JP3958032B2 - Glazing collector - Google Patents

Glazing collector Download PDF

Info

Publication number
JP3958032B2
JP3958032B2 JP2001354888A JP2001354888A JP3958032B2 JP 3958032 B2 JP3958032 B2 JP 3958032B2 JP 2001354888 A JP2001354888 A JP 2001354888A JP 2001354888 A JP2001354888 A JP 2001354888A JP 3958032 B2 JP3958032 B2 JP 3958032B2
Authority
JP
Japan
Prior art keywords
heat
heat collecting
thin solar
thin
collector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001354888A
Other languages
Japanese (ja)
Other versions
JP2003161534A (en
Inventor
武雄 齋藤
Original Assignee
武雄 齋藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武雄 齋藤 filed Critical 武雄 齋藤
Priority to JP2001354888A priority Critical patent/JP3958032B2/en
Publication of JP2003161534A publication Critical patent/JP2003161534A/en
Application granted granted Critical
Publication of JP3958032B2 publication Critical patent/JP3958032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S2010/751Special fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【0001】
【発明が属する技術分野】
発明は、太陽エネルギーを効率よく利用して温水および高温熱媒体などを製造する薄型太陽集熱装置に関する。
【0002】
【従来の技術】
住宅等の暖房用温水および高温熱媒体などの加熱用として、従来から平板型の太陽集熱装置(ソーラーコレクタとも呼ばれる)が多く使用されている。平板型集熱装置の一例として図9にその概略を示す。代表的な平板型集熱装置はアルミニウム製のフィン14と銅製の集熱管4から成り、集熱管4の内部に熱媒体を循環し、背面を断熱材6で断熱してある。これらは通常、上面に透過体を持つ外装箱に収められ、透過体5には通常、強化もしくは半強化の一枚ガラスが用いられる。
【0003】
しかしながら、以上の従来技術によれば、集熱装置内部の空気の対流・熱伝導現象によって熱損失が増大すること、太陽光を集光しない(集光比ほぼ1)こと、および集熱管と熱媒体との熱伝達が悪いことなどが複合的に効いて、弱い日射時、高温集熱時、および寒冷地での使用(60℃〜70℃集熱)において、集熱効率が著しく低下するという短所がある。
【0004】
従来技術では、装置の熱損失を改善するために、透過体にペアガラス構造を用いて断熱性能の向上を図る場合がある。この場合、ペアガラスの内部空気や熱伝導率の小さいクリプトンガスなどの不活性ガスを封入する場合がある。また、集熱管をガラス管で覆い、ガラス管内部を真空に引いた真空管型集熱装置集熱装置も提案されている(例えば特開2001-221512号、特許文献1)。
【0005】
しかしながら、従来技術によれば透過体上面からの熱損失は減少するが、集熱装置内部の対流による熱損失の問題が解決されていないため、大幅な集熱効率の向上は困難である。さらに、ペアガラスは非常に重く、装置自体が厚くかさばり、製造コストも大きい。また、真空管型集熱装置は、有効面積当たりの集熱効率が低いにもかかわらず製造コストが高く、さらに真空に引いたガラス管が破裂するという危険性がある。
【0006】
【特許文献1】
特開2001-221512号公報
【0007】
【発明が解決しようとする課題】
従って本発明の目的は、平板型集熱装置の約 3 倍〜数倍の性能を実現でき、コストパフォーマンスに優れた薄型太陽集熱装置を提供することである。
【0008】
【課題を解決するための手段】
薄いグレージング層の内部に集熱管及び複合放物面集光( Compound Parabolic Concentrator 、単に「 CPC 」とも言う)型反射鏡を含め、かつ反射鏡を微細にすることにより、反射鏡の内側(「キャビティ」と呼ぶ)での自然対流現象を抑制し、対流熱損失を抑えることができることを発見し、本発明に想到した。
【0009】
本発明の薄型太陽集熱装置は、厚さが 20 mm以下のグレージング層を形成する透過体を有する外装箱と、前記グレージング層の内部に設けられた集熱管と、前記集熱管に接着された複数の集熱部と、前記集熱部の上に設けられて太陽光線を前記集熱部の各々に入射させる複数の複合放物面集光型反射鏡とを有し、前記反射鏡はその内側での自然対流現象を抑制する程度に微細であることを特徴とする
【0010】
前記複合放物面集光型反射鏡は円形又は正六角形の開口部を有する3次元形状であるか、樋型の2次元形状であるのが好ましい
【0011】
前記反射鏡は前記集熱部と熱的に絶縁されているのが好ましい。前記グレージング層内に熱伝導率の不活性ガスが封入されているのが好ましい
【0012】
【発明の効果】
本発明の薄型太陽集熱装置は、従来の平板型集熱装置、真空管型集熱装置などよりも寒冷地および高温集熱において格段に優れた集熱性能を発揮する。さらに、材料費などの製作コストの削減によって、これまでにない薄型の量産型集熱装置として大いに期待できる。また、利用方法も一般家庭の暖房・給湯用の温水製造から、吸収冷凍や水素吸蔵合金を用いたケミカルヒートポンプの高熱源まで20種類以上の幅広い応用が期待できる。
【0013】
