JPS5836258B2 - Taiyohoushiya Energy Capsule - Google Patents

Taiyohoushiya Energy Capsule

Info

Publication number
JPS5836258B2
JPS5836258B2 JP49067647A JP6764774A JPS5836258B2 JP S5836258 B2 JPS5836258 B2 JP S5836258B2 JP 49067647 A JP49067647 A JP 49067647A JP 6764774 A JP6764774 A JP 6764774A JP S5836258 B2 JPS5836258 B2 JP S5836258B2
Authority
JP
Japan
Prior art keywords
heat
pipe
heat absorber
transfer medium
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49067647A
Other languages
Japanese (ja)
Other versions
JPS50158939A (en
Inventor
慎治 沢田
辰夫 谷
孝 堀米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP49067647A priority Critical patent/JPS5836258B2/en
Publication of JPS50158939A publication Critical patent/JPS50158939A/ja
Publication of JPS5836258B2 publication Critical patent/JPS5836258B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Description

【発明の詳細な説明】 この発明は、太陽放射エネノl・ギーを効率良く高温の
熱エネルギーに直接変換t7、家庭あるレ▲は工業の熱
源として利用するために使用する太陽放射エネルギー吸
収カプセルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar radiant energy absorbing capsule that is used to efficiently directly convert solar radiant energy into high-temperature thermal energy, and to use it as a heat source in households and industries. It is something.

電磁波エネルギーの代表的なものは、太陽放射エネルギ
ーであるが、地球軌道上に釦ける乎均太陽放射強度は、
約0− I W/ca ( I Km平方でI. O
O万KWのエネルギー)で、その放射エネルギーのスペ
クトル曲線は第1図の曲線1で示すように、波長0.5
μm近傍で最大値を有し,色温度は5900°Kである
A typical type of electromagnetic wave energy is solar radiation energy, but the average solar radiation intensity in the earth's orbit is
Approximately 0-I W/ca (I Km squared I.O
00,000 KW of energy), and the spectral curve of its radiant energy has a wavelength of 0.5 as shown by curve 1 in Figure 1.
It has a maximum value near μm, and the color temperature is 5900°K.

第1図の横軸は波長(μm)、縦軸は相対強度を示す。In FIG. 1, the horizontal axis shows wavelength (μm), and the vertical axis shows relative intensity.

ところで、太陽放射エネルギーは無尽蔵1あると云って
良い。
By the way, it can be said that there is an inexhaustible amount of solar radiant energy.

この太陽放射エネルギーを効率良〈直接変換できれば、
無公害の永久熱エネルギー源として利用することができ
る。
If this solar radiation energy could be converted efficiently (directly),
It can be used as a pollution-free permanent thermal energy source.

上述の点に鑑み、本発明者等は先に太陽放射エネルギー
の大部分を吸収し、放射損失がきわめて小さい太陽放射
エネルギー吸収装置を提案1〜た。
In view of the above points, the present inventors first proposed solar radiant energy absorbing devices 1 to 1 which absorb most of the solar radiant energy and have extremely small radiation loss.

そこでこれについてはじめに説明する。Therefore, this will be explained first.

渣ず、この太陽放射エネルギー吸収装置を構或する主要
な各部について説明する。
Without further ado, the main parts that make up this solar radiant energy absorbing device will be explained.

第2図はこの装置に用いる選択透過膜1の拡大断面図で
、2は前記選択透過膜1を付着させる基材となるガラス
板1たはガラス円筒である。
FIG. 2 is an enlarged cross-sectional view of the permselective membrane 1 used in this device, and 2 is a glass plate 1 or a glass cylinder serving as a base material to which the permselective membrane 1 is attached.

この構或で太陽放射エネルギーEが照射されると、その
大部分は選択透過膜1を透過する。
When solar radiant energy E is irradiated with this configuration, most of it passes through the selectively permeable membrane 1.

この透過したエネルギーは内部の熱吸収体3によって吸
収され、後述するように熱吸収体3{・ま冷却媒体によ
って冷却され熱が取り出されるから温度が下がり、入射
したエネルギーの波長よりも長波長の放射エネルギーを
放射するが、これは前記選択透過膜1で反射され再び熱
吸収体3に入り吸収される。
This transmitted energy is absorbed by the internal heat absorber 3, and as will be described later, the heat absorber 3 is cooled by the cooling medium and the heat is taken out, so the temperature decreases and the wavelength of the energy that is longer than the wavelength of the incident energy decreases. Radiant energy is emitted, which is reflected by the selective transmission film 1, enters the heat absorber 3 again, and is absorbed.

