JPS6235547A - Cooling mechanism of semiconductor element - Google Patents

Cooling mechanism of semiconductor element

Info

Publication number
JPS6235547A
JPS6235547A JP17485885A JP17485885A JPS6235547A JP S6235547 A JPS6235547 A JP S6235547A JP 17485885 A JP17485885 A JP 17485885A JP 17485885 A JP17485885 A JP 17485885A JP S6235547 A JPS6235547 A JP S6235547A
Authority
JP
Japan
Prior art keywords
stud
cylinder
shape memory
temperature
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17485885A
Other languages
Japanese (ja)
Inventor
Toshifumi Sano
佐野 俊史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17485885A priority Critical patent/JPS6235547A/en
Publication of JPS6235547A publication Critical patent/JPS6235547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a cooling mechanism which need not fill good thermal conductive substance with ready working by so imparting a shape memory to a stud that, when temperature becomes a transition temperature or higher, it is deformed so that the upper portion is extended radially to closely contact with the sidewall of a cylinder. CONSTITUTION:A stud 1 of cylindrical shape is formed with an axial hole 18a from the upper surface, a plurality of slits 18b which arrive at the bottom of the hole 18a radially from the upper surface and female threads formed toward bottom axial direction, and made of a shape memory alloy of the material which becomes temperature exceeding transition temperature at high temperature raised by the heat of a semiconductor element 4. The heat transmitted from the element 4 becomes high temperature exceeding the transition temperature of the stud 1 to deform by the shape memory, and the upper portion is opened with the slits 18 to extend radially in contact with the sidewall of a cylinder 2. Here is transmitted from the stud 1 through a cylinder housing 7 to a cooling plate 8, and removed by coolant 11 which flows in the plate 8.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体素子とそれらの素子上に装着された冷
却板との間の熱伝導機構に特徴のある半導体素子の冷却
機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling mechanism for semiconductor devices characterized by a heat conduction mechanism between semiconductor devices and a cooling plate mounted on those devices.

[従来の技術] 従来、高集■A化された半導体素子を冷却する手段とし
て基板上に複数個の半導体素子を塔載して成るLSIパ
ッケージに使用されてきた方法は、第4図に示すような
液体を冷媒とした冷却構造であり、第5図にその拡大断
面図を示す。
[Prior Art] A method conventionally used for LSI packages in which a plurality of semiconductor elements are mounted on a substrate as a means of cooling highly integrated semiconductor elements is shown in Fig. 4. This cooling structure uses a liquid as a refrigerant, and an enlarged sectional view thereof is shown in FIG.

基板6に取りつけられた半導体素子4にピストン13が
ばね14で押しつけられており、半導体素子4で発生し
た熱はピストン13、すきま16、シリンダーハウジン
グ7を通して冷却板8へと伝えられ、冷却板8は、冷媒
注入口9から注入され、冷媒排出口10から排出される
冷媒11により冷却されている。尚、2はシリンダー、
15は良熱伝導性物質、5ははんだである。
A piston 13 is pressed against the semiconductor element 4 mounted on the substrate 6 by a spring 14, and the heat generated in the semiconductor element 4 is transmitted to the cooling plate 8 through the piston 13, the gap 16, and the cylinder housing 7. is cooled by a refrigerant 11 injected from a refrigerant inlet 9 and discharged from a refrigerant outlet 10 . In addition, 2 is the cylinder,
15 is a material with good thermal conductivity, and 5 is a solder.

また、第6図に示すようにピストン13とばね14のか
わりにスタッド17とスタッド取り付は金具3を用いた
場合の1つのシリンダーの拡大縦断面図を示す。
Further, as shown in FIG. 6, an enlarged longitudinal sectional view of one cylinder is shown in which a stud 17 and a metal fitting 3 are used for stud attachment instead of the piston 13 and spring 14.

この構造では半導体素子4とスタッド取り付は金具3は
間に絶縁板12をはさんで接着され反対側でスタッド1
7をねじにより固定し、半導体素子4とスタッド17を
熱的にも機械的にも接続する。このとき半導体素子4で
発生した熱は絶縁板12、スタッド取り付は金具3、ス
タッド17、すきま16、シリンダーハウジング7を通
して冷却板8で冷媒11により取り除かれる。
In this structure, the semiconductor element 4 and the stud mounting metal fitting 3 are bonded with an insulating plate 12 in between, and the stud 1 is attached on the opposite side.
7 is fixed with a screw, and the semiconductor element 4 and the stud 17 are connected both thermally and mechanically. At this time, the heat generated in the semiconductor element 4 is removed by the coolant 11 on the cooling plate 8 through the insulating plate 12, the stud fitting 3, the stud 17, the gap 16, and the cylinder housing 7.

