JPS6135147B2 - - Google Patents

Info

Publication number
JPS6135147B2
JPS6135147B2 JP10413978A JP10413978A JPS6135147B2 JP S6135147 B2 JPS6135147 B2 JP S6135147B2 JP 10413978 A JP10413978 A JP 10413978A JP 10413978 A JP10413978 A JP 10413978A JP S6135147 B2 JPS6135147 B2 JP S6135147B2
Authority
JP
Japan
Prior art keywords
sintered body
chromium oxide
firing
oxide sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10413978A
Other languages
Japanese (ja)
Other versions
JPS5532740A (en
Inventor
Akira Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10413978A priority Critical patent/JPS5532740A/en
Publication of JPS5532740A publication Critical patent/JPS5532740A/en
Publication of JPS6135147B2 publication Critical patent/JPS6135147B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は酸化クロム焼結体の製造法に関し、更
に詳述すれば、酸化クロム粉末とCr金属粉末と
の混合成型体を還元雰囲気で焼成して成型性のよ
い緻密な酸化クロム焼結体を製造する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a chromium oxide sintered body, and more specifically, the present invention relates to a method for producing a chromium oxide sintered body, and more specifically, a mixed molded body of chromium oxide powder and Cr metal powder is fired in a reducing atmosphere to produce a dense sintered body with good moldability. The present invention relates to a method of manufacturing a chromium oxide sintered body.

本発明において酸化クロム焼成体というのは、
主構成鉱物がCr2O3である焼結体である。
In the present invention, the chromium oxide fired body is
It is a sintered body whose main constituent mineral is Cr 2 O 3 .

本発明者は先に、酸化クロム成形体を炭化クロ
ムで被覆として焼成するかあるいは焼成時に成形
体の表面に炭化クロムの被覆層を形成せしめるこ
とによつて、成形体中に低融点組成物CrOxを存
在せしめて酸化クロム成形体を焼結する方法を提
示した(特開昭54−96508号公報)。この方法によ
り市販の酸化クロム粉末を主体とする成形体を焼
成して気孔率が1%以下の緻密な酸化クロム焼結
体を得た。
The present inventor has previously discovered that a chromium oxide molded body is coated with chromium carbide and fired, or a coating layer of chromium carbide is formed on the surface of the molded body during firing, thereby injecting a low melting point composition CrOx into the molded body. proposed a method for sintering a chromium oxide molded body in the presence of chromium oxide (Japanese Unexamined Patent Publication No. 54-96508). By this method, a compact made mainly of commercially available chromium oxide powder was fired to obtain a dense chromium oxide sintered body with a porosity of 1% or less.

この方法によつて製造した酸化クロム耐火煉瓦
は、従来の製造方法にるTiO2,Al2O3,MgOある
いはFe2O3などを添加して焼結されていた煉瓦に
比較すると、気孔率は少なく、高温で蒸発しにく
く、気泡を硝子中に発生させ難いことなどの多く
の利点を有している。しかしこの方法によつて、
例えば耐火煉瓦のような大きな成形体を製造する
場合には、焼成に際し表面付近と内部とで微構造
や焼成収縮速度の差異が生じたり、また時として
Cr2O3の異常粒成長を起こしたりして亀裂を発生
しやすい難点がある。本発明は主として原料に
Cr金属を添加することによつてこれらの欠点を
なくしたものである。
The chromium oxide refractory bricks manufactured by this method have a lower porosity than bricks that are sintered by adding TiO 2 , Al 2 O 3 , MgO or Fe 2 O 3 using conventional manufacturing methods. It has many advantages, such as being less likely to evaporate at high temperatures, and less likely to generate bubbles in the glass. However, with this method,
For example, when manufacturing large molded bodies such as refractory bricks, differences in microstructure and firing shrinkage rate occur between near the surface and inside during firing, and sometimes
It has the disadvantage of causing abnormal grain growth of Cr 2 O 3 and being prone to cracking. The present invention mainly applies to raw materials.
These drawbacks were eliminated by adding Cr metal.

即ち、本発明は、酸化クロム粉末にCr金属粉
末を混合した成型体を焼成して酸化クロム焼結体
を製造するに当り該焼結体の表面に薄い炭化クロ
ム被覆層が形成されるような還元雰囲気で焼成す
ることを特徴とする酸化クロム焼結体の製造法に
かかるものである。
That is, the present invention provides a method in which a thin chromium carbide coating layer is formed on the surface of the sintered body when a chromium oxide sintered body is produced by firing a molded body in which chromium oxide powder and Cr metal powder are mixed. The present invention relates to a method for producing a chromium oxide sintered body, which is characterized by firing in a reducing atmosphere.