この状態の一例を第1図の曲線■に示す。An example of this state is shown by the curve ■ in FIG.

かくて能率の良い吸収が行える。In this way, efficient absorption can be achieved.

選択透過膜1の構或は、単層でも、多層構造でもよく、
あるいは格子状の金属メッシュにしてかき、メッシュの
大きさを透過させたいエネルギーの電磁波の波長に応じ
て選定すれば特定の波長の電磁波のみが透過するように
なる。
The structure of the selectively permeable membrane 1 may be a single layer or a multilayer structure,
Alternatively, by creating a grid-like metal mesh and selecting the size of the mesh according to the wavelength of the energy electromagnetic waves that you want to transmit, only electromagnetic waves of a specific wavelength will be transmitted.

使用する金属材料としては、金、錫、アルミニウム、ア
ンチモン等各種利用できる 捷た0 金属薄膜の組み合せ、々らびに薄膜の厚さによって、第
3図のように任意の特性の選択透過膜1が得られる。
Various metal materials can be used, such as gold, tin, aluminum, and antimony. Depending on the combination of metal thin films and the thickness of the thin film, a selectively permeable membrane 1 with arbitrary characteristics can be formed as shown in Fig. 3. can get.

なか、第3図の横軸は波長(μm)を縦軸は透過率釦よ
び反射率(2)を示し、曲線1は太陽放射エネルギーの
相対分布、曲線■は選択透過膜の透過率、曲線■aはS
n−1 % S b系nh=0.6 8μm( n
:屈折率、h:厚さ)の選択透過膜の反射率、曲線mh
はS n− 3 0 % F系nh0.83μmの選択
透過膜の反射率、曲線■はガラスの透過率、曲線■はガ
ラス反射率を示す。
In Figure 3, the horizontal axis shows the wavelength (μm), the vertical axis shows the transmittance button and reflectance (2), curve 1 is the relative distribution of solar radiant energy, curve ■ is the transmittance of the selective transmission film, and the curve ■a is S
n-1% Sb system nh=0.6 8μm (n
: refractive index, h: reflectance of selective transmission film (thickness), curve mh
indicates the reflectance of a selective transmission film of S n-30 % F system nh 0.83 μm, curve 2 indicates the transmittance of glass, and curve 2 indicates the reflectance of glass.

次に、前記装置に用いる熱吸収体について説明する。Next, the heat absorber used in the device will be explained.

熱吸収体としては準黒体1たは同等の吸収率を持つ物質
を銅捷たはステンレススチール等の基材の表面に密着さ
せたものを用いるか、特別に吸収効率が高くなるように
工夫された熱吸収体、たとえば、n型とp型の半導体を
接合し、これに太陽放射エネルギーを入射させて熱振動
により発熱させ、短波長のときは二次光量子を出し、こ
れにより励起された電子により導体中に短絡電流を流し
ジュール発熱させて、直接熱の形で吸収するようにした
光一熱変換セルや、この光一熱変換セルにさらに吸収す
べき電磁波に同調する作用をもたせた同調型の光一熱変
換器に類するものであれば、より高能率の熱吸収が可能
である。
As a heat absorber, use a quasi-black body 1 or a substance with an equivalent absorption rate that is adhered to the surface of a base material such as copper or stainless steel, or use a special method to increase the absorption efficiency. For example, an N-type and a P-type semiconductor are bonded together, solar radiation energy is incident on this material to generate heat through thermal vibration, and when the wavelength is short, secondary photons are emitted, which is excited. A photo-thermal conversion cell that uses electrons to cause a short-circuit current in a conductor to generate Joule heat and absorb it directly in the form of heat, and a tuned type that has the effect of tuning the electromagnetic wave to be absorbed into the photo-thermal conversion cell. A device similar to the light-to-heat converter described above can absorb heat with higher efficiency.

上記の選択透過膜と熱吸収体とを用いて構成した太陽放
射エネルギー吸収装置の一例を第4図a,bに示す。
An example of a solar radiation energy absorbing device constructed using the above-mentioned selectively permeable membrane and heat absorber is shown in FIGS. 4a and 4b.

この図でAは吸収カプセルで、Bは集束レンズである。In this figure, A is an absorption capsule and B is a focusing lens.

