【発明の詳細な説明】[Detailed description of the invention]
本発明は、酸化クロム焼結体の製造法に関す
る。一般に耐火物では気孔率の少ないほど耐食性
が良くなるが、これに対してスポーリング抵抗や
熱伝導率低下等は気孔率の多いほど大きくなる。
したがつて使用目的に応じて耐火物の実用上の諸
特性を調整し、さらに耐火物の製造条件を容易に
するために、適度な気孔率を保有する様に制御す
ることが好ましい。
ところで、従来の酸クロム焼結体は、Cr2O3粉
末の成形体が焼結し難いために、Cr2O3粉末原料
にAl2O3やSiO2などの成分を少量添加し、焼成時
にCr2O3粒界にこれら添加物を含む低融点組成物
の液相を生成させることにより焼結させられてい
た。このようにして作られた酸化クロム耐火煉瓦
は、20%前後以上の気孔率を有し、酸化クロム単
に末の緻密焼結体の製造は非常に困難であつた。
況んや、使用目的に応じ成形性よく、気孔率を
調整した高性能の酸化クロム焼結体の製造につい
ては、現在のところ成功している例がない。
しかして、本発明者は、先に酸化クロム成形体
を炭化クロムで被覆して焼成するかあるいは焼成
時に成形体の表面に炭化クロムの被膜層を形成せ
しめることによつて、成形体中に低融点組成物
CrOxを存在せしめて酸化クロム成形体を焼結す
る方法により緻密な酸化クロム焼結体の開発に成
功した。(特開昭54−96508号公報)
すなわち、この方法により市販の酸化クロムを
主体とする成形体を焼成して、気孔率が1%以下
の極めて均一緻密な酸化クロム焼結体を得ること
ができる。しかしこの場合、焼成により成形体の
体積は収縮して約1/2となるため、僅かな温度の
不均一によつても亀裂が入りやすくなり、成形体
が大きくなるにつれて焼成に難点がある。
またこの方法は、焼結体の気孔率の調整を意図
したものではない。
そこで、本発明者は、焼成収縮を出来るだけ低
減して成形性よく、かつ制御された任意の気孔率
を有する酸化クロム焼結体の製造を目的として前
記の製造法を改良すべく種々研究を重ねたところ
平均粒子径2μmを境にして焼成収に著しい差異
があることを知見し、本発明を完成した。
すなわち、本発明は、酸化クロム粉末を主体と
する成形材料を炭化クロム被覆層が形成されるよ
うな還元雰囲気で焼成する酸化クロム焼結体の製
造法において、酸化クロム微粉末を空気中で1200
℃以上で焼成し粒成長させて得られる平均粒子径
2μm以上の大きな酸化クロム単結晶を成形材料
として配合使用することを特徴とする酸化クロム
焼結体の製造法にかかるものである。
本発明において、酸化クロムを主体とする成形
材料を炭化クロム被覆層が形成されるような還元
雰囲気で焼成することが不可欠でこれが第1の特
徴である。
ここで、炭化クロム被覆層が形成されるような
還元雰囲気との焼成とは、具体的態様として、例
えば、前記成形材料の加熱炉内に炭素粉末の充
填、好ましくは該成形材料を被覆するように炭素
粉末を容器内に充填し、空気を遮断に還元焼成す
ることである。また他の方法としては、CO、
CO2の混合ガスを炭素粉末の存在又は不存在下に
導入した状態での焼成、あるいは該成形材料の表
面に予め炭化クロム、被覆層を塗付により形成さ
せて上記の如き還元雰囲気での焼成を行う方法が
あげられる。焼成温度は1300℃以上特に1300〜
1600℃が実用的で好適である。
この理由は、1300℃以下では焼結が不充分であ
り、他方熱エネルギーおよび焼結性の観点から
1600℃程度が充分とされるからである。
なお、焼成後、酸化クロム焼結体の表面に形成
された炭化クロム被覆層は薄いもので剥離し易
く、容易に除去することができる。
次に、本発明において、前記焼成条件で、焼結
させるべき酸化クロムを主体とする成形材料は、
酸化クロム微粉末を空気中で1200℃以上で焼成し
粒成長させて得られる平均粒子径2μm以上の大
きなクロム単結晶を配合使用して粒度構成された
混合粉体の成形材料であることが不可欠で、これ
が第2の特徴となつている。
本発明者の実験によれば、前記焼成条件におい
て酸化クロム粉末の粒径が大きくなると、その成
形体の焼成収縮は小さくなる傾向にある。
すなわち粒径が2μm以下の粒子のみからなる
場合には一定の焼成条件下で気孔率は3%以下と
なり、成形体は極めて緻密に焼結するが、これに
反して2μm以上の粒子が混入すると気孔率は次
第に増加し、2μm以上の粒子のみからなる場合
には殆ど焼成収縮は起こらなくなり、気孔率は35
%位となる。
すなわち、これらのことから、酸化クロムを主
体とする成形体の焼結の状況は、成形体を構成す
る酸化クロム粒子の粒径が2μm未満の場合と2
μm以上の場合とでは著しく異なつていることが
推定できる。この理由については十分に解明され
ていないが、他の多くの物質の焼結についての機
構から類推して次の如く考えられる。
一般に焼結の機構は気化−凝縮機構、粘性流動
機構、拡散焼結機構が主なものであるが、この中
で気化−凝縮機構は焼成収縮の起こらない焼結機
構である。したがつて粒径が2μm以上の酸化ク
ロム粉末を主体とする成形体の焼結は、主に気化
−凝縮機構によるものと推定される。(これに関
しHench;Ph.D.Thesis、The Ohio State
University、1964、Univ.Microfilms、Order
No65−1184、214pp;は空気中でのCr2O3の焼結
が気化−凝縮機構によつて起こると報告してい