上記例はいずれもすきま16に熱伝導のわるい空気が存
在しては熱伝導の効率が悪くなるため、シリンダーハウ
ジング7のシリンダー2やピストン13、スタッド17
などの部品の加工精度を上げて、すきま16を微小にし
ている。
In all of the above examples, if air with poor heat conduction exists in the gap 16, the heat conduction efficiency will deteriorate, so the cylinder 2 of the cylinder housing 7, the piston 13, the stud 17
The machining accuracy of parts such as these has been increased to make the gap 16 minute.

また、不活性気体やコンパウンドなどの良熱伝導性物質
15をすきまに充填することにより熱伝導の効率を上げ
ていた。
Furthermore, the efficiency of heat conduction is increased by filling the gap with a material 15 having good thermal conductivity such as an inert gas or a compound.

[解決すべき問題点] 上述した従来の技術では熱伝導を良くするためにはピス
トン13やスタッド17とシリンダー2のすきま16を
小さくしなければならず高い加工精度が必要であるとい
う欠点がある。
[Problems to be solved] The above-mentioned conventional technology has the disadvantage that in order to improve heat conduction, the gap 16 between the piston 13 or stud 17 and the cylinder 2 must be made small, which requires high processing accuracy. .

熱伝導を良くするために不活性気体やコンパウンドなど
の良熱伝導性物質15を充填したものでは漏れの防止の
ために特別の機構が必要であり、組み立ての複雑化及び
修理を要する場合の再加工の問題を生じる。
Products filled with a good heat conductive substance such as an inert gas or compound15 to improve heat conduction require a special mechanism to prevent leakage, which complicates assembly and requires reuse when repairs are required. This causes processing problems.

またコンパウンドなどを充填したものでは、半導体素子
4や基板6の金属部を腐食させるという問題もある。
Further, in the case of filling with a compound or the like, there is a problem that the metal parts of the semiconductor element 4 and the substrate 6 are corroded.

コンパウンドなどを充填したものや、ピストン13など
の可動部品をばね14で押しつける構造のものは、重力
の影響を受けるので取り付は方向が制限されるという欠
点もある。
Those filled with a compound or the like, or those with a structure in which movable parts such as the piston 13 are pressed by a spring 14, have the disadvantage that the mounting direction is restricted because they are affected by gravity.

[問題点の解決手段] 本発明は、上記従来の問題点に着目してなされたもので
、′スタッドとシリンダー間のすきまを小さくする必要
がなく、加工容易で、良熱伝導物質を充填する必要がな
く、腐食の問題も生じさせず、取付方向の制限されるこ
とのない半導体素子の冷却機構を提供せんとするもので
ある。
[Means for Solving Problems] The present invention has been made by focusing on the above-mentioned problems of the conventional technology.It is not necessary to reduce the gap between the stud and the cylinder, it is easy to process, and it is filled with a good heat conductive material. It is an object of the present invention to provide a cooling mechanism for semiconductor elements that is unnecessary, does not cause problems of corrosion, and is not limited in mounting direction.

そのために、本発明は、基板上に複数個の半導体素子を
塔載したLSIパッケージの前記半導体素子上に、絶縁
板及びスタッド取付金具を介してスタッドを取付け、該
スタッドを受入れる複数のシリンダーを備えたシリンダ
ーハウジングを前記基板上に取付けると共に、該シリン
ダーハウジング上に冷却板を密着して設けた半導体素子
の冷却機構において、前記スタッドは半導体素子の発熱
により生じる高温が変態温度を超えている材質の形状記
憶合金で作られ、円筒形で上面から軸方向にうがった穴
と、上面から放射状に穴の底まで設けた複数本のスリッ
トと、底面に軸方向にめねじが設けられており、温度が
変態温度以上になると変形して上部が放射状に広がり上
記シリンダーの側壁と密着するような形状記憶が与えら
れ、上記シリンダー内に設けられ、常温ではシリンダー
側壁との間にある規定されたすきまを形成する径を有す
ることを特徴とする半導体素子の冷却機構を提供するも
のである。
To this end, the present invention provides an LSI package in which a plurality of semiconductor elements are mounted on a substrate, in which a stud is attached to the semiconductor element via an insulating plate and a stud mounting bracket, and a plurality of cylinders for receiving the stud are provided. In a cooling mechanism for a semiconductor device, in which a cylinder housing is mounted on the substrate and a cooling plate is provided in close contact with the cylinder housing, the stud is made of a material whose high temperature generated by heat generation of the semiconductor device exceeds the transformation temperature. Made of shape memory alloy, it has a cylindrical hole extending axially from the top surface, multiple slits extending radially from the top surface to the bottom of the hole, and a female thread axially provided on the bottom surface. When the temperature exceeds the transformation temperature, it deforms and the upper part expands radially, giving it a shape memory that makes it come into close contact with the side wall of the cylinder. The present invention provides a cooling mechanism for a semiconductor device characterized by having a diameter that is formed.