吸収カプセルAの構成は次のものからたっている。The composition of absorption capsule A consists of the following:

すなわち、1は選択透過膜でガラス円筒2の内面に設け
られてかり、ガラス円筒2の内部は真空(たとえば10
−3〜10−4Torr.)にされている。
That is, 1 is a permselective membrane provided on the inner surface of the glass cylinder 2, and the inside of the glass cylinder 2 is under vacuum (for example, 10
-3 to 10-4 Torr. ).

この内に熱吸収体3が配置されてしる。A heat absorber 3 is placed within this.

熱吸収体3の内部には、気体、液体等の熱伝達媒体4が
流動して熱吸収体3が集めめ熱を外部に取り出すように
なっている。
A heat transfer medium 4 such as gas or liquid flows inside the heat absorber 3, and the heat absorber 3 collects the heat, and extracts the heat to the outside.

熱伝達媒体4としては、たとえば、CO2,H20,N
a# N aKのようなものが用いられる。
As the heat transfer medium 4, for example, CO2, H20, N
Something like a# NaK is used.

1た集束レンズBとしては、凸1,/ンズやフレネルレ
ンズ等が用いられる。
As the focusing lens B, a convex lens, a Fresnel lens, or the like is used.

もちろん太陽放射エネルギーを集束できるものであれば
、反射鏡でもよい。
Of course, a reflecting mirror may be used as long as it can focus solar radiation energy.

太陽放射エネルギーEは、集束レンズBで集束されて、
選択透過膜1を通過して熱吸収体3に入射し吸収される
Solar radiant energy E is focused by a focusing lens B,
It passes through the selectively permeable membrane 1 and enters the heat absorber 3 where it is absorbed.

そして一部の吸収され々かった太陽放射エネルギー釦よ
び熱吸収体3から放射されるエネルギーは、選択透過膜
1で反射されるので再び熱吸収体3に入射する。
The energy radiated from the solar radiation energy button and the heat absorber 3, which has partially been absorbed, is reflected by the selective transmission film 1 and thus enters the heat absorber 3 again.

これを繰り返すため、入射した太陽放射エネルギーEの
犬部分は、熱吸収体3に吸収される。
As this process is repeated, a portion of the incident solar radiation energy E is absorbed by the heat absorber 3.

これが先に提案した太陽放射エネルギー吸収装置の概要
である。
This is the outline of the solar radiant energy absorption device proposed earlier.

ところで、上記第4図の吸収カプセルAは、第4図aに
示すように、熱吸収体30両端がガラス円筒20両側面
7, 2//を貫通している。
By the way, in the absorption capsule A of FIG. 4, as shown in FIG. 4a, both ends of the heat absorber 30 penetrate through both side surfaces 7, 2// of the glass cylinder 20.

したがって使用時に熱吸収体3を構成しているパイプが
温度上昇のために膨脹し、そのため上記貫通部分で破損
する危険があり、これを防止するのはかなりコスト高に
なる。
Therefore, during use, the pipe constituting the heat absorber 3 expands due to the rise in temperature, and there is therefore a risk of breakage at the above-mentioned penetrating portion, and it would be very costly to prevent this.

捷た、熱吸収体3の中を通る熱伝達媒体4は入口と出口
の温度差が犬き〈、そのため選択透過膜1の効果が十分
に発揮されないなどの欠点があった。
The heat transfer medium 4 passing through the shattered heat absorbing body 3 has a drawback that the temperature difference between the inlet and the outlet is large, so that the effect of the selectively permeable membrane 1 is not fully exhibited.

この発明は上記の欠点を除去するためになされたもので
ある。
This invention has been made to eliminate the above-mentioned drawbacks.

以下この発明について説明する。第5図a,bはこの発
明の一実施例を示すもので、2は真空容器を構成する透
明なガラス円筒で、内面に選択透過膜1が形成される。
This invention will be explained below. FIGS. 5a and 5b show an embodiment of the present invention, in which 2 is a transparent glass cylinder constituting a vacuum container, and a selectively permeable membrane 1 is formed on the inner surface.

3は熱吸収体で先端ぎは封止されてかり、基部が側壁2
を貫通して固着される。
3 is a heat absorber whose tip is sealed and whose base is attached to the side wall 2.
It penetrates and is fixed.

5はパイプで熱吸収体3の中心に位置して釦り、先端は
熱吸収体3の先端との間に間隙をもたせ、基部は熱吸収
体3に固着してある。
A pipe 5 has a button located at the center of the heat absorber 3, and has a distal end with a gap between it and the distal end of the heat absorber 3, and a base fixed to the heat absorber 3.