九州や四国などの温暖な地では太陽熱温水器の普及率が50%前後と高いが青森などでは2%台と集熱効率の低さの故低かったが、本発明の薄型太陽集熱装置は、寒冷地でも従来の3倍程度の効率が得られる。さらに、130〜200℃の高温の熱水を製造することにより蒸気タービンを駆動することができ、いわゆる発電(Thermal electric)としての利用が可能である。また給湯・暖房を組み合わせることにより、総合効率を太陽電池の6倍程度まで向上させることができる。これらのことから、将来の新しい太陽エネルギー利用の道を開くものと期待できる。
【0014】
【発明の実施の形態】
図1は本発明の一実施例による薄型太陽集熱装置を示し、図2の(a) および(b) は反射鏡および集熱管周りの断面形状を示す薄型太陽集熱装置の1ユニットは、防反射処理(Anti-Reflection Coating)の施された強化一枚ガラスと外装箱からなる薄いグレージング層(通常は厚さ10〜20mm以下)内部に、比較的集光比の高い(集光比3〜8程度)2次元ないし3次元形状のCPC型反射鏡1と、集熱部2と、乱流促進体のある集熱管4と、断熱材6とが入った構造を有する反射鏡1は集熱部の上に設けられている。グレージング層内部全体には熱伝導率が空気の約1/3以下であるクリプトンガス(不活性ガス)などが封入されている。ガスは背面断熱材周りにも十分に浸透するように封入する。可能な限り微細な反射鏡を用いることによって、そのキャビティ内部の自然対流現象を抑制し、対流熱伝達による損失をほとんどなくすことができる。集熱部2は集熱管4と一体もしくは密接に接着された構造で、集熱管4に熱媒体3を循環し高温媒体を得る。また、集熱部2は反射鏡1と熱的に絶縁されており、反射鏡1のフィン効果による熱損失を抑える構造となっている。なお、CPC型反射鏡を有する太陽集熱装置では、許容偏角7よりも小さい太陽光入射角20で入射する太陽光線10はすべて集熱部2に入射する。集熱管は黒色クロムめっき等によって選択吸収性を持たせている。集熱管背面の断熱材には、高温断熱性に優れた超微粒子シリカ系断熱材等を用いる。
【0015】
図1に示す実施例では、開口部が円形になっているお椀状の3次元形状のCPC 反射鏡1が並んでいるが、反射鏡1の開口部が円形のままでは各反射鏡間に隙間が生じてしまい、有効面積に対する実効面積が減少してしまう。これを解決するため、図3に示すような開口部が正六角形をなした3次元反射鏡の構造を挙げる。これは開口部だけが正六角形をしており、開口部の下ではCPC 型形状となっている
【0016】
図4に集熱管2の内部構造を示す。(a) はスパイラル状の内部フィンの例であるが、この他に直管に(b) のようなねじり板(ヘリカルリボン)を挿入する方法なども考えられる。集熱管内のフィンやヘリカルリボンなどの乱流促進体によって熱媒体への熱伝達が大幅に向上する。
【0017】
図1に示す1つのユニットを集熱の規模に見合わせて複数個、並列もしくは直列に連結することによって1モジュールが形成され、このモジュールが装置としての単位になる。なお、図1はCPC型反射鏡が図2の断面を軸中心に回転させた3次元形状、つまりお椀状の場合の実施例である。
【0018】
他の実施例として、図5に示すような2次元形状のCPC型反射鏡によって構成される薄型太陽集熱装置がある。この断面形状は図1の3次元形状のものと同じであるが、3次元形状のCPC型反射鏡が底の平らなお椀のような形状となっているのに対して、これは図2に示すのと同じ断面形状をもった樋型反射鏡となっている。3次元形状の場合、2次元形状よりも集光比が大きくなるため、高温集熱、蒸気製造に適しているが、2次元形状は3次元形状よりも比較的低い温度での集熱に適しているなど、用途などによって使い分けるのが望ましい。
【0019】
その他の実施例として、図6に示すように反射鏡の替りにサイズがサブミクロンから2〜3μmの格子状のアブソーバーを形成することにより光の波長に近づけることで、反射率を抑制した構造が含まれる。
【0020】
さらに他の実施例として、図7に示すように、集熱部2に太陽電池13を貼り付けることによって、集熱装置としてだけでなく太陽光発電装置としても利用することができる。また、これにより太陽電池の面積を大幅に減らすことができる。この場合、集熱管4に熱媒体を流すことによって太陽電池13を冷却し、効率を向上することが可能となり、発電効率の向上につながるため、CPC型反射鏡の集光作用とあわせて高効率な太陽光発電が可能である。
【0021】
図8は、本発明の薄型太陽集熱装置の集熱効率を、従来の真空管式集熱装置および平板型集熱装置の集熱効率と比較した結果を示す。図8から、真空管型集熱装置及び平板型集熱装置より寒冷地および高温集熱において格段に優れた集熱性能を発揮することが分かる
【図面の簡単な説明】
【図1】 本発明の一実施例による薄型太陽集熱装置を示す部分断面斜視図である。
【図2】 図1の薄型太陽集熱装置における反射鏡及び集熱管周りの概略図であり、 (a) は集熱管に直交する断面を示し、 (b) は集熱管と平行な断面を示す
【図3】 正六角形の開口部を有する反射鏡を示す斜視図である。
【図4】 集熱管の内部構造を示す概略図である。
【図5】 本発明の別の実施例による薄型太陽集熱装置を示す部分断面斜視図である。
【図6】 本発明のさらに別の実施例による薄型太陽集熱装置を示す概略図である。
【図7】 集熱管、集熱部及び複合放物面集光型反射鏡の関係を示す斜視図である。
【図8】 本発明の薄型太陽集熱装置、真空管式集熱装置および平板型集熱装置の集熱効率を比較したグラフである。
【図9】 従来の平板型集熱装置を示す概略図である。
【符号の説明】
1・・・反射鏡
2・・・集熱部
3・・・熱媒体
4・・・集熱管
5・・・透過体
6・・・断熱材
7・・・許容偏角
8・・・開口部長さ
9・・・太陽光入射角
10・・・太陽光線
11・・・内部フィン
12・・・ヘルカルリボン
13・・・太陽電池
14・・・集熱フィン
[0001]
[Technical field to which the invention belongs]
The present invention relates to a thin solar heat collecting apparatus for producing such hot and high temperature thermal medium by utilizing solar energy efficiently.