[実施例] 次に本発明の実施例について図面を参照して説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。第2図は
組立て時の変態温度以下の低温において第1図のシリン
ダーを取り出した拡大縦断面図、′i53図は変態温度
以上の高温における拡大縦断面図である。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention. 2 is an enlarged longitudinal sectional view of the cylinder of FIG. 1 taken out at a low temperature below the transformation temperature during assembly, and FIG. 53 is an enlarged longitudinal sectional view at a high temperature above the transformation temperature.

形状記憶合金製スタッド1は円筒形で上面から軸方向に
うがった穴18aと、上面から放射状に穴18aの底ま
でとどく複数本のスリ7)18bと、底面軸方向にめね
じ19が設けられている。
The shape memory alloy stud 1 is cylindrical and has a hole 18a extending in the axial direction from the top surface, a plurality of slots 7) 18b extending radially from the top surface to the bottom of the hole 18a, and a female thread 19 in the axial direction of the bottom surface. ing.

またスタッド1は半導体素子4の発熱により生じる高温
が変態温度を超える温度となるような材質の形状記憶合
金で造られており、変態温度を超える温度では変形して
上部が放射方向に広がり外面がシリンダー2の側壁と密
着するように形状記憶が与えられており、変態温度以下
の低温ではシリンダー2の側壁との間にある規定された
すきまを有する径をしている。シリンダー2はシリンダ
ーハウジング7内に設けられ、内に形状記憶合金製スタ
ッド1を設け、形状記憶合金製スタッド1が変態温度以
上の高温時に変形した際には、内壁が密着できる程度の
径をもった穴である。スタッド取り付は金具3は上面に
は形状配憶合金製スタッド1のめねじ19とかみ合うお
ねじ20が切られており下面は平面に仕上げられており
、半導体素子4に絶縁板12を間にはさんで接着される
。これに形状記憶合金製スタッド1をねじ込むことによ
り、半導体素子4と形状記憶合金製スタッド1が機械的
及び熱的に接続され、電気的には絶縁される。半導体素
子4ははんだ5で、基板6の一方の面上にマウントされ
る。
Further, the stud 1 is made of a shape memory alloy that allows the high temperature generated by the heat generation of the semiconductor element 4 to exceed the transformation temperature, and when the temperature exceeds the transformation temperature, the stud 1 deforms and the upper part expands in the radial direction and the outer surface becomes It is given shape memory so that it comes into close contact with the side wall of the cylinder 2, and has a diameter with a defined gap between it and the side wall of the cylinder 2 at low temperatures below the transformation temperature. The cylinder 2 is provided in a cylinder housing 7, and has a shape memory alloy stud 1 therein, and has a diameter large enough to allow the inner wall to come into close contact when the shape memory alloy stud 1 is deformed at a high temperature above the transformation temperature. It's a hole. For stud mounting, the metal fitting 3 has a male thread 20 cut on the upper surface that engages with the female thread 19 of the shape memory alloy stud 1, and a flat surface on the lower surface. It is glued by sandwiching it. By screwing the shape memory alloy stud 1 into this, the semiconductor element 4 and the shape memory alloy stud 1 are mechanically and thermally connected and electrically insulated. Semiconductor element 4 is mounted on one side of substrate 6 with solder 5 .

基板6はシリンダーハウジング7に取り付けられる。こ
のシリンダーハウジング7は銅やアルミのような熱伝導
性の非常によい材質で作られており、シリンダー2を設
けるに十分な大きざをもっている。
Substrate 6 is attached to cylinder housing 7. This cylinder housing 7 is made of a material with very good thermal conductivity, such as copper or aluminum, and has a sufficient size to accommodate the cylinder 2.