6,7は熱伝達媒体40入口および出口である。6 and 7 are the inlet and outlet of the heat transfer medium 40.

次に作用について説明する。Next, the effect will be explained.

入口から送り込1れた熱伝達媒体4は、捷ずパイプ5の
中を通って予熱されながら矢印方向に進み、端部で折り
返して外側を反対方向に進行しながら熱吸収体3の熱を
奪って次第に高温となり、出口7から目的の温度になっ
て出る。
The heat transfer medium 4 fed from the inlet 1 passes through the pipe 5 without cutting, advances in the direction of the arrow while being preheated, turns back at the end, and travels outside in the opposite direction, absorbing the heat of the heat absorber 3. The temperature gradually increases as the temperature increases, and the temperature reaches the desired temperature and exits from the outlet 7.

このようにいわゆる往復型にすると、熱伝達媒体4は熱
吸収体3の中心のパイプ5中を通るとき、外側の熱伝達
媒体4によって予熱されるから、方向を反転して外側を
通るときに、熱吸収体3の長さ方向について温度勾配が
小さくなり、選択透過膜の特性との相乗効果により全体
の効率を上げることができる。
In this so-called reciprocating type, when the heat transfer medium 4 passes through the pipe 5 at the center of the heat absorber 3, it is preheated by the heat transfer medium 4 on the outside, so when the heat transfer medium 4 reverses direction and passes through the outside. , the temperature gradient in the length direction of the heat absorber 3 becomes smaller, and the overall efficiency can be increased due to the synergistic effect with the characteristics of the selectively permeable membrane.

さらに、熱吸収体3か温度変化のために伸縮したとして
も、片側支持であるため何等の支障も生じない。
Furthermore, even if the heat absorber 3 expands or contracts due to temperature changes, no problem will occur because it is supported on one side.

第6図a,bはこの発明の他の実施例を示すもので、第
5図の実施例との相違は、熱伝達媒体4の外側の通路(
帰路)中に、乱流を起すための羽根8を配置した点であ
る。
6a and 6b show another embodiment of the present invention, and the difference from the embodiment of FIG. 5 is that the outer passage of the heat transfer medium 4 (
During the return trip), vanes 8 are placed to create turbulence.

羽根8の構或は第6図bに拡大して示すように、プロペ
ラ形をしており、それの複数枚を1組としてパイプ5に
取り付けられている。
As shown in the enlarged view of FIG. 6b, the structure of the blades 8 is propeller-shaped, and a plurality of blades are attached to the pipe 5 as a set.

したがって熱伝達媒体4がこの羽根8に当ると、進行方
向がねじられて乱流となり、より一層、熱伝達媒体4の
温度を均一にするように彷〈。
Therefore, when the heat transfer medium 4 hits the blades 8, the direction of movement is twisted and becomes a turbulent flow, which further makes the temperature of the heat transfer medium 4 uniform.

羽根8の組数は一組に限らず、第6図aに示すように、
適当な間隔で複数組設ければより一層効果が増大する。
The number of pairs of blades 8 is not limited to one pair, but as shown in Fig. 6a,
If a plurality of sets are provided at appropriate intervals, the effect will be further increased.

そして羽根8は回転させる必要はi〈、固定した1\で
も乱流を起すことができる。
The blade 8 needs to be rotated i<, but even a fixed 1\ can cause turbulence.

さらに羽根8の形状はプロペラ形に限らず単に突起状の
ものを用いてもよい。
Furthermore, the shape of the blades 8 is not limited to the propeller shape, but may be simply a protrusion.

上記のような乱流により管断面の円周方向について温度
が均一化されて、熱吸収体3の外表面は局部的な高温部
がなくなり、放射損失が低下し熱膨張の不均一による熱
吸収体3の歪みや、湾曲が生ずることが防止される。
Due to the turbulence described above, the temperature is made uniform in the circumferential direction of the pipe cross section, and the outer surface of the heat absorber 3 has no local high temperature areas, reducing radiation loss and reducing heat absorption due to non-uniform thermal expansion. Distortion and curvature of the body 3 are prevented.

これらは乱流による熱伝達率の向上と相乗し全体の効率
を大巾に改善するとともに、熱ストレスの少ない高信頼
性の太陽放射エネルギー吸収カプセルを完成することが
できる。
These effects combine with the improvement in heat transfer coefficient due to turbulence to significantly improve overall efficiency, making it possible to create a highly reliable solar radiant energy absorbing capsule with less thermal stress.

