusion method using a molten liquid crystalline thermoplastic resin that exhibits a crystal/liquid crystal transition point at a temperature lower than the thermal decomposition humidity. As a result, Tokugan Sho Is? -2146
It has been found that a resin extruded at a high shear rate of 10 sec or more as described in No. 82 exhibits a low coefficient of linear expansion on the order of 10°C.

前述したように、溶融液晶性を示す熱可塑性樹脂は分子
配向により、低線膨張率化が達成される。
As mentioned above, a thermoplastic resin exhibiting molten liquid crystallinity achieves a low coefficient of linear expansion through molecular orientation.

しかしながら達成される線膨張率は、せん断速度のみな
らず、押出条件(押出温度、押出部の構造)によって影
響されることが判明した。
However, it has been found that the achieved coefficient of linear expansion is influenced not only by the shear rate but also by the extrusion conditions (extrusion temperature, structure of the extruded part).

第1図は液晶性を示すポリエチレンテレフタレー) (
PET)−p−オキシ安息香酸共重合体をキャピラリー
レオメータを用い、適正な押出条件において分子配向さ
せた時の線膨張率とせん断速度の関係を示す。この時の
押出温度は240℃、キャピラリー内径0.5mm、せ
ん断配向部の長さは10(8) mrnである。第1図から明らかなように、せん断6−
1 速度が10 sec  以上で10  ℃ オーダの低
線膨張率化が達成されている。
Figure 1 shows polyethylene terephthalate (polyethylene terephthalate) exhibiting liquid crystallinity.
The relationship between linear expansion coefficient and shear rate when a PET)-p-oxybenzoic acid copolymer is molecularly oriented under appropriate extrusion conditions using a capillary rheometer is shown. The extrusion temperature at this time was 240° C., the capillary inner diameter was 0.5 mm, and the length of the shear orientation section was 10(8) mrn. As is clear from Fig. 1, the shear 6-
1. A low coefficient of linear expansion on the order of 10° C. has been achieved at a speed of 10 sec or more.

第2図は本発明の光フアイバ心線の一実施例の断面図で
あって、lは光ファイバ裸線、2は変性シリコーンゴム
組成物から成る1次被覆層、8はシリコーンゴム組成物
から成るバッファ層、4はポリエチレンテレフタレート
−T)−オキシ安息香慢共重合体から成る8次被覆層で
ある。第2図の各層の厚みは1次被覆層2が85〜40
9m1バツフア層8が、100μya、2次被覆層4が
250μmである。2次被覆層4はダイス径2 mm 
、ニップル径1 、2 trwn 、ダイス出口の直線
部長さlOt′1vrnの押出部を有する押出機を用い
、押出温度(ダイス出口温度)240℃で、I X 1
0 ago  のせん断速度下で押し出して形成させた
ものである。このものの1次被覆層りおよびバッファ層
8のみを設けた場合(素線段階)の20℃における伝送
損失は波長0.85#yaで8.406B/kmであシ
、本発明による心線の波長0.85μmでは伝送損失は
80℃において2 、41 eiB /kmであった。
FIG. 2 is a cross-sectional view of one embodiment of the optical fiber core wire of the present invention, where l is a bare optical fiber, 2 is a primary coating layer made of a modified silicone rubber composition, and 8 is a primary coating layer made of a silicone rubber composition. 4 is an eighth coating layer made of a polyethylene terephthalate-T)-oxybenzoic copolymer. The thickness of each layer in Figure 2 is 85 to 40 mm for primary coating layer 2.
The 9m1 buffer layer 8 has a thickness of 100 μya, and the secondary coating layer 4 has a thickness of 250 μm. The secondary coating layer 4 has a die diameter of 2 mm.
, using an extruder having an extrusion section with a nipple diameter of 1 or 2 trwn and a linear length of the die outlet lOt'1vrn, at an extrusion temperature (die outlet temperature) of 240°C, I
It was formed by extrusion at a shear rate of 0 ago. The transmission loss at 20° C. when only the primary coating layer and buffer layer 8 are provided (at the strand stage) is 8.406 B/km at a wavelength of 0.85 #ya, and the fiber core according to the present invention has a transmission loss of 8.406 B/km at a wavelength of 0.85 #ya. At a wavelength of 0.85 μm, the transmission loss was 2.41 eiB/km at 80°C.

第8図は本発明による心線の伝送損失の温度依存性を示
す。第8図よシ明らかなように、−60℃から+60℃
寸で心線の損失増加はない。また心線の平均破断強度は
496 kg7mm (試料長10飢、試料数20本)
であった。
FIG. 8 shows the temperature dependence of the transmission loss of the core wire according to the present invention. As shown in Figure 8, from -60℃ to +60℃
There is no increase in loss in the core wire. In addition, the average breaking strength of the core wire is 496 kg 7 mm (sample length 10 mm, number of samples 20)
Met.