[0002]
[Prior art]
As heating such as heating hot water and high temperature heat medium such as a house, a conventional flat plate type solar heat collecting apparatus (also referred to as a solar collector) is widely used. FIG. 9 shows an outline of an example of a flat plate type heat collecting apparatus . A typical flat plate type heat collecting device is composed of aluminum fins 14 and copper heat collecting tubes 4. The heat medium 3 is circulated inside the heat collecting tubes 4, and the back surface is insulated by a heat insulating material 6. These are usually housed in an outer box having a transmissive body on the upper surface, and tempered or semi-tempered single glass is usually used for the transmissive body 5.
[0003]
However, according to the above prior art, the heat loss increases due to convection and heat conduction phenomenon of air inside the heat collecting device, not condensing sunlight (Atsumarihikarihi approximately 1), and heat collection tube and heat Disadvantage that the heat collection efficiency is remarkably reduced due to the combined effects of poor heat transfer with the medium, such as weak sunlight, high temperature heat collection, and use in cold regions (60 ° C to 70 ° C heat collection). There is.
[0004]
In the prior art, in order to improve the heat loss of the apparatus, the heat insulation performance may be improved by using a pair glass structure for the transmission body. In this case, there is a case where the inside of the pair glass enclosing an inert gas such as small krypton gas having air or heat conductivity. There has also been proposed a vacuum tube type heat collecting device heat collecting device in which the heat collecting tube is covered with a glass tube and the inside of the glass tube is evacuated (for example, JP-A-2001-221512, Patent Document 1).
[0005]
However, the heat loss from the transmitting body top surface according to the prior art decreases Suruga, a problem of heat loss by convection inside the heat collection device is not resolved, a significant improvement in heat collection efficiency is difficult. Furthermore, the pair glass is very heavy, the device itself is thick and bulky, and the manufacturing cost is high. In addition, the vacuum tube type heat collecting apparatus has a high manufacturing cost despite the low heat collecting efficiency per effective area, and there is a risk that the glass tube pulled in a vacuum will burst.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-221512
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a thin-type solar heat collecting apparatus that can realize performance about 3 to several times that of a flat plate type heat collecting apparatus and is excellent in cost performance.