以上詳細に説明したように、この発明はガラス円筒等の
透明な真空容器の内面に選択透過膜を形成してむき、こ
の内面に熱吸収体を片側のみ支持するようにし、この熱
吸収体の内部:Cパイプを挿入して、熱伝達媒体の往路
をこのパイプとし、帰路をこのパイプの外側と熱吸収体
との間として、いわゆる往復型としたので、熱伝達媒体
はあらかじめ往路中で予熱されてから熱吸収体で加熱さ
れるので、温度勾配が従来の貫通型にくらべて小さくな
り、効率を高めることができる。
As explained in detail above, the present invention forms and peels a selectively permeable membrane on the inner surface of a transparent vacuum container such as a glass cylinder, and supports only one side of the heat absorber on this inner surface. Inside: A C-pipe is inserted, and the outgoing path of the heat transfer medium is this pipe, and the return path is between the outside of this pipe and the heat absorber, making it a so-called reciprocating type, so the heat transfer medium is preheated in advance on the outgoing path. Since the heat absorber heats the heat absorber, the temperature gradient is smaller than that of the conventional through-hole type, and efficiency can be improved.

1た熱吸収体の支持が片側で行われているので、温度変
化に順応でき破損することがない等の優れた特長がある
Since the heat absorber is supported on one side, it has excellent features such as adaptability to temperature changes and no damage.

さらに熱吸収体に挿入したパイプの外側に羽根を取り付
けることにより熱伝達媒体に乱流を釦こさせ、温度の均
一化をより一層向上させることができる。
Furthermore, by attaching vanes to the outside of the pipe inserted into the heat absorber, it is possible to create turbulence in the heat transfer medium and further improve temperature uniformity.

従って急激な温度変化からの熱吸収体の破損をさらに防
止して、乱流効果により温度勾配が可及的に小さくなり
効率を高める等の優れた特長がある。
Therefore, it has excellent features such as further preventing damage to the heat absorber from rapid temperature changes, and minimizing temperature gradients due to the turbulent flow effect, increasing efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は太陽放射エネルギーのスペクトル曲線図、第2
図{・ま選択透過膜の拡大断面図、第3図は選択透過膜
の透過率と反射率の特性図、第4図a,bは先に提案し
た太陽放射エネルギー吸収装置の構成を示す縦断面図k
よび横断面図、第5図a,bはこの発明の一実施例を示
す縦断面図および横断面図、第6図a,bはこの発明の
他の実施例を示す縦断面図お−よび要部の拡大断面図で
ある。 図中、1は選択透過膜、2はガラス円筒、3は熱吸収体
、4は熱伝達媒体、5はパイプ、6,7は熱伝達媒体の
入口釦よび出口である。
Figure 1 is a spectral curve diagram of solar radiant energy, Figure 2
Fig. 3 is an enlarged cross-sectional view of the selectively permeable membrane, Figure 3 is a characteristic diagram of the transmittance and reflectance of the selectively permissive membrane, and Figures 4 a and b are longitudinal sections showing the configuration of the solar radiant energy absorption device proposed earlier. Area map k
FIGS. 5a and 5b are longitudinal sectional views and cross-sectional views showing one embodiment of the present invention, and FIGS. 6a and b are longitudinal sectional views and cross-sectional views showing another embodiment of the present invention. FIG. 3 is an enlarged sectional view of main parts. In the figure, 1 is a permselective membrane, 2 is a glass cylinder, 3 is a heat absorber, 4 is a heat transfer medium, 5 is a pipe, and 6 and 7 are an inlet button and an outlet for the heat transfer medium.

Claims (1)