本発明において2次被覆層を形成する熱可塑性樹脂は、
ポリエチレンテレフタレート−p−オキシ安息香酸共重
合体のみに限定するものでなく・一般的な押出機の上限
温度である400℃よりも低温側で結晶/液晶転移点を
もつ液晶高分子よシ形成される。具体的な材料としては
、高分子主鎖ニ1,4−もt、クハ1.2.4−もしく
は1.2.4. Is −置換ベンゼン環または2,6
−置換多核芳香族環を含む芳香族ポリエステル、例えば
テレフタル酸−p−オキシフェノール−ポリエチレンテ
レブタレート共重合体、ポリエチレンテレフタレート−
p−オキシ安息香酸共重合体、テレフタル酸−2−クロ
ル−4−オキシフェノール−4,4′−オキシジフェノ
ール共重合体、テレフタル酸−p−オキシフエノ−ルー
z、6−ナフタレンジカルボン酸共重合体、プレフタル
酸−2,5−ジメチル−4−オキシフェノール−4,4
′−ジフェノール共M合体、2  yx=ルー4−オキ
シフェノールーテレンタル酸共重合体などを用いること
ができる。
The thermoplastic resin forming the secondary coating layer in the present invention is
It is not limited to polyethylene terephthalate-p-oxybenzoic acid copolymer, but is formed from liquid crystal polymers that have a crystal/liquid crystal transition point at a temperature lower than 400°C, which is the upper limit temperature of a general extruder. Ru. Specific materials include polymer main chain ni 1,4-mot, kuha 1.2.4- or 1.2.4. Is -substituted benzene ring or 2,6
- Aromatic polyesters containing substituted polynuclear aromatic rings, such as terephthalic acid-p-oxyphenol-polyethylene terebutyrate copolymers, polyethylene terephthalate-
p-oxybenzoic acid copolymer, terephthalic acid-2-chloro-4-oxyphenol-4,4'-oxydiphenol copolymer, terephthalic acid-p-oxyphenol-z, 6-naphthalene dicarboxylic acid copolymer Combined, prephthalic acid-2,5-dimethyl-4-oxyphenol-4,4
'-diphenol copolymer, 2yx=4-oxyphenol-terental acid copolymer, and the like can be used.

以上説明したように、本発明ではほぼ10  ℃オーダ
の線膨張率を有する芳香族ポリエステルを光ファイバの
2次被覆材料に用いるので、長尺にわたって伝送損失の
優れた、かつ高強度である光  区ファイバ心線を得る
ことができる。         −4、図面の簡単な
説明                機第1図は線膨
張率とせん断速度の関係を示す図、第2図は本発明の光
フアイバ心線の構造を示す断面図、第8図は本発明の光
フアイバ心線の0.85μ脩における損失増加と測定温
度の関係を示す図である。
As explained above, in the present invention, aromatic polyester having a coefficient of linear expansion on the order of approximately 10° C. is used as the secondary coating material of the optical fiber, so that the optical fiber has excellent transmission loss over a long length and high strength. A fiber core can be obtained. -4. Brief explanation of the drawings Fig. 1 is a diagram showing the relationship between coefficient of linear expansion and shear rate, Fig. 2 is a sectional view showing the structure of the optical fiber core wire of the present invention, and Fig. 8 is a diagram showing the relationship between coefficient of linear expansion and shear rate. FIG. 3 is a diagram showing the relationship between the increase in loss at 0.85 μm and the measured temperature of the optical fiber core wire.

1・・・光フアイバ棟線、2・・・1次被看層、8・・
・バッファ層、4・・・2次被覆層。
1... Optical fiber ridge line, 2... Primary observation layer, 8...
- Buffer layer, 4... secondary coating layer.

(β。、−〇ノンl啄ii <*y 4→1−一   
        も
(β., -〇nonlakuii <*y 4→1-1
too

Claims (1)