る。)これに対して気化−凝縮以外の他の2つの
機構による焼結は収縮を伴うものであり、粒径2
μm未満の酸化クロム粉末を主体とする成形体の
焼結は主としてこれ等2つの機構によつて起こる
と考えられる。
尢も、酸化クロム成形体の構成粉末の粒径が2
μmを境にして、何れの機構で焼結されるかが明
瞭に区別されるのでなくて、小さい粒子から大き
い粒子になるにしたがつて、それぞれの焼結機構
の度合が順次変化して成形体の総合焼結に寄与
し、約2μm以上の粒子では気化−凝縮機構が優
勢になり、焼成収縮が起こらなくなるものと考え
られる。
ともあれ、本発明における焼成条件下で、粒径
2μm未満の微粉末酸化クロム成形体と粒径2μ
m以上の粗粒酸化クロムのそれとは、粒径2μm
を境として焼結状態が著しく異なることは興味あ
ることである。
従つて、本発明においては、酸化クロムの粒径
2μmを境としてその上下のそれぞれの粉末を混
合して粒度構成することにより、成形材料の焼成
収縮の少ない、かつ気孔率を制御した焼結体を製
造することができる。
例えば、粒径1μmの市販酸化クロム粉末と一
次粒子が3〜18μmの分布をもつ粒径2μm以上
の大きな単結晶酸化クロム粉末とを実施例1で示
したように焼成したものは、図−1によれば、焼
結体の気孔率は、粒径3〜18μmの大きな単結晶
酸化クロム粉末の混合割合に直線的に比例して増
加することがわかる。しかも、焼結体の焼成収縮
は、粒径2μm以下の酸化クロム単味のものよ
り、混合粉末の成形体の方が小さく成形性が改善
されている。
本発明において、原料酸化クロム粉末において
粒径2μm未満のものは市販されているけれど
も、粒径2μm以上の大きな単結晶粒子は一般的
には市販されていない。
従つて、所望の粒子成長を施した粗粒の酸化ク
ロム粉末を用いることが必要であるが、本発明に
おいては、一般に市販されている微粉末酸化クロ
ムを通常雰囲気で予め1200℃以上に加熱処理を施
すことにより、粒径2μm以上の単結晶酸化クロ
ムを調製することができ、これを成形材料の配合
原料として使用することが必要である。
すなわち、市販の酸化クロム粉末を空気中で
1200℃以上に加熱すると、酸化クロム粒子は成長
して粒径が次第に大きくなる。この粒成長の程度
は、温度と加熱時間を変化させることにより制御
することができ、図−2に示した例のように、最
大20μm程度の単結晶まで成長させることができ
る。しかも空気中で加熱した酸化クロム粉末は、
粒成長により構成粒子の粒径が大きくなつてもほ
とんど焼結状態にならず粉末状況を保つているの
で、成形体を作る原料として粉砕工程を経ずに使
用でき、粉砕工程にての不純物の混入等の恐れも
なくて高純度の粉末が得られる。
また、酸化クロム粉末の他の原料として必要に
応じ、その前駆体である水酸化クロムや無水クロ
ム酸、あるいは金属クロム粉末等を用いることが
できる。
かかる原料混合粉末を要すれば結合剤と共に所
望の成形手段により成形体を作成するが、この手
段は特に限定することなく、適宜必要に応じ選択
操作すればよい。
かくして、本発明によれば上記の如くして得ら
れた酸化クロムを主体とする成形材料を前述の還
元雰囲気で焼成することにより工業的に有利に酸
化クロム焼結体を製造することができる。
実施例 1
市販の緑色酸化クロム粉末(粒径1.0μm)500
gをアルミナルツボに入れ、電気炉中で1500℃で
12時間加熱したところ、該粉末は黒色の粉末とな
り、その構成粒子は電子顕微鏡写真より測定する
と、3〜18μmの単結晶よりなつていた。
市販緑色酸化クロム粉末と、上述の如くして加
熱した黒色粉末を下記の如き比率で混合し、1t/
cm3の圧力でプレスして20mm×20mm×15mmの形の成
形体を作つた。
The present invention relates to a method for producing a chromium oxide sintered body. In general, in refractories, the lower the porosity, the better the corrosion resistance, but on the other hand, the higher the porosity, the greater the spalling resistance and reduction in thermal conductivity.
Therefore, in order to adjust the practical properties of the refractory depending on the purpose of use and to facilitate the manufacturing conditions of the refractory, it is preferable to control the refractory so that it has an appropriate porosity. By the way, conventional acid chromium sintered bodies are made by adding a small amount of components such as Al 2 O 3 and SiO 2 to the Cr 2 O 3 powder raw material and sintering it, since it