【特許請求の範囲】 1 吸収カプセルに焦線的に太陽放射エネルギーを入射
させる焦線型太陽エネルギー吸収変換装置において、内
面に選択透過膜を形成した透明i真空容器の内部に、先
端を封じたパイプ状の熱吸収体を収容してその基部を前
記真空容器の一端部を貫通させて固着し、さらに前記熱
吸収体の内部にパイプを挿入してこのパイプを熱伝達媒
体の流動する住路とし前記パイプの外側と熱吸収体との
間を熱伝達媒体の流動する帰路として前記熱吸収体の内
部を2分したことを特徴とする太陽放射エネルギー吸収
カプセル。 2 特許請求の範囲1記載の太陽放射エネルギー吸収カ
プセルに釦いて、熱吸収体内部にかける該熱吸処体とパ
イプとの間隙に、熱伝達媒体の流れに乱流を生じゼ1〜
める羽根、又は凸起状のスベーサを取り付けたことを特
徴と寸る太陽放射エネルギー吸収カプセル。
[Claims] 1. In a focal-line solar energy absorption and conversion device that causes solar radiation energy to enter an absorption capsule in a focal-line manner, a pipe whose tip is sealed inside a transparent i-vacuum container with a selectively permeable film formed on the inner surface. A heat absorber having a shape is housed therein, the base thereof is fixed by passing through one end of the vacuum container, and a pipe is further inserted into the inside of the heat absorber, and the pipe is used as a passageway through which a heat transfer medium flows. A solar radiation energy absorbing capsule characterized in that the inside of the heat absorber is divided into two, with the heat transfer medium flowing between the outside of the pipe and the heat absorber as a return path. 2. When the solar radiant energy absorbing capsule according to claim 1 is pressed, turbulence is created in the flow of the heat transfer medium in the gap between the heat absorbing body applied inside the heat absorbing body and the pipe.
A solar radiant energy absorbing capsule characterized by being equipped with folding blades or a convex subesa.
JP49067647A 1974-06-15 1974-06-15 Taiyohoushiya Energy Capsule Expired JPS5836258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49067647A JPS5836258B2 (en) 1974-06-15 1974-06-15 Taiyohoushiya Energy Capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49067647A JPS5836258B2 (en) 1974-06-15 1974-06-15 Taiyohoushiya Energy Capsule

Publications (2)

Publication Number Publication Date
JPS50158939A JPS50158939A (en) 1975-12-23
JPS5836258B2 true JPS5836258B2 (en) 1983-08-08

Family

ID=13351007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49067647A Expired JPS5836258B2 (en) 1974-06-15 1974-06-15 Taiyohoushiya Energy Capsule

Country Status (1)

Country Link
JP (1) JPS5836258B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232141A (en) * 1975-09-05 1977-03-11 Topy Ind Ltd Heat receiving and discharging device
IL50978A (en) * 1976-01-26 1979-12-30 Owens Illinois Inc Solar energy collector
DE2612171A1 (en) * 1976-03-23 1977-09-29 Philips Patentverwaltung SOLAR COLLECTOR WITH EVACUATED ABSORBER COVER TUBE
JPS5510986U (en) * 1978-07-10 1980-01-24
JPS57120060A (en) * 1981-01-20 1982-07-26 Taiyo Sanso Kk Water heater utilizing solar heat
JPS5833960U (en) * 1981-08-28 1983-03-05 株式会社クボタ solar collector for greenhouse
JP2753988B2 (en) * 1996-06-21 1998-05-20 佳津夫 立石 Solar collector and heat utilization equipment using it

Also Published As

Publication number Publication date
JPS50158939A (en) 1975-12-23

Similar Documents

Publication Publication Date Title
US4135489A (en) Solar energy conversion system
US4033118A (en) Mass flow solar energy receiver
JP4829407B2 (en) Solar energy concentrator and converter and combinations thereof
US4010732A (en) Multi-stage system for accumulation of heat from solar radiant energy
US3999283A (en) Method of fabricating a photovoltaic device
US6717045B2 (en) Photovoltaic array module design for solar electric power generation systems
JPS5934263B2 (en) A device that converts light energy into heat energy by concentrating light using a fluorescent layer.
JP2008524546A (en) Electromagnetic radiation concentrator
JP4955419B2 (en) White light excitation laser device
TW200946775A (en) Concentrators for solar power generating systems
US3467840A (en) Solar thermionic convertor
CN105157257A (en) Slot type light gathering type solar vacuum heat collecting pipe
US4038964A (en) Parabolic solar concentrator employing flat plate collector
US5214921A (en) Multiple reflection solar energy absorber
JPS5836258B2 (en) Taiyohoushiya Energy Capsule
US3297958A (en) Solar pumped laser
US4300538A (en) Solar energy receivers
WO2012073664A1 (en) Solar thermal collector tube
JPS5911827B2 (en) Selective absorption surface of heat collection part
EP3091307A1 (en) Hybrid system comprising a thermosolar parametric cylinder and a photovoltaic receiver
JP3080437B2 (en) Optical energy wavelength converter
US3217702A (en) Radiation collecting devices
JP3958032B2 (en) Glazing collector
CN205037606U (en) Slot type spotlight type solar vacuum heat collection tube
JPS5916242B2 (en) Reflector for solar radiant energy