ところで特開昭54−96508号公報にかかる方法
において、Cr2O3粉末成型体がよく焼結するの
は、焼成時に一時的に生成するCrOx(O<x<
3/2)組成の液相の生成によると考えられる。こ
の場合焼結体に亀裂が発生しやすいのは、焼成に
際し表面が内部に比較して強還元になつているた
め表面がより早く焼結が進み、その結果表面付近
と内部とでは焼成収縮の速度に差異が生じ、さら
に表面からCr2O3の粒成長が進むための異常粒成
長がもたらされることなどによると考えられる。
By the way, in the method disclosed in JP-A-54-96508, the reason why the Cr 2 O 3 powder compact is well sintered is that CrOx (O<x<
This is thought to be due to the formation of a liquid phase with a composition of 3/2). In this case, cracks are likely to occur in the sintered body because the surface is more strongly reduced during firing than the inside, so sintering progresses faster on the surface, and as a result, firing shrinkage occurs near the surface and inside. This is thought to be due to differences in speed and abnormal grain growth due to further progress of grain growth of Cr 2 O 3 from the surface.

したがつて亀裂の発生をなくするためには、成
形体全体が同じ状態のもとで焼成されることが必
要である。本発明は本要件を満たすことに成功し
たものである。すなわちCr2O3粉末にCr金属粉末
を添加した成型体の表面に薄い炭化クロム被覆層
が形成されるような還元雰囲気で焼成することを
不可欠な要件とするものである。かかる焼成の具
体的な態様としては、たとえば、前記成型体の加
熱炉内に炭素粉末の充填、好ましくは該成型体を
被覆するように炭素粉末を容器内に充填し空気を
遮断して焼成することである。また、他の方法と
しては、COおよびCO2の混合ガスを導入すると
か、該成型体の表面に予め炭化クロム被覆層を塗
付により形成させて上記の如き炭素還元雰囲気に
保持して焼成する方法があげられる。焼成温度
は、1300℃以上、特に1300〜1600℃が実用的で好
適である。
Therefore, in order to eliminate the occurrence of cracks, it is necessary that the entire compact be fired under the same conditions. The present invention successfully satisfies this requirement. In other words, it is an essential requirement that the molded product made by adding Cr metal powder to Cr 2 O 3 powder be fired in a reducing atmosphere such that a thin chromium carbide coating layer is formed on the surface of the molded product. A specific embodiment of such firing includes, for example, filling carbon powder into a heating furnace for the molded body, preferably filling a container with carbon powder so as to cover the molded body, and firing the molded body while blocking air. That's true. Other methods include introducing a mixed gas of CO and CO2 , or forming a chromium carbide coating layer on the surface of the molded body in advance by applying it, and then firing it while maintaining it in a carbon-reducing atmosphere as described above. I can give you a method. The firing temperature is practically and preferably 1300°C or higher, particularly 1300 to 1600°C.

この理由は、1300℃では、焼成が不十分であ
り、他方、熱エネルギーの消費と焼結性の観点か
ら約1600℃程度で充分であるからである。
The reason for this is that sintering is insufficient at 1300°C, while about 1600°C is sufficient from the viewpoint of thermal energy consumption and sinterability.

なお、前記の炭化クロム被覆層は薄く、かつ剥
離し易いため容易にこれを焼結体より除去するこ
とができる。
The chromium carbide coating layer is thin and easily peeled off, so it can be easily removed from the sintered body.

用いる原料は、酸化クロムにあつては、通常市
販されている酸化クロム(Cr2O3)粉末である
が、他に必要に応じ、その前駆体である水酸化ク
ロム、無水クロム酸等もあげられ。他方。Cr金
属は、通常市販されている微粉末でよい。
The raw material used for chromium oxide is usually commercially available chromium oxide (Cr 2 O 3 ) powder, but its precursors such as chromium hydroxide and chromic anhydride may also be used as necessary. Rare. On the other hand. The Cr metal may be a commercially available fine powder.

かかる原料混合粉末を要すれば結合剤と共に所
望の成型手段により成型体を作成するが、この手
段は特に限定することもなく、適宜必要に応じて
選択操作すればよい。
If necessary, such raw material mixed powder is used together with a binder to form a molded body by a desired molding means, but this means is not particularly limited and may be selected and operated as appropriate.