is difficult to sinter the Cr 2 O 3 powder compact. Sometimes, sintering was performed by forming a liquid phase of a low melting point composition containing these additives at the Cr 2 O 3 grain boundaries. The chromium oxide refractory bricks produced in this manner have a porosity of around 20% or more, and it is extremely difficult to produce a dense sintered body of chromium oxide. Currently, there is no successful example of producing a high-performance chromium oxide sintered body with good formability and adjusted porosity depending on the purpose of use. Therefore, the inventors of the present invention have discovered that a chromium oxide molded product can be coated with chromium carbide and fired, or a chromium carbide coating layer can be formed on the surface of the molded product during firing, thereby reducing the amount of chromium in the molded product. melting point composition
We succeeded in developing a dense chromium oxide sintered body by sintering the chromium oxide molded body in the presence of CrOx. (Japanese Unexamined Patent Publication No. 54-96508) In other words, by this method, it is possible to obtain an extremely uniform and dense chromium oxide sintered body with a porosity of 1% or less by firing a commercially available molded body mainly composed of chromium oxide. can. However, in this case, the volume of the molded body shrinks to about 1/2 during firing, making it easy for cracks to form even if the temperature is slightly uneven, making firing more difficult as the molded body becomes larger. Further, this method is not intended to adjust the porosity of the sintered body. Therefore, the present inventor conducted various studies to improve the above-mentioned manufacturing method with the aim of manufacturing a chromium oxide sintered body that has good formability by reducing firing shrinkage as much as possible and has a controlled arbitrary porosity. When the samples were stacked together, it was discovered that there was a significant difference in the firing yield when the average particle size reached 2 μm, and the present invention was completed. That is, the present invention provides a method for producing a chromium oxide sintered body in which a molding material mainly composed of chromium oxide powder is fired in a reducing atmosphere such that a chromium carbide coating layer is formed.