シリンダーハウジング7には冷却板8が取り付けられる
が、熱伝導関係を良くするためにおたがいに密着するよ
うな形状に表面が仕上げられている。冷却板8には熱を
取り除くために冷媒注入口9から注入され、冷媒排出口
10から排出される冷媒11が通っている。
A cooling plate 8 is attached to the cylinder housing 7, and its surfaces are finished in a shape that allows them to come into close contact with each other in order to improve heat conduction. A refrigerant 11 is injected into the cooling plate 8 from a refrigerant inlet 9 and discharged from a refrigerant outlet 10 in order to remove heat.

組立て時における変態温度以下の低温時には第2図に示
されるように形状記憶合金製スタッド1は上方のスリッ
ト18を閉じている半導体素子4に通電すると発熱し、
熱は絶縁板12及びスタッド取り付は金具3を通して形
状記憶合金製スタッド1に伝わる。半導体素子4から伝
えられた熱は形状記憶合金製スタッド1の温度を上昇さ
せ、形状記憶合金の変態温度を超えた高温状態となる。
At low temperatures below the transformation temperature during assembly, the shape memory alloy stud 1 generates heat when electricity is applied to the semiconductor element 4 that closes the upper slit 18, as shown in FIG.
Heat is transmitted to the shape memory alloy stud 1 through the insulating plate 12 and the metal fitting 3 for stud attachment. The heat transferred from the semiconductor element 4 increases the temperature of the shape memory alloy stud 1, reaching a high temperature state exceeding the transformation temperature of the shape memory alloy.

この時形状記憶合金製スタッド1は形状記憶により変形
し、上部はスリット18を開き放射方向に広がりシリン
ダー2の側壁に密着する。熱は形状記憶合金製スタッド
1からシリンダーハウジング7を通して冷却板8へと伝
わり、冷却板8の内部を流れている冷媒11によって取
り除かれる。このときの形状記憶合金製スタッド1の状
態は第3図に示された状態である。
At this time, the shape memory alloy stud 1 is deformed by shape memory, and the upper part opens the slit 18 and spreads in the radial direction and comes into close contact with the side wall of the cylinder 2. Heat is transferred from the shape memory alloy stud 1 through the cylinder housing 7 to the cooling plate 8, and is removed by the coolant 11 flowing inside the cooling plate 8. The shape memory alloy stud 1 at this time is in the state shown in FIG.

このとき形状記憶合金製スタッド1の上部はシリンダー
2の側壁と密着しており、高い熱伝導性を示す。
At this time, the upper part of the shape memory alloy stud 1 is in close contact with the side wall of the cylinder 2, and exhibits high thermal conductivity.

[発明の効果] 以上説明したように、本発明は、基板上に複数個の半導
体素子を塔載したLSIパッケージの前記半導体素子上
に、絶縁板及びスタッド取付金具を介してスタンドを取
付け、該スタッドを受入れる複数のシリンダーを備えた
シリンダーハウジングを前記基板上に取付けると共に、
該シリンダーハウジング上に冷却板を密着して設けた半
導体素子の冷却機構において、前記スタッドは半導体素
子の発熱により生じる高温が変態温度を超えている材質
の形状記憶合金で作られ、円筒形で上面から軸方向にう
がった穴と、上面から放射状に穴の底まで設けた複数本
のスリットと、底面に軸方向にめねじが設けられており
、温度が変態温度以上になると変形して上部が放射方向
に広がり上記シリンダーの側壁と密着するような形状記
憶が与えられ、上記シリンダー内に設けられ、常温では
シリンダー側壁との間にある規定されたすきまを形成す
る径を有することを特徴とする半導体素子の冷却機構と
したため、熱伝導機構として形状記憶合金製スタッドを
使用することにより、高温時には形状記憶合金製スタッ
ドは変形してシリンダーの側壁と密着するため従来のよ
うに加工精度を上げシリンダー2とのすきまを小さくす
る必要がなくなる。金属と金属が密着するためコンパウ
ンドや不活性気体などの良熱伝導性物質を充填する必要
もなく、漏れ防止のための特別な機構や、がっしりとし
たシリンダーハウジングも必要でない。
[Effects of the Invention] As explained above, the present invention provides an LSI package in which a stand is attached via an insulating plate and a stud mounting bracket to the semiconductor elements of an LSI package in which a plurality of semiconductor elements are mounted on a substrate. mounting a cylinder housing on the substrate with a plurality of cylinders for receiving studs;
In the semiconductor device cooling mechanism in which a cooling plate is provided in close contact with the cylinder housing, the stud is made of a shape memory alloy material in which the high temperature generated by heat generation of the semiconductor device exceeds the transformation temperature, and is cylindrical and has a top surface. It has a hole extending in the axial direction, multiple slits extending radially from the top surface to the bottom of the hole, and a female thread in the axial direction on the bottom surface.When the temperature exceeds the transformation temperature, the top part deforms. It is characterized by having a shape memory that spreads in the radial direction and comes into close contact with the side wall of the cylinder, is provided in the cylinder, and has a diameter that forms a defined gap between it and the side wall of the cylinder at room temperature. Since this is a cooling mechanism for semiconductor elements, shape memory alloy studs are used as a heat conduction mechanism. At high temperatures, the shape memory alloy studs deform and come into close contact with the side walls of the cylinder. There is no need to reduce the gap between the two. Because the metal is in close contact with the metal, there is no need to fill it with compounds or inert gases or other materials with good thermal conductivity, and there is no need for special mechanisms to prevent leakage or for a sturdy cylinder housing.