本発明における方法によれば、亀裂の発生もな
く、Cr2O3粒子の異常粒成長もなく、さらに気孔
率も0.5〜5%の均一緻密な焼結体が得られる。
これはCr金属が焼成時に周囲の気孔中に存在す
る酸素と反応してCrOxを生成し、一時的に液相
を生成して焼結を促進し、しかもCr金属が全体
に均一に分布しているためCrOxの生成も全体に
一様に生成して焼結され、焼成収縮が全体に均一
に起こることによると考えられる。このことは表
面付近と内部とにかなり間隔があり不均一に焼結
が進みやすい耐火煉瓦のような大きな成形体を焼
成する場合に一層大きな利点を発揮し、かくて成
型性よく亀裂のない安定な均一緻密な焼結体を得
ることができる。
According to the method of the present invention, a uniform and dense sintered body without cracking, without abnormal grain growth of Cr 2 O 3 particles, and with a porosity of 0.5 to 5% can be obtained.
This is because Cr metal reacts with oxygen present in the surrounding pores during firing to generate CrOx, which temporarily generates a liquid phase to promote sintering, and the Cr metal is evenly distributed throughout. This is thought to be due to the fact that CrOx is generated uniformly throughout the sintering process, and sintering shrinkage occurs uniformly throughout the sintering process. This is an even greater advantage when firing large molded objects such as refractory bricks, which have considerable spacing between the surface and the inside, where sintering tends to progress unevenly. A uniform and dense sintered body can be obtained.

尚、Cr金属の添加割合は、焼結体の使用目的
によつて大幅に変えることができるが、その添加
量が微量(0.1〜1.0重量%)であつても亀裂の発
生やCr2O3の異常粒成長を阻止するのに顕著な効
果がある。さらにCr金属の添加量を多くした場
合には、Cr金属の酸化によつて生成するCr2O3
CrOx金属よりも密度が小さいため、この生成に
より体積が増加し、それが気孔を埋めることにな
り、全体の収縮率が小さくなる。その結果一層安
定に製造できる利点がある。しかしCr金属を5
〜10%添加して製造した焼結体では、X線分析で
はCr2O3の回折線を示すものの、CrOxが残存し
ていると考えられ空気雰囲気中で加熱すると酸化
により重量増加が認められる。したがつて、還元
雰囲気で使用する焼結体の製造の場合にはCr金
属を5%以上添加しても支障はないが、酸化雰囲
気で使用する焼結体を製造する場合には、Cr金
属の添加量を5%以下にするのが望ましい。
The proportion of Cr metal added can vary greatly depending on the purpose of use of the sintered body, but even if the amount added is minute (0.1 to 1.0% by weight), it may cause cracking or Cr 2 O 3 It has a remarkable effect on preventing abnormal grain growth. Furthermore, when the amount of Cr metal added is increased, Cr 2 O 3 and Cr 2 O 3 generated by oxidation of Cr metal
Since it is less dense than CrOx metal, this formation increases the volume, which fills the pores and reduces the overall shrinkage rate. As a result, there is an advantage that production can be made more stably. However, Cr metal 5
Although the sintered body manufactured with ~10% addition shows Cr 2 O 3 diffraction lines in X-ray analysis, it is thought that CrOx remains, and when heated in an air atmosphere, an increase in weight is observed due to oxidation. . Therefore, when manufacturing a sintered body to be used in a reducing atmosphere, there is no problem in adding 5% or more of Cr metal, but when manufacturing a sintered body to be used in an oxidizing atmosphere, adding Cr metal It is desirable that the amount added be 5% or less.

さらにCr金属の添加量を10%以上にした場
合、その焼結体のX線分析ではCr2O3以外に未知
物質の回折線が現われていた。この物質について
明らかにされていないが、これらのEPMAによる
分析はCr,C,Nの3成分から構成され、また
X線分析ではCr2CとCr2Nの両者の回折線に類似
しており、Cr2CとCr2Nとの固溶体と推定される
ものであつた。これらの焼結体のビツカース硬度
は、図−2で示されるように硬く、さらに全気孔
率は4%以下であり、今後切削工具や糸道などの
新たな材料として有効な利用が期待できる。
Furthermore, when the amount of Cr metal added was 10% or more, diffraction lines of unknown substances other than Cr 2 O 3 appeared in X-ray analysis of the sintered body. Although this substance has not been clarified, analysis by EPMA shows that it is composed of three components: Cr, C, and N, and X-ray analysis shows that the diffraction lines are similar to both Cr 2 C and Cr 2 N. , which was presumed to be a solid solution of Cr 2 C and Cr 2 N. These sintered bodies have a high Vickers hardness as shown in Figure 2, and have a total porosity of 4% or less, so they can be expected to be effectively used as new materials for cutting tools and thread guides in the future.