【特許請求の範囲】[Claims] 1 光フアイバ素線が熱可塑性樹脂で被覆された構造を
有する光フアイバ心線において、前記熱可塑性樹脂が1
0  sec  以上のせん断速度で分子配向させられ
、かつ400℃よシも低温側で結晶/液晶転移点を有し
ており、高分子主鎖に1.4−もしくはl、 B、 4
−もしくは1、2.4.3−置換のベンゼン環または2
.6−置換の多核芳香族環を少なくとも1種以上含む芳
香族ポリエステルであることを特徴とする光フアイバ心
線。
1. In an optical fiber core wire having a structure in which the optical fiber wire is coated with a thermoplastic resin, the thermoplastic resin is coated with 1
The molecules are oriented at a shear rate of 0 sec or more, have a crystal/liquid crystal transition point at temperatures as low as 400°C, and have 1.4- or 1, B, 4 in the polymer main chain.
- or 1, 2.4.3-substituted benzene ring or 2
.. An optical fiber core wire characterized in that it is an aromatic polyester containing at least one type of 6-substituted polynuclear aromatic ring.
JP58080797A 1983-05-11 1983-05-11 Optical fiber core Pending JPS59206803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58080797A JPS59206803A (en) 1983-05-11 1983-05-11 Optical fiber core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080797A JPS59206803A (en) 1983-05-11 1983-05-11 Optical fiber core

Publications (1)

Publication Number Publication Date
JPS59206803A true JPS59206803A (en) 1984-11-22

Family

ID=13728445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080797A Pending JPS59206803A (en) 1983-05-11 1983-05-11 Optical fiber core

Country Status (1)

Country Link
JP (1) JPS59206803A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012522A (en) * 1983-06-20 1985-01-22 インペリアル・ケミカル・インダストリ−ズ・パブリツク・リミテイド・カンパニ− Optical fiber cable
JPS61138907A (en) * 1984-12-12 1986-06-26 Sumitomo Chem Co Ltd Cable for optical communication
JPS6256909A (en) * 1985-09-05 1987-03-12 ウエスチングハウス.エレクトリック.コ−ポレ−ション Optical fiber cable and manufacture thereof
JPS62110908U (en) * 1985-12-27 1987-07-15
US4893897A (en) * 1988-03-02 1990-01-16 Dow Chemical Company Plastic optical fiber for in vivo use having a biocompatible polyurethane cladding
JPH02107540A (en) * 1988-10-18 1990-04-19 Asahi Fiber Glass Co Ltd Glass fiber, treatment of glass fiber, and glass fiber processing agent
JPH03505230A (en) * 1988-06-20 1991-11-14 フオスター・ミラー・インコーポレイテツド Multiaxially oriented heat-modified polymer support for printed wiring boards

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012522A (en) * 1983-06-20 1985-01-22 インペリアル・ケミカル・インダストリ−ズ・パブリツク・リミテイド・カンパニ− Optical fiber cable
JPS61138907A (en) * 1984-12-12 1986-06-26 Sumitomo Chem Co Ltd Cable for optical communication
JPS6256909A (en) * 1985-09-05 1987-03-12 ウエスチングハウス.エレクトリック.コ−ポレ−ション Optical fiber cable and manufacture thereof
JPH0528805B2 (en) * 1985-09-05 1993-04-27 Westinghouse Electric Corp
JPS62110908U (en) * 1985-12-27 1987-07-15
US4893897A (en) * 1988-03-02 1990-01-16 Dow Chemical Company Plastic optical fiber for in vivo use having a biocompatible polyurethane cladding
JPH03505230A (en) * 1988-06-20 1991-11-14 フオスター・ミラー・インコーポレイテツド Multiaxially oriented heat-modified polymer support for printed wiring boards
JPH02107540A (en) * 1988-10-18 1990-04-19 Asahi Fiber Glass Co Ltd Glass fiber, treatment of glass fiber, and glass fiber processing agent

Similar Documents

Publication Publication Date Title
US4906066A (en) Optical fibre cable utilizing thermotropic liquid crystal polymer and method of making same
JPS59206803A (en) Optical fiber core
JPH02289805A (en) Optical fiber unit
US4778245A (en) Optical communication cable
JPS59107943A (en) Manufacture of optical fiber core
JPH034882B2 (en)
JPS5848493B2 (en) Hikari Densosenno Seizouhouhou
JPS59217653A (en) Preparation of coated optical fiber
JP4143650B2 (en) Optical fiber manufacturing method
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
JPH02233537A (en) Production of optical fiber core
JPS6093406A (en) Optical fiber core
JPS62204209A (en) Plastic optical fiber
JPH0627888B2 (en) Low linear expansion coefficient coated optical fiber
JPS61127641A (en) Production of optical fiber cable
JP4124307B2 (en) Plastic optical fiber
JPS61238821A (en) High-speed production of cladded optical fiber core of low linear expansion coefficient
JPS6032004A (en) Plastic light transmitting fiber and its manufacture
JPH0343603B2 (en)
JPH034884B2 (en)
JPS59231503A (en) Optical fiber and its production
JPS6045210A (en) Optical fiber core wire
JPS6132013A (en) Coated optical fiber
JPS61112110A (en) Coated optical fiber code having high intensity
JPS62102210A (en) Optical fiber core