JPS623545B2 - - Google Patents
Info
- Publication number
- JPS623545B2 JPS623545B2 JP54012477A JP1247779A JPS623545B2 JP S623545 B2 JPS623545 B2 JP S623545B2 JP 54012477 A JP54012477 A JP 54012477A JP 1247779 A JP1247779 A JP 1247779A JP S623545 B2 JPS623545 B2 JP S623545B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- positive electrode
- corrosion
- negative electrode
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002253 acid Substances 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 229910001245 Sb alloy Inorganic materials 0.000 claims description 4
- 239000002140 antimony alloy Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 239000013078 crystal Substances 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000074 antimony hydride Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/564—Terminals characterised by their manufacturing process
- H01M50/566—Terminals characterised by their manufacturing process by welding, soldering or brazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
【発明の詳細な説明】
本発明は長年月使用される据置用あるいは潜水
船用などの鉛蓄電池の導電体に関するもので、異
常な腐食による切損現象を防止して高信頼化を達
成することを目的としている。[Detailed Description of the Invention] The present invention relates to a conductor for lead-acid batteries used for many years, such as stationary batteries or submarine batteries, and aims to achieve high reliability by preventing breakage caused by abnormal corrosion. The purpose is
長年月にわたつて使用される鉛蓄電池では、従
来正極柱と電池蓋との封口部にこぶ状の異状な腐
食、いわゆる局部腐食が、また負極では極板耳な
ど電解液表面近傍の導電部が多孔質化する陰極腐
食が発生することがあつた。 In lead-acid batteries that have been used for many years, abnormal lump-like corrosion, so-called local corrosion, occurs in the sealing area between the positive electrode column and the battery lid, and in the case of the negative electrode, conductive parts near the electrolyte surface, such as the electrode plate lugs, develop. Cathodic corrosion resulting in porosity sometimes occurred.
これらは甚だしい場合にはその部分が切損し電
池は直流電源としての機能を果さないばかりか、
爆発事故の原因となる例さえあつた。 In extreme cases, these parts may become damaged and the battery will not only not function as a DC power source, but
There have even been cases where it has caused explosions.
この腐食の現象および原因は正極と負極とで異
なる。正極の場合には毛管現象でクリープした少
量の電解液と鉛とが反応して中性またはアルカリ
性となり、腐食が促進されるのに対し、負極では
鉛−アンチモン合金からなる導電体のアンチモン
リツチな共晶部分からスチビン(SbH3)が発生し
アンチモン(Sb)が除去されて多孔質化するも
のである。ポールや格子等の導電体は一般的に鋳
造によつて製造しているが、溶湯の凝固過程で初
晶の析出によるデンドライト組織とその間隙をう
める共晶部分とができ、初晶の寸法は通常太さ10
〜30μmである。 The phenomenon and cause of this corrosion differ between the positive electrode and the negative electrode. In the case of the positive electrode, lead reacts with a small amount of electrolyte that has creeped due to capillary action, becoming neutral or alkaline and accelerating corrosion, whereas in the negative electrode, the antimony-rich conductor made of a lead-antimony alloy reacts with lead. Stibine (SbH 3 ) is generated from the eutectic portion, and antimony (Sb) is removed, resulting in a porous structure. Conductors such as poles and grids are generally manufactured by casting, but during the solidification process of the molten metal, a dendrite structure is formed due to the precipitation of primary crystals, and a eutectic part fills the gaps between them, and the dimensions of the primary crystals are Normal thickness 10
~30 μm.
このデンドライト組織を溶体化処理を行なえば
共晶部分のアンチモンが初晶中に溶解、分散して
消失する。しかしこの場合には純鉛と同様に粒界
での腐食が著しく進行しかえつて破断しやすい。 When this dendrite structure is subjected to solution treatment, the antimony in the eutectic portion is dissolved and dispersed in the primary crystal and disappears. However, in this case, as with pure lead, corrosion at the grain boundaries progresses significantly and it is easy to break.