また充填する必要がないことから半導体や基板の金属部
の腐食のおそれもない、保守性も向上し、修理の問題も
なくなる。また重力に影響される部材はないため取り付
は方向に制限を生じない等の効果がある。
Furthermore, since there is no need for filling, there is no risk of corrosion of the metal parts of semiconductors or substrates, which improves maintainability and eliminates repair problems. Furthermore, since there are no members that are affected by gravity, there are no restrictions on the mounting direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図(イ)(
ロ)は組立て時の変態温度以下の低温においてPpJ1
図の一つのシリンダーを取り出した拡大縦断面図とその
A−A線断面図、第3図(イ)(ロ)は半導体素子の発
熱時に生じる変態温度以上の高温における縦断面図とそ
のB−B線断面図、 第4図は従来技術の構造の縦断面図、 第5図(イ)(ロ)は第4図の一つのシリンダーを取り
出した拡大縦断面図とそのC−C線断面図、 そして、第6図(イ)(ロ)はピストンのかわりにスタ
ッドを用いた構造の拡大縦断面図とそのD−D線断面図
である。 1:形状記憶合金製スタッド 2ニジリンダ− 3:スタッド取り付は金具 4:半導体素子 6:基板 7:シリンダーハウジング 8:冷却板 12:絶縁板 17:スタッド 18a、18bニスリツト
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG.
b) is PpJ1 at a low temperature below the transformation temperature during assembly.
An enlarged vertical cross-sectional view of one cylinder in the figure and its A-A cross-sectional view, and Figures 3 (A) and 3 (B) are vertical cross-sectional views at a high temperature above the transformation temperature that occurs when a semiconductor element generates heat, and its B- Figure 4 is a vertical cross-sectional view of the structure of the prior art; Figures 5 (a) and (b) are enlarged vertical cross-sectional views of one cylinder in Figure 4 and their C-C line cross-sectional views. , and FIGS. 6(a) and 6(b) are an enlarged vertical cross-sectional view of a structure using a stud instead of a piston and a cross-sectional view taken along the line D--D. 1: Shape memory alloy stud 2 Niji cylinder 3: Stud mounting metal fittings 4: Semiconductor element 6: Substrate 7: Cylinder housing 8: Cooling plate 12: Insulating plate 17: Studs 18a, 18b Nislit

Claims (1)

【特許請求の範囲】[Claims] 基板上に複数個の半導体素子を塔載したLSIパッケー
ジの前記半導体素子上に、絶縁板及びスタッド取付金具
を介してスタッドを取付け、該スタッドを受入れる複数
のシリンダーを備えたシリンダーハウジングを前記基板
上に取付けると共に、該シリンダーハウジング上に冷却
板を密着して設けた半導体素子の冷却機構において、前
記スタッドは半導体素子の発熱により生じる高温が変態
温度を超えている材質の形状記憶合金で作られ、円筒形
で上面から軸方向にうがった穴と、上面から放射状に穴
の底まで設けた複数本のスリットと、底面に軸方向にめ
ねじが設けられており、温度が変態温度以上になると変
形して上部が放射方向に広がり上記シリンダーの側壁と
密着するような形状記憶が与えられ、上記シリンダー内
に設けられ、常温ではシリンダー側壁との間にある規定
されたすきまを形成する径を有することを特徴とする半
導体素子の冷却機構。
A stud is attached to the semiconductor element of an LSI package in which a plurality of semiconductor elements are mounted on a substrate via an insulating plate and a stud mounting bracket, and a cylinder housing having a plurality of cylinders for receiving the stud is mounted on the substrate. In a cooling mechanism for a semiconductor device, the stud is made of a shape memory alloy of a material whose high temperature generated by heat generation of the semiconductor device exceeds a transformation temperature; It has a cylindrical shape with a hole extending in the axial direction from the top surface, multiple slits extending radially from the top surface to the bottom of the hole, and a female thread in the axial direction on the bottom surface, which deforms when the temperature exceeds the transformation temperature. The cylinder is provided with a shape memory such that its upper part expands in the radial direction and comes into close contact with the side wall of the cylinder, and is provided within the cylinder and has a diameter that forms a defined gap between it and the side wall of the cylinder at room temperature. A cooling mechanism for semiconductor devices characterized by:
JP17485885A 1985-08-08 1985-08-08 Cooling mechanism of semiconductor element Pending JPS6235547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17485885A JPS6235547A (en) 1985-08-08 1985-08-08 Cooling mechanism of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17485885A JPS6235547A (en) 1985-08-08 1985-08-08 Cooling mechanism of semiconductor element