This invention relates to a method for producing a chromium oxide sintered body, characterized in that a large chromium oxide single crystal with an average particle size of 2 μm or more obtained by firing at a temperature of 0.degree. C. or higher and grain growth is mixed and used as a molding material. In the present invention, it is essential to sinter the molding material mainly composed of chromium oxide in a reducing atmosphere such that a chromium carbide coating layer is formed, and this is the first feature. Here, firing in a reducing atmosphere to form a chromium carbide coating layer means, as a specific embodiment, for example, filling carbon powder into a heating furnace for the molding material, preferably coating the molding material. The method is to fill a container with carbon powder and perform reduction firing while keeping air out. Other methods include CO,
Firing in a state where a mixed gas of CO 2 is introduced in the presence or absence of carbon powder, or by forming a coating layer of chromium carbide on the surface of the molding material in advance and firing in a reducing atmosphere as described above. Here are some ways to do it. Firing temperature is 1300℃ or higher, especially 1300~
1600°C is practical and suitable. The reason for this is that sintering is insufficient below 1300℃, and on the other hand, from the viewpoint of thermal energy and sinterability,
This is because around 1600°C is considered sufficient. Note that, after firing, the chromium carbide coating layer formed on the surface of the chromium oxide sintered body is thin and easily peeled off, so that it can be easily removed. Next, in the present invention, the molding material mainly composed of chromium oxide to be sintered under the above firing conditions is
It is essential that the molding material is a mixed powder whose particle size is composed of large chromium single crystals with an average particle size of 2 μm or more obtained by firing fine chromium oxide powder in air at 1200°C or higher and growing the grains. And this is the second feature. According to the inventor's experiments, as the particle size of the chromium oxide powder increases under the above firing conditions, the firing shrinkage of the compact tends to decrease. In other words, if the particle size is only composed of particles of 2 μm or less, the porosity will be 3% or less under certain firing conditions, and the compact will be sintered extremely densely, but on the other hand, if particles of 2 μm or more are mixed in, the porosity will be 3% or less under certain firing conditions. The porosity gradually increases, and when it consists only of particles of 2 μm or more, almost no firing shrinkage occurs, and the porosity reaches 35.
%. In other words, from these facts, the sintering conditions of a molded body mainly composed of chromium oxide are as follows: when the particle size of the chromium oxide particles constituting the molded body is less than 2 μm;
It can be inferred that there is a significant difference in the case where the diameter is .mu.m or more. Although the reason for this has not been fully elucidated, it can be inferred from the mechanism of sintering of many other materials as follows. Generally, the main sintering mechanisms are a vaporization-condensation mechanism, a viscous flow mechanism, and a diffusion sintering mechanism, and among these, the vaporization-condensation mechanism is a sintering mechanism that does not cause firing shrinkage. Therefore, it is presumed that the sintering of a compact mainly composed of chromium oxide powder with a particle size of 2 μm or more is due to the vaporization-condensation mechanism. (Hench; Ph.D. Thesis, The Ohio State
University, 1964, Univ.Microfilms, Order
No. 65-1184, 214pp; reports that sintering of Cr 2 O 3 in air occurs by a vaporization-condensation mechanism. ) On the other hand, sintering by the other two mechanisms other than vaporization-condensation involves shrinkage, and the particle size
It is thought that sintering of a compact mainly composed of chromium oxide powder of less than μm size occurs mainly by these two mechanisms. In addition, the particle size of the constituent powder of the chromium oxide molded body is 2.