[0008]
[Means for Solving the Problems]
Thin heat collecting pipe inside of the glazing layer and the composite parabolic concentrator (Compound Parabolic Concentrator, simply referred to as "CPC"), including the reflective mirror, and by the reflecting mirror to fine, the inner reflector ( "cavity suppressing natural convection in "hereinafter), we discovered that it is possible to suppress convective heat loss, and conceived the present invention.
[0009]
The thin solar collector according to the present invention is bonded to the outer casing having a transparent body that forms a glazing layer having a thickness of 20 mm or less, a heat collecting tube provided inside the glazing layer, and the heat collecting tube. A plurality of heat collecting parts, and a plurality of compound parabolic concentrating reflectors that are provided on the heat collecting parts and allow sunlight to be incident on each of the heat collecting parts. It is fine enough to suppress the natural convection phenomenon on the inside .
[0010]
The composite parabolic condensing reflector is preferably a three-dimensional shape having a circular or regular hexagonal opening, or a bowl-shaped two-dimensional shape .
[0011]
It is preferable that the reflecting mirror is thermally insulated from the heat collecting part. It is preferable that an inert gas having a thermal conductivity is enclosed in the glazing layer .
[0012]
【The invention's effect】
The thin-film solar collector of the present invention exhibits much better heat collection performance in cold districts and high-temperature heat collection than conventional flat plate collectors , vacuum tube collectors, and the like. Furthermore, by reducing production costs such as material costs, it can be greatly expected as an unprecedented thin mass production type heat collecting apparatus . In addition, the utilization method can be expected to have a wide range of more than 20 different applications, from the production of hot water for heating and hot water supply in general households to the high heat source of chemical heat pumps using absorption refrigeration and hydrogen storage alloys.
[0013]
Although solar water heater penetration is low therefore high and around 50%, but 2% base in Aomori and heat collection efficiency low in temperate land of Kyushu and Shikoku, thin solar heat collector of the present invention, Even in cold regions, the efficiency about three times that of the conventional one can be obtained . Furthermore, a steam turbine can be driven by producing high-temperature hot water of 130 to 200 ° C., and can be used as so-called thermal electric power generation . Further , by combining hot water supply and heating, the overall efficiency can be improved up to about 6 times that of a solar cell. From these, it can be expected that it will open the way for new solar energy utilization in the future.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a thin solar collector according to an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) show cross-sectional shapes around a reflecting mirror and a heat collecting tube. One unit of a thin solar collector is compared with the inside of a thin glazing layer (usually 10-20mm or less) consisting of a reinforced single glass with anti-reflection coating and an exterior box. 2D or 3D CPC reflector 1, a heat collecting part 2 , a heat collecting tube 4 with a turbulence promoting body, a heat insulating material 6, It has a structure with . The reflecting mirror 1 is provided on the heat collecting part. The entire inside of the glazing layer is filled with krypton gas (inert gas) having a thermal conductivity of about 1/3 or less of air. Gas is sealed so that it can penetrate well around the back insulation. By using the reflecting mirror 1 as fine as possible, the natural convection phenomenon inside the cavity can be suppressed, and loss due to convective heat transfer can be almost eliminated. The heat collecting unit 2 has a structure integrally or closely bonded to the heat collecting tube 4, and circulates the heat medium 3 through the heat collecting tube 4 to obtain a high temperature medium. Further, the heat collecting section 2 is thermally insulated from the reflecting mirror 1 and has a structure that suppresses heat loss due to the fin effect of the reflecting mirror 1. In the solar heat collecting apparatus having the CPC type reflecting mirror, all the solar rays 10 incident at the sunlight incident angle 20 smaller than the allowable deviation angle 7 are incident on the heat collecting unit 2. The heat collecting tube 4 has selective absorbency by black chrome plating or the like. For the heat insulating material 6 on the back surface of the heat collecting tube 4, an ultrafine particle silica heat insulating material excellent in high-temperature heat insulating properties is used.
[0015]
In the embodiment shown in FIG. 1 , bowl-shaped three-dimensional CPC type reflecting mirrors 1 having circular openings are arranged, but if the opening of the reflecting mirror 1 remains circular, it is between the reflecting mirrors. A gap is generated, and the effective area with respect to the effective area is reduced. In order to solve this, a structure of a three-dimensional reflecting mirror in which the opening as shown in FIG. Only the opening has a regular hexagonal shape, and it has a CPC shape below the opening.
[0016]
FIG. 4 shows the internal structure of the heat collecting tube 2 . (a) is an example of a spiral internal fin, but other methods such as inserting a twisted plate (helical ribbon) as shown in (b) into a straight pipