JPS6235276B2 - - Google Patents

Info

Publication number
JPS6235276B2
JPS6235276B2 JP9969578A JP9969578A JPS6235276B2 JP S6235276 B2 JPS6235276 B2 JP S6235276B2 JP 9969578 A JP9969578 A JP 9969578A JP 9969578 A JP9969578 A JP 9969578A JP S6235276 B2 JPS6235276 B2 JP S6235276B2
Authority
JP
Japan
Prior art keywords
laser
condenser
excitation light
laser crystal
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9969578A
Other languages
Japanese (ja)
Other versions
JPS5526662A (en
Inventor
Tetsuo Hosokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9969578A priority Critical patent/JPS5526662A/en
Publication of JPS5526662A publication Critical patent/JPS5526662A/en
Publication of JPS6235276B2 publication Critical patent/JPS6235276B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0404Air- or gas cooling, e.g. by dry nitrogen

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 本発明はレーザ発振器に関し、特に空気あるい
は窒素等の気体を用いてレーザ素子、励起光源、
および集光器を冷却することが必要なレーザ発振
器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser oscillator, and in particular to a laser oscillator that uses a gas such as air or nitrogen to generate a laser element, an excitation light source,
and regarding laser oscillators that require cooling of the condenser.

従来、この種のレーザ発振器は第1図に示す様
に、レーザ出力側反射鏡1、気密保持の為のガラ
ス面板2、レーザ結晶3、励起光源としてのXe
放電管4、Xe放電管4からの励起光を有効にレ
ーザ結晶3に集光するための楕円筒型集光器5、
冷却媒体としての気体、例えば窒素ガスを循環さ
せるためのブロア6、循環している窒素ガスから
熱を奪いレーザ発振器筐体10に熱を逃すための
フイン7、ガラス面板8、レーザ用全反射鏡9に
より構成されている。
Conventionally, this type of laser oscillator, as shown in Figure 1, consists of a laser output side reflector 1, a glass face plate 2 for airtightness, a laser crystal 3, and a Xe excitation light source.
an elliptical condenser 5 for effectively focusing the excitation light from the discharge tube 4 and the Xe discharge tube 4 onto the laser crystal 3;
A blower 6 for circulating a gas as a cooling medium, such as nitrogen gas, a fin 7 for taking heat from the circulating nitrogen gas and dissipating the heat to the laser oscillator housing 10, a glass face plate 8, and a total reflection mirror for the laser. 9.

一般に気体冷却方式のレーザ発振器において
は、ブロアの特性から気体の循環する通路の面積
をあまり狭くできない。すなわち気体の循環する
通路の面積を狭くするとそこでの圧力降下が大き
くなり、気体の流量が急速に低下し冷却力が低下
することになる。従つて第1図に示す従来例にお
いては、窒素ガスの通路の面積を広くするために
楕円型集光器5は単なる楕円筒になつており、窒
素ガスの流入口および流出口の面積は楕円型集光
器5の楕円の面積と同一であるため窒素ガスに対
する圧力降下は非常に少なく冷却上の観点からは
非常に良い構成となつている。
Generally, in a gas-cooled laser oscillator, the area of the passage through which gas circulates cannot be made very narrow due to the characteristics of the blower. That is, when the area of the passage through which gas circulates is narrowed, the pressure drop there increases, the flow rate of gas rapidly decreases, and the cooling power decreases. Therefore, in the conventional example shown in FIG. 1, the elliptical collector 5 is simply an elliptical cylinder in order to widen the area of the nitrogen gas passage, and the areas of the nitrogen gas inlet and outlet are elliptical. Since the area is the same as that of the ellipse of the type condenser 5, the pressure drop against the nitrogen gas is very small, and the configuration is very good from the standpoint of cooling.

しかし、入力電気エネルギーに対するレーザ光
エネルギーの比で定義されるレーザ効率の観点か
ら見ると楕円型集光器5は単なる楕円筒であるた
め、楕円筒の両端すなわち窒素ガスの流入口と流
出口からの励起光の漏れが大きく、Xe放電管4
からの励起光が有効にレーザ結晶3に集光されな
いためレーザ効率が非常に悪いと言う欠点があ
る。
However, from the point of view of laser efficiency, which is defined as the ratio of laser light energy to input electrical energy, the elliptical collector 5 is just an elliptical cylinder. Xe discharge tube 4 has a large leakage of excitation light.
The disadvantage is that the excitation light from the laser beam is not effectively focused on the laser crystal 3, resulting in very poor laser efficiency.

従つて第1図に示す従来のレーザ発振器は、冷
却系統は気体を使用している為小型軽量高信頼性
となるが、レーザ効率が低い為励起光源に電力を
供給するための電源が大きくなり小型軽量化には
不適である。
Therefore, the conventional laser oscillator shown in Figure 1 uses gas for its cooling system, making it small, lightweight, and highly reliable, but the laser efficiency is low, so the power supply required to supply power to the excitation light source is large. It is unsuitable for reducing size and weight.

本発明の目的は、冷却媒体である気体の通路の
断面積を狭くすることなく、集光器からの励起光
の漏れを少なくしレーザ効率を向上させ、小型軽
量、高信頼性のレーザ発振器を提供することはあ
る。
The purpose of the present invention is to reduce the leakage of excitation light from the condenser and improve laser efficiency without narrowing the cross-sectional area of the passage of the gas that is the cooling medium, thereby creating a small, lightweight, and highly reliable laser oscillator. There is something to offer.

本発明によれば、レーザ結晶と、このレーザ結
晶を励起する励起光源と、このレーザ結晶と励起
光源を内包し、前記励起光源からの励起光を前記
レーザ結晶に集光させる集光器とを備え、この集
光器内に冷却媒体を循環させるレーザ共振器にお
いて、軸方向の長さが各々異なり、内面に反射部
材を有し、且つ両端部に前記軸方向と垂直な内面
に反射部材を設けた反射板を有する2つの半楕円
筒の集光器を対向設置し、この2つの半楕円筒の
集光器の端部間にできる空隙から前記冷却媒体を
循環させることを特徴とするレーザ発振器が得ら
れる。
According to the present invention, a laser crystal, an excitation light source that excites the laser crystal, and a condenser that includes the laser crystal and the excitation light source and focuses excitation light from the excitation light source on the laser crystal are provided. In the laser resonator in which a cooling medium is circulated in the condenser, each has a different length in the axial direction, has a reflective member on the inner surface, and has reflective members on the inner surface perpendicular to the axial direction at both ends. A laser characterized in that two semi-elliptic cylindrical condensers each having a reflective plate are disposed facing each other, and the cooling medium is circulated through a gap formed between the ends of the two semi-elliptic condensers. An oscillator is obtained.

次に本発明の実施例について図面を参照して説
明する。第2図は本発明の第1の実施例を示すレ
ーザ発振器の断面図であり、レーザ出力側反射鏡
1′、気密保持の為のガラス面板2′、レーザ結晶
3′、Xe放電管4′、窒素ガスを循環させる為の
ブロア6′、循環している窒素ガスから熱を奪い
レーザ発振器筐体10′に熱を逃すためのフイン
7′、ガラス面板8′、レーザ用全反射鏡9′半楕
円筒の第1の集光器11、半楕円筒の第2の集光
器12、および反射板13,13′,13″,13
より構成されている。第3図は第2図に示す断
面方向に直角な方向から見た集光器の断面図であ
り、各部の記号の説明は第2図と同じである。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a sectional view of a laser oscillator showing a first embodiment of the present invention, in which a laser output side reflecting mirror 1', a glass face plate 2' for airtightness, a laser crystal 3', and a Xe discharge tube 4' , a blower 6' for circulating nitrogen gas, a fin 7' for taking heat from the circulating nitrogen gas and dissipating the heat to the laser oscillator housing 10', a glass face plate 8', and a total reflection mirror 9' for the laser. A first condenser 11 in the form of a semi-elliptic cylinder, a second condenser 12 in the form of a semi-elliptic cylinder, and reflection plates 13, 13', 13'', 13
It is composed of FIG. 3 is a cross-sectional view of the condenser seen from a direction perpendicular to the cross-sectional direction shown in FIG. 2, and the explanations of the symbols of each part are the same as in FIG. 2.