本発明は、少なくとも正極柱又は負極における
電解液表面近傍の耳部材を、鉛−アンチモン系合
金からなる溶湯に超音波振動を加えながら冷却、
凝固させて製造することを特徴とするものであ
り、溶湯に超音波振動を加えながら凝固させる
と、デンドライト組織の個々の初晶及びその集合
体である結晶粒が微細化され、この製造法を正極
または負極の導電部にみられる異常な腐食の発生
個所を含む部品、特に正極側は正極柱、負極側は
電解液表面近傍の耳部材に適用すると、従来みら
れた異常な腐食が効果的に抑制されることを見い
出したことに基づくものである。 The present invention cools at least the ear member near the surface of the electrolyte in the positive electrode column or the negative electrode while applying ultrasonic vibration to a molten metal made of a lead-antimony alloy.
It is characterized by being produced by solidification, and when the molten metal is solidified while applying ultrasonic vibration, the individual primary crystals of the dendrite structure and the crystal grains that are aggregates thereof are refined, and this manufacturing method is When applied to parts that include areas where abnormal corrosion occurs on the conductive parts of the positive electrode or negative electrode, especially on the positive pole on the positive electrode side and on the ear parts near the electrolyte surface on the negative electrode side, the abnormal corrosion seen in the past can be effectively removed. This is based on the discovery that the
つぎにこれを実施例によつて説明する。 Next, this will be explained using examples.
第1図は正・負極導電部の鉛部品の製造方法を
示し1,1′は鉄製鋳型、2は鉛部品となる部
分、3は湯口、4は注湯口、5は鋳型1,1′の
支持体、6は超音波の振動伝達体、7はホーンで
超音波発振体につながつている。鉛部品は鉛−ア
ンチモン系合金の溶湯を注湯口4より注湯し鋳型
1,1′内の所定の空間2に充満させ、振動伝達
体6によつて超音波振動を加えながら冷却、凝固
させる。このように溶湯に超音波振動を加えなが
ら凝固させると、微細化された結晶組織を有する
鉛合金となる。凝固したら超音波の発振を止め鋳
型から取り出し湯口以上を切断して鉛部品を得
る。 Figure 1 shows the method for manufacturing lead parts for positive and negative electrode conductive parts. 1 and 1' are iron molds, 2 is the part that will become the lead parts, 3 is the sprue, 4 is the pouring port, and 5 is the mold 1, 1'. The support body, 6 is an ultrasonic vibration transmitter, and 7 is connected to the ultrasonic oscillator through a horn. For lead parts, molten lead-antimony alloy is poured from the pouring port 4 to fill a predetermined space 2 in the molds 1 and 1', and cooled and solidified while applying ultrasonic vibrations by the vibration transmitter 6. . When the molten metal is solidified while applying ultrasonic vibrations in this manner, a lead alloy having a fine crystal structure is obtained. Once solidified, the ultrasonic oscillation is stopped and the lead parts are removed from the mold and cut above the gate.
第2図はこのようにして製作した鉛部品を正極
導電部に用いた鉛蓄電池で8は負極板、セパレー
タおよび正極板からなるエレメント、9は正極
柱、10はストラツプでエレメント8の正極板と
正極柱9とを溶接、接続する部分、11は電池
蓋、12は正極柱9と電池蓋11とを気密に封口
するためのゴムパツキンである。 Figure 2 shows a lead-acid battery using the lead parts manufactured in this way as the positive electrode conductive part. 8 is an element consisting of a negative electrode plate, a separator, and a positive electrode plate, 9 is a positive electrode pole, and 10 is a strap, which is the positive electrode plate of element 8. The part for welding and connecting the positive electrode column 9, 11, is a battery cover, and 12 is a rubber gasket for airtightly sealing the positive electrode column 9 and the battery cover 11.
第1図の鉛部品2は、ゴムパツキン12と当接
する部分の合金組織が変化せぬよう注意して、下
端を溶接し、第2図の正極柱9とする。 The lower end of the lead component 2 shown in FIG. 1 is welded, taking care not to change the alloy structure of the portion that contacts the rubber packing 12, to form the positive electrode column 9 shown in FIG.
本発明になる鉛蓄電池は超音波振動を加えなが
ら凝固させた、微細化された結晶組織を有する鉛
部品を正極柱として用いているから電池蓋との封
口部での腐食の進行は抑制され、異常な局部腐食
による正極導電体の切断の事故が無い。以上は微
細化された結晶組織を有する鉛部品を正極柱とし
て用いた場合にしたが、同様にして製造した鉛部
品を負極板に溶接して耳とすれば、この部分での
異常な腐食による多孔質化をも防ぐことができ
る。 Since the lead-acid battery of the present invention uses a lead component having a fine crystal structure that is solidified while applying ultrasonic vibration as the positive electrode column, the progress of corrosion at the sealing part with the battery lid is suppressed. There is no accident of disconnection of the positive electrode conductor due to abnormal local corrosion. The above example uses a lead part with a refined crystal structure as a positive electrode column, but if a lead part manufactured in the same way is welded to a negative electrode plate to form a lug, abnormal corrosion in this part Porous formation can also be prevented.