It is not clear which mechanism is used for sintering based on μm, but the degree of each sintering mechanism changes sequentially from small particles to large particles. It is thought that this contributes to the comprehensive sintering of the body, and that the vaporization-condensation mechanism becomes dominant for particles larger than about 2 μm, and firing shrinkage does not occur. In any case, under the firing conditions of the present invention, a fine powder chromium oxide molded body with a particle size of less than 2 μm and a particle size of 2 μm
Coarse particle chromium oxide with a particle size of 2 μm or more
It is interesting that the sintered state differs markedly across the boundary. Therefore, in the present invention, by mixing powders above and below the chromium oxide particle size of 2 μm to form a particle size, a sintered body with less shrinkage during firing of the molding material and with controlled porosity can be obtained. can be manufactured. For example, a commercially available chromium oxide powder with a particle size of 1 μm and a large single-crystal chromium oxide powder with a particle size of 2 μm or more with a distribution of primary particles of 3 to 18 μm are fired as shown in Example 1. According to , it can be seen that the porosity of a sintered body increases linearly in proportion to the mixing ratio of large single crystal chromium oxide powder with a particle size of 3 to 18 μm. In addition, the sintered body has a smaller firing shrinkage than a sintered body containing only chromium oxide with a particle size of 2 μm or less, and has improved formability. In the present invention, although raw material chromium oxide powder with a particle size of less than 2 μm is commercially available, large single crystal particles with a particle size of 2 μm or more are generally not commercially available. Therefore, it is necessary to use coarse-grained chromium oxide powder that has been subjected to the desired particle growth, but in the present invention, commercially available fine powdered chromium oxide is preheated to 1200°C or higher in a normal atmosphere. By applying this method, single crystal chromium oxide with a particle size of 2 μm or more can be prepared, and it is necessary to use this as a raw material for forming a molding material. That is, commercially available chromium oxide powder is
When heated above 1200°C, chromium oxide particles grow and gradually increase in size. The degree of grain growth can be controlled by changing the temperature and heating time, and as shown in the example shown in Figure 2, it is possible to grow single crystals up to a maximum size of about 20 μm. Moreover, chromium oxide powder heated in air,
Even when the particle size of the constituent particles increases due to grain growth, it hardly becomes sintered and maintains its powder state, so it can be used as a raw material for making compacts without going through the pulverization process, and it is free from impurities during the pulverization process. High purity powder can be obtained without fear of contamination. Further, as other raw materials for the chromium oxide powder, chromium hydroxide, chromic anhydride, or metal chromium powder, which are precursors thereof, can be used as necessary. If necessary, such raw material mixed powder is used together with a binder to form a molded body by a desired molding means, but this means is not particularly limited and may be selected and operated as necessary. Thus, according to the present invention, a chromium oxide sintered body can be produced industrially advantageously by firing the molding material mainly composed of chromium oxide obtained as described above in the aforementioned reducing atmosphere. Example 1 Commercially available green chromium oxide powder (particle size 1.0 μm) 500
g in an aluminum crucible and heated at 1500℃ in an electric furnace.
When heated for 12 hours, the powder turned into a black powder, and its constituent particles were found to be single crystals of 3 to 18 μm, as determined by electron micrographs. Commercially available green chromium oxide powder and black powder heated as described above were mixed at the following ratio, and 1t/
A molded article having a shape of 20 mm x 20 mm x 15 mm was made by pressing at a pressure of cm 3 .