第2図において、Xe放電管4′からの励起光を
有効にレーザ結晶3′に集光する為の集光器は反
射板13,13′を付加した半楕円筒集光器11
と、反射板13″,13を付加した半楕円筒集
光器12を組み合わせて構成されている。窒素ガ
スの流入口は反射板13と13″による空隙であ
り、窒素ガスの流出口は反射板13′と13に
よる空隙である。反射板13と13″による空隙
および反射板13′と13による空隙の面積
は、窒素ガスの流入および流出時における圧力降
下が窒素ガスの流量低下を引き起こさない程度に
広くしてある。半楕円筒集光器11の長さは第3
図に示す様にXe放電管4′の斜線で示した発光部
分とほぼ等しくなる様考慮されている。Xe放電
管の発光は第3図に示すXe放電管4′の斜線部分
からあらゆる方向に発光する為、反射板13,1
3′,13″,13が無い従来例に比較して本実
施例では集光器から漏れる励起光量は大幅に減少
し、従つてレーザ効率が大幅を向上することは明
らかである。
In FIG. 2, the condenser for effectively concentrating the excitation light from the Xe discharge tube 4' onto the laser crystal 3' is a semi-elliptical condenser 11 equipped with reflectors 13, 13'.
and a semi-elliptical condenser 12 to which reflectors 13'' and 13 are added.The inlet of the nitrogen gas is a gap between the reflectors 13 and 13'', and the outlet of the nitrogen gas is a gap formed by the reflectors 13 and 13''. This is a gap formed by plates 13' and 13. The area of the gap formed by the reflecting plates 13 and 13'' and the gap formed by the reflecting plates 13' and 13 is made wide enough to prevent the pressure drop during the inflow and outflow of nitrogen gas from causing a decrease in the flow rate of the nitrogen gas.Semi-elliptical cylinder. The length of the condenser 11 is the third
As shown in the figure, it is designed to be approximately equal to the light emitting portion of the Xe discharge tube 4' shown by diagonal lines. Since the Xe discharge tube emits light in all directions from the shaded area of the Xe discharge tube 4' shown in FIG.
It is clear that the amount of excitation light leaking from the condenser is significantly reduced in this embodiment compared to the conventional example without 3', 13'', and 13, and therefore the laser efficiency is greatly improved.

以上は本発明の一実施例として基本的な実施例
をとり上げて説明したが、その他の変形例につい
ても本発明を適用できる。例えば第4図は本発明
の第2の実施例を示す集光器の断面図であり、
3″はレーザ結晶、4″はXe放電管、11′と1
2′は半楕円筒集光器である。第4図において半
楕円筒集光器11′と12′の楕円寸法は異なるが
その焦点位置は一致しており、その焦点位置にレ
ーザ結晶3″およびXe放電管4″が配置してあ
る。窒素ガスの流入口と流出口は半楕円筒集光器
11′と12′を組み合わせて出来る空隙部であ
り、窒素ガスの流入および流出時における圧力降
下が窒素ガスの流量低下を引き起こさない程度に
広くしてある。Xe放電管4″からの励起光はあら
ゆる方向に出るが、レーザ結晶3″およびXe放電
管4″は楕円の焦点位置に配置されている為必ず
レーザ結晶3″に集光される。従つて窒素ガスの
流入口および流出口からの励起光量の漏れは非常
に少なく、レーザ効率は従来例に比較して大幅に
向上する。
Although the basic embodiment has been described above as one embodiment of the present invention, the present invention can also be applied to other modified examples. For example, FIG. 4 is a cross-sectional view of a condenser showing a second embodiment of the present invention,
3″ is a laser crystal, 4″ is a Xe discharge tube, 11′ and 1
2' is a semi-elliptical condenser. In FIG. 4, although the elliptical dimensions of the semi-elliptical condensers 11' and 12' are different, their focal positions are the same, and the laser crystal 3'' and the Xe discharge tube 4'' are arranged at the focal positions. The inlet and outlet of the nitrogen gas are gaps formed by combining the semi-elliptical condensers 11' and 12', and the pressure drop during the inflow and outflow of the nitrogen gas does not cause a decrease in the flow rate of the nitrogen gas. It's widened. Excitation light from the Xe discharge tube 4'' is emitted in all directions, but since the laser crystal 3'' and the Xe discharge tube 4'' are arranged at the focal point of the ellipse, it is always focused on the laser crystal 3''. Therefore, the amount of excitation light leaking from the nitrogen gas inlet and outlet is extremely small, and the laser efficiency is greatly improved compared to the conventional example.

本発明は以上説明したように集光器の両端部が
完全開放となつている従来のレーザ発振器の有す
る集光器からの励起光量の漏れが多くレーザ効率
が悪いと言う前記従来例の欠点は軸方向長さが異
なり各々両端部に反射部材を有する2つの集光器
を対向配置しているため大幅に改善され、更にレ
ーザ効率が向上する為、レーザ発振器の電源は大
幅に小型化され、消費電力も少なくなり、特に電
池で動作するレーザ発振器においては動作時間が
大幅に延長されると言う効果がある。
As explained above, the present invention solves the drawbacks of the conventional laser oscillator in which both ends of the condenser are completely open, such that the amount of excitation light leaks from the condenser and the laser efficiency is poor. This is greatly improved because two condensers with different axial lengths and each having reflective members at both ends are placed opposite each other, and the laser efficiency is further improved, so the power supply for the laser oscillator is significantly downsized. This has the effect of reducing power consumption and significantly extending the operating time, especially in laser oscillators that operate on batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実施例を示す断面図、第2図は
本発明の第1の実施例を示す断面図、第3図は第
2図に示す本発明の第1の実施例における集光器
の断面図、第4図は本発明の第2の実施例におけ
る集光器の断面図である。 1,1′……レーザ出力側反射鏡、2,2′……
ガラス面板、3,3′,3″……レーザ結晶、4,
4′,4″……Xe放電管、5……楕円筒型集光
器、6,6′……ブロア、7,7′……フイン、
8,8′……ガラス面板、9,9′……レーザ用全
反射鏡、10,10′……レーザ発振器筐体、1
1,11′,12,12′……半楕円筒集光器、1
3,13′,13″,13……反射板。
FIG. 1 is a sectional view showing a conventional embodiment, FIG. 2 is a sectional view showing a first embodiment of the present invention, and FIG. 3 is a light condensing diagram in the first embodiment of the present invention shown in FIG. FIG. 4 is a cross-sectional view of a condenser in a second embodiment of the present invention. 1, 1'... Laser output side reflecting mirror, 2, 2'...
Glass face plate, 3, 3', 3''...laser crystal, 4,
4', 4''...Xe discharge tube, 5...elliptical condenser, 6,6'...blower, 7,7'...fin,
8, 8'... Glass face plate, 9, 9'... Laser total reflection mirror, 10, 10'... Laser oscillator housing, 1
1, 11', 12, 12'...Semi-elliptical condenser, 1
3, 13', 13'', 13...Reflector.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザ結晶と、このレーザ結晶を励起する励
起光源と、このレーザ結晶と励起光源を内包し、
前記励起光源からの励起光を前記レーザ結晶に集
光させる集光器とを備え、この集光器内に冷却媒
体を循環させるレーザ共振器において、軸方向の
長さが各々異なり、内面に反射部材を有し、且つ
両端部に前記軸方向と垂直な内面に反射部材を設
けた反射板を有する2つの半楕円筒の集光器を対
向設置し、この2つの半楕円筒の集光器の端部間
にできる空隙から前記冷却媒体を循環させること
を特徴とするレーザ発振器。
1 a laser crystal, an excitation light source that excites the laser crystal, and a laser crystal that includes the laser crystal and the excitation light source;
A laser resonator is provided with a condenser that condenses excitation light from the excitation light source onto the laser crystal, and in which a cooling medium is circulated within the condenser. Two semi-elliptic cylindrical light concentrators are installed opposite each other, and each of the two semi-elliptic cylindrical light concentrators has a reflective plate having a reflecting member provided on the inner surface perpendicular to the axial direction at both ends thereof. A laser oscillator characterized in that the cooling medium is circulated through a gap formed between the ends of the laser oscillator.
JP9969578A 1978-08-15 1978-08-15 Laser oscillator Granted JPS5526662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9969578A JPS5526662A (en) 1978-08-15 1978-08-15 Laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9969578A JPS5526662A (en) 1978-08-15 1978-08-15 Laser oscillator

Publications (2)

Publication Number Publication Date
JPS5526662A JPS5526662A (en) 1980-02-26
JPS6235276B2 true JPS6235276B2 (en) 1987-07-31

Family

ID=14254175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9969578A Granted JPS5526662A (en) 1978-08-15 1978-08-15 Laser oscillator

Country Status (1)

Country Link
JP (1) JPS5526662A (en)

Also Published As

Publication number Publication date
JPS5526662A (en) 1980-02-26

Similar Documents

Publication Publication Date Title
JP2003519902A (en) Optical amplifier device for solid-state laser (Verstaerker-Anordnung)
KR100267126B1 (en) Compact diode pumped solid state laser
JPS5843588A (en) Laser generating device
US5125001A (en) Solid laser device
US4641315A (en) Modified involute flashlamp reflector
JP2001244526A (en) Semiconductor laser excitation solid-state laser device
US20020075934A1 (en) Solid-state laser
JPS6182488A (en) Solid state laser device
US4734917A (en) Fluorescent converter pumped cavity for laser system
US9806484B2 (en) Radial polarization thin-disk laser
JPS6235276B2 (en)
US3784929A (en) Thermally-controlled crystalline lasers
JP2658961B2 (en) Solid-state laser device
US4486887A (en) High-power lasers
JPH10275952A (en) Semiconductor laser-pumped slid-state laser amplification device and semiconductor laser-pumped solid-state laser apparatus
JPS5836258B2 (en) Taiyohoushiya Energy Capsule
JPS59195892A (en) Solid state laser oscillator
JPS63110683A (en) Gas laser oscillator
US6181725B1 (en) Gas laser having a beam path folded in several planes
KR100257401B1 (en) Output controlling laser beam generator
CN217823688U (en) Multi-stroke pump disc laser
JP3340683B2 (en) Solid-state laser excitation module
JPH09270552A (en) Solid-state laser device
JPH11121843A (en) Semiconductor laser excitation solid laser amplifier and solid laser oscillation device
JPH118428A (en) Solid-state laser oscillator