Publications (1)

Publication Number Publication Date
JPS6235547A true JPS6235547A (en) 1987-02-16

Family

ID=15985883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17485885A Pending JPS6235547A (en) 1985-08-08 1985-08-08 Cooling mechanism of semiconductor element

Country Status (1)

Country Link
JP (1) JPS6235547A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669943A1 (en) * 2012-05-28 2013-12-04 Alcatel Lucent Methods and apparatus for providing transfer of a heat load between a heat source and a heat receiver
JP2013243365A (en) * 2012-05-22 2013-12-05 Boeing Co:The Heat dissipation switch
WO2015041682A1 (en) * 2013-09-20 2015-03-26 Ge Intelligent Platforms, Inc. Variable heat conductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243365A (en) * 2012-05-22 2013-12-05 Boeing Co:The Heat dissipation switch
EP2667141A3 (en) * 2012-05-22 2018-03-14 The Boeing Company Heat dissipation switch
EP2669943A1 (en) * 2012-05-28 2013-12-04 Alcatel Lucent Methods and apparatus for providing transfer of a heat load between a heat source and a heat receiver
WO2013178398A1 (en) * 2012-05-28 2013-12-05 Alcatel Lucent Methods and apparatus for providing transfer of a heat load between a heat source and a heat receiver
US20150075752A1 (en) * 2012-05-28 2015-03-19 Alcatel Lucent Methods and apparatus for providing transfer of a heat load between a heat source and a heat receiver
WO2015041682A1 (en) * 2013-09-20 2015-03-26 Ge Intelligent Platforms, Inc. Variable heat conductor
US9941185B2 (en) 2013-09-20 2018-04-10 GE Intelligent Platforms, Inc Variable heat conductor

Similar Documents

Publication Publication Date Title
US6490160B2 (en) Vapor chamber with integrated pin array
US9282675B2 (en) Thermal expansion-enhanced heat sink for an electronic assembly
US20070025085A1 (en) Heat sink
US5567986A (en) Heat sink
US4546405A (en) Heat sink for electronic package
TWI484890B (en) Heat dissipation unit with mounting structure
US6749013B2 (en) Heat sink
WO2006020332A1 (en) Liquid metal thermal interface for an integrated circuit device
US20140101933A1 (en) Interchangeable cooling system for integrated circuit and circuit board
JPS6095960A (en) Semiconductor rectifier
US3852803A (en) Heat sink cooled power semiconductor device assembly having liquid metal interface
US3826957A (en) Double-sided heat-pipe cooled power semiconductor device assembly using compression rods
US20170314873A1 (en) Heat conduction module structure and method of manufacturing the same
US20210259134A1 (en) Substrate cooling using heat pipe vapor chamber stiffener and ihs legs
US6817096B2 (en) Method of manufacturing a heat pipe construction
JPS6235547A (en) Cooling mechanism of semiconductor element
US6717246B2 (en) Semiconductor package with integrated conical vapor chamber
GB2342152A (en) Plate type heat pipe and its installation structure
JP2003322483A (en) Plate type heat pipe and method for manufacturing the same
JPH01248551A (en) Semiconductor package
JPH07335798A (en) Lsi cooling structure
CN110630916A (en) Satellite-borne high-power LED lamp phase change thermal control device and packaging method thereof
US6524524B1 (en) Method for making a heat dissipating tube
JPS6129163A (en) Ic module unit
JPH0573065B2 (en)