【表】
各成形体を耐火物製の箱の中の炭素粉末中に埋
めて電気炉中で1500℃で2時間の焼成をして焼結
体を作つたところ、各焼結体の周囲には約0.1mm
の炭化クロムの被膜層が生成しており、これを除
去して全気孔率を測定した結果、図−1の黒丸点
で示す如き結果を得た。
図−1において明らかな如く、この方法による
酸化クロム焼結体の気孔率は、成形体の材料とし
て使用する市販緑色酸化クロムを、焼成して粒子
の大きくなつた黒色酸化クロムで置き換えた量に
直線的に比例して大きくなつていることがわか
り、35%以下の任意の気孔率を有する焼結体が、
これら粉末の両者を混合する比率を選ぶことによ
つて製造できる。
実施例 2
実施例1におけると同様な市販緑色酸化クロム
粉末500gをアルミナルツボに入れ種々な温度で
種々の時間加熱した。加熱終了後の状況は1100℃
以下ではほとんど変化しなかつたが、1200℃以上
で加熱した場合、温度が高くなるにつれて、また
同一温度では加熱時間が長くなるにつれて粉末は
黒色化しそして粉末粒子の粒径は大きくなつた。
粉末の加熱温度と加熱時間に対する粉末外観およ
び電子顕微鏡写真から測定した。粒子径は次の如
き結果であつた。これらそれぞれの粉末を実施例
1と同様に成形し、炭素粉末中で1500℃、2時間
焼成したところ第1表に示したように気孔率をも
つた焼結体を得ることができた。[Table] When each molded body was buried in carbon powder in a refractory box and fired at 1500℃ for 2 hours in an electric furnace to make a sintered body, the surrounding area of each sintered body was is about 0.1mm
A coating layer of chromium carbide was formed, and when this was removed and the total porosity was measured, results as shown by the black dots in Figure 1 were obtained. As is clear from Figure 1, the porosity of the chromium oxide sintered body produced by this method is determined by the amount of commercially available green chromium oxide used as the material for the molded body replaced with black chromium oxide, which has become larger in size through firing. It was found that the size increases linearly in proportion, and a sintered body with an arbitrary porosity of 35% or less,
It can be manufactured by selecting the mixing ratio of both of these powders. Example 2 500 g of the same commercially available green chromium oxide powder as in Example 1 was placed in an aluminium crucible and heated at various temperatures for various times. Condition after heating is 1100℃
There was almost no change below, but when heated above 1200°C, the powder became blacker and the particle size of the powder particles became larger as the temperature became higher and as the heating time became longer at the same temperature.
Measurements were made from powder appearance and electron micrographs with respect to powder heating temperature and heating time. The particle diameter results were as follows. Each of these powders was molded in the same manner as in Example 1 and fired in carbon powder at 1500°C for 2 hours, yielding a sintered body having the porosity shown in Table 1.
【表】【table】
【表】
以上詳細に説明した如く、従来酸化クロムを主
体とする成形体は焼結が非常に困難なものとさ
れ、気孔率20%前後の品位の焼結体のみが市場に
あるに過ぎなかつたが、本発明の方法によれば、
任意の気孔率の各種品位の酸化クロム焼結体が極
めて容易に製造出来、さらに低コストで需要家の
要望に応えることが出来、硝子繊維製造等の各分
野の技術向上および生産原価低下に寄与すること
は多大である。[Table] As explained in detail above, compacts made mainly of chromium oxide are considered to be extremely difficult to sinter, and only sintered compacts with a porosity of around 20% are on the market. However, according to the method of the present invention,
It is extremely easy to manufacture chromium oxide sintered bodies of various grades with arbitrary porosity, and it is also possible to meet customer demands at low cost, contributing to technological improvements in various fields such as glass fiber manufacturing and to lower production costs. There is a lot to do.
【図面の簡単な説明】[Brief explanation of the drawing]
図−1は市販緑色酸化クロム粉末と3〜18μm
の粒径の粒子よりなる黒色酸化クロム粉末とを
種々の比率で混合した酸化クロムを1500℃で2時
間焼成した場合の、粉末混合比と焼結体の気孔率
との関係を示す図である。図−2は市販緑色酸化
クロム粉末を1500℃で12時間空気中で加熱した後
の粉末の走査電子顕微鏡写真である。
Figure 1 shows commercially available green chromium oxide powder with a thickness of 3 to 18 μm.
FIG. 2 is a diagram showing the relationship between the powder mixing ratio and the porosity of the sintered body when chromium oxide mixed at various ratios with black chromium oxide powder consisting of particles having a particle size of is fired at 1500°C for 2 hours. . Figure 2 is a scanning electron micrograph of commercially available green chromium oxide powder after it was heated in air at 1500°C for 12 hours.