〔実施例 1〕 市販Cr2O3粉末とCr金属粉末とを種々の比率で
混合し、800Kg/cm2の圧力で20×20×15mmの大き
さにプレス成形した。これをアルミナ坩堝に入
れ、周囲を炭素粉末で充填して蓋をし、電気炉に
入れて1500℃で4時間焼成した。焼成後の焼結体
表面には0.1〜0.2mmの手によつても容易に剥がす
ことのできる炭化クロム被覆層が形成されてい
た。これを除去した焼結体には亀裂がなく均一な
組織のものであつた。そしてX線分析によると、
生成物は図−1に示されるように、Cr金属の添
加量が約10%以下の成形体から作られた焼結体で
はCr2O3のみが、それ以上の添加量から作られた
焼結体では新たにCr2(C,N)と推定される物
質の生成がみられた。しかしいずれの場合もCr
金属は残在していなかつた。全気孔率は0.5〜4
%であり、気孔はほとんどすべて球状に近い密閉
気孔になつていた。またこれらの焼結体を微粉砕
にして空気雰囲気中で1時間350℃の加熱速度で
1400℃まで熱天秤により重量変化を測定した結
果、Cr金属を5%以下添加したものではほとん
ど変化なく、7%添加のもので0.5%、10%添加
のもので1.2%の重量増加があつた。またこれら
試料のビツカース硬度は図−2に示されるように
約1000から1960の範囲にあつた。
[Example 1] Commercially available Cr 2 O 3 powder and Cr metal powder were mixed at various ratios and press-molded into a size of 20 x 20 x 15 mm at a pressure of 800 Kg/cm 2 . This was placed in an alumina crucible, the surrounding area was filled with carbon powder, the lid was placed, and the crucible was placed in an electric furnace and fired at 1500°C for 4 hours. After firing, a chromium carbide coating layer of 0.1 to 0.2 mm, which could be easily peeled off by hand, was formed on the surface of the sintered body. The sintered body from which this was removed had no cracks and had a uniform structure. According to X-ray analysis,
As shown in Figure 1, the product contains only Cr 2 O 3 in the sintered compact made from a compact with an addition amount of Cr metal of less than 10%, but in the sintered compact made from a sintered compact made with a higher amount of Cr added. In the concretions, a new substance presumed to be Cr 2 (C,N) was observed to be formed. However, in both cases Cr
There was no metal left. Total porosity is 0.5-4
%, and almost all of the pores were closed pores with a nearly spherical shape. In addition, these sintered bodies were pulverized and heated at a heating rate of 350°C for 1 hour in an air atmosphere.
As a result of measuring the weight change using a thermobalance up to 1400℃, there was almost no change in the products with 5% or less Cr metal added, a 0.5% increase in weight with 7% addition, and 1.2% increase in weight with 10% addition. . The Vickers hardness of these samples ranged from approximately 1000 to 1960, as shown in Figure 2.

〔実施例 2〕 市販Cr2O3粉末のみおよびこれにCr金属粉末を
0.5,1.0,3.0%添加したものを10×10×5cmの大
きさに1t/cm2で加圧成形し、これをSiC容器中に
入れ、周囲を炭素粉末で充填して1500℃で3時間
焼成した。焼成後無添加のものには亀裂がみられ
たが、Cr金属を添加したものでは亀裂はなかつ
た。また周囲に生成した約0.1mmの炭化クロム被
覆層を除去したものの全気孔率は3〜5%であつ
た。
[Example 2] Commercially available Cr 2 O 3 powder only and Cr metal powder added to it
The material containing 0.5, 1.0, and 3.0% was pressure-molded into a size of 10 x 10 x 5 cm at 1 t/cm 2 , placed in a SiC container, the surrounding area filled with carbon powder, and heated at 1500°C for 3 hours. Fired. After firing, cracks were observed in the product without additives, but there were no cracks in the product with Cr metal added. The total porosity was 3 to 5% after removing the approximately 0.1 mm chromium carbide coating layer that had formed around it.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1はCr2O3粉末とCr金属粉末との混合成形
体を1500℃で4時間炭素粉末中で焼成した後のX
線分析による生成物のCr2O3およびCr2(C,
N)の代表的な回折線の強度を原料混合比に対し
てプロツトしたものである。図−2は図−1の同
じ試料についてビツカース硬度を示したものであ
る。
Figure 1 shows the results of X
Products Cr 2 O 3 and Cr 2 (C,
The intensity of a typical diffraction line of N) is plotted against the raw material mixing ratio. Figure 2 shows the Vickers hardness of the same sample shown in Figure 1.