本発明は以上詳述したように導電体の腐食とい
う電池寿命の二次的原因を除去し、極板そのも
のゝ劣化によつて寿命となるようにしたもので、
高信頼形鉛蓄電池を実現するものである。 As detailed above, the present invention eliminates the secondary cause of battery life, which is corrosion of the conductor, and allows the battery life to end due to deterioration of the electrode plate itself.
This realizes a highly reliable lead-acid battery.
第1図は本発明の一実施例を示す説明図、第2
図は本発明になる鉛蓄電池を示す縦断面模式図で
ある。
1,1′……鋳型、2……鉛部品となる部分、
6……振動伝達体、9……正極柱、11……電池
蓋、12……ゴムパツキン。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG.
The figure is a schematic vertical cross-sectional view showing a lead-acid battery according to the present invention. 1, 1'... Mold, 2... Part that will become lead parts,
6...Vibration transmitter, 9...Positive pole, 11...Battery cover, 12...Rubber gasket.
Claims (1)
面近傍の耳部材を、鉛−アンチモン系合金からな
る溶湯に超音波振動を加えながら冷却、凝固させ
て製造することを特徴とする鉛蓄電池の製造方
法。1. A method for manufacturing a lead-acid battery, which comprises manufacturing at least an ear member near the surface of an electrolyte in a positive pole or a negative electrode by cooling and solidifying a molten metal made of a lead-antimony alloy while applying ultrasonic vibrations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1247779A JPS55104072A (en) | 1979-02-06 | 1979-02-06 | Highly reliable lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1247779A JPS55104072A (en) | 1979-02-06 | 1979-02-06 | Highly reliable lead storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55104072A JPS55104072A (en) | 1980-08-09 |
JPS623545B2 true JPS623545B2 (en) | 1987-01-26 |
Family
ID=11806455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1247779A Granted JPS55104072A (en) | 1979-02-06 | 1979-02-06 | Highly reliable lead storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55104072A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5725339U (en) * | 1980-07-21 | 1982-02-09 | ||
JP4538922B2 (en) * | 2000-08-21 | 2010-09-08 | 新神戸電機株式会社 | Cast on strap welding apparatus and cast on strap welding method |
-
1979
- 1979-02-06 JP JP1247779A patent/JPS55104072A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55104072A (en) | 1980-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5002954B2 (en) | Lead acid battery | |
JPS623545B2 (en) | ||
JP2003317698A (en) | Control valve type lead storage battery | |
JP2002270150A (en) | Lead-acid battery | |
JPH11250894A (en) | Lead-acid battery, and manufacture thereof | |
JP2785633B2 (en) | Method of manufacturing grid for lead-acid battery | |
JP2001185206A (en) | Lead-acid battery and manufacturing method therefor | |
JP3413930B2 (en) | Manufacturing method of lead storage battery electrode group | |
JP4403772B2 (en) | Method for producing lead-acid battery | |
JPH0148611B2 (en) | ||
JP2002008624A (en) | Strap for lead-acid battery | |
JPH09192820A (en) | Production of hybrid lead battery | |
JP2000048800A (en) | Output terminal for lead-acid battery | |
JP2696975B2 (en) | Lead-acid battery group welding method | |
JP2904013B2 (en) | Lead storage battery | |
JP2003308822A (en) | Control valve type lead storage battery and its manufacturing method | |
JP2004355976A (en) | Manufacturing method of lead acid storage battery | |
JPH01115059A (en) | Plate group welding device of lead-acid battery | |
JPH02247973A (en) | Manufacture of lead storage battery plate group | |
US397607A (en) | Leonard paget | |
JP2002170550A (en) | Closed type lead storage battery | |
JPH0559548B2 (en) | ||
JP2532118B2 (en) | Welding method for electrode plates for lead-acid batteries | |
JP3632260B2 (en) | Lattice body manufacturing method of electrode plate for lead acid battery | |
JP2004311052A (en) | Lead-acid battery |