Claims (1)

【特許請求の範囲】 1 酸化クロム粉末にCr金属粉末を混合した成
型体を焼成して酸化クロム焼結体を製造するに当
り、該焼結体の表面に薄い炭化クロム被覆層が形
成されるような還元雰囲気で焼成することを特徴
とする酸化クロム焼結体の製造法。 2 炭化クロム被覆層が形成されるような還元雰
囲気での焼成は成型体の周囲に炭素粉末を充填し
て空気を遮断して行う特許請求の範囲第1項記載
の酸化クロム焼結体の製造法。 3 成型体のCr金属粉末は、多くとも5重量%
である特許請求の範囲第1項記載の酸化クロム焼
結体の製造法。 4 焼成温度が1300〜1600℃の範囲である特許請
求の範囲第1項又は第2項記載の酸化クロム焼結
体の製造法。 5 全気孔率が5%以下の酸化クロム焼結体であ
る特許請求の範囲第1〜4項いずれか記載の酸化
クロム焼結体の製造法。
[Claims] 1. When producing a chromium oxide sintered body by firing a molded body of chromium oxide powder mixed with Cr metal powder, a thin chromium carbide coating layer is formed on the surface of the sintered body. A method for producing a chromium oxide sintered body, which is characterized by firing in a reducing atmosphere such as: 2. Production of the chromium oxide sintered body according to claim 1, in which firing in a reducing atmosphere to form a chromium carbide coating layer is carried out by filling the periphery of the molded body with carbon powder to block air. Law. 3 The Cr metal powder in the molded body is at most 5% by weight.
A method for producing a chromium oxide sintered body according to claim 1. 4. The method for producing a chromium oxide sintered body according to claim 1 or 2, wherein the firing temperature is in the range of 1300 to 1600°C. 5. The method for producing a chromium oxide sintered body according to any one of claims 1 to 4, which is a chromium oxide sintered body having a total porosity of 5% or less.
JP10413978A 1978-08-26 1978-08-26 Manufacture of chromium oxide sintered body Granted JPS5532740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10413978A JPS5532740A (en) 1978-08-26 1978-08-26 Manufacture of chromium oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10413978A JPS5532740A (en) 1978-08-26 1978-08-26 Manufacture of chromium oxide sintered body

Publications (2)

Publication Number Publication Date
JPS5532740A JPS5532740A (en) 1980-03-07
JPS6135147B2 true JPS6135147B2 (en) 1986-08-11

Family

ID=14372757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10413978A Granted JPS5532740A (en) 1978-08-26 1978-08-26 Manufacture of chromium oxide sintered body

Country Status (1)

Country Link
JP (1) JPS5532740A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221755A (en) * 1985-07-22 1987-01-30 東芝タンガロイ株式会社 Chromium oxide base high temperature lubricating sintered body

Also Published As

Publication number Publication date
JPS5532740A (en) 1980-03-07

Similar Documents

Publication Publication Date Title
RU1787148C (en) Method of manufacturing articles from ceramic composite material
RU1828462C (en) Method for producing articles of ceramic composite materials
RU1776254C (en) Process of production of composite material
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
US2887393A (en) Refractory bodies containing boron nitride
US4882306A (en) Method for producing self-supporting ceramic bodies with graded properties
US3682686A (en) Method of manufacturing carbonaceous refractory products
RU1809827C (en) Process of manufacture of articles from ceramic composite material
US4374897A (en) Chromium oxide-based sintered bodies and process for production thereof
FI88911C (en) Method for making a ceramic self-supporting composite structure
JPS6135147B2 (en)
JPS6221865B2 (en)
US5164347A (en) Method for producing self-supporting ceramic bodies with graded properties
JPS6119584B2 (en)
JPH10510474A (en) Stop rod having an outer layer capable of forming a gas impermeable layer
US4252758A (en) Method of Producing a sintered chromium oxide body
JPS63387B2 (en)
Takata et al. Improvement of a Porous Material Mechanical Property by Hot Isostatic Process
JPS6235992B2 (en)
JPS62104655A (en) Nozzle for continuous casting
JPS5818346B2 (en) Heat-resistant silicon carbide refractories under nitrogen atmosphere
US5266537A (en) Method for producing self-supporting ceramic bodies with graded properties
JPS6127357B2 (en)
JPS61116284A (en) Crucible for melting metal
JPH0116790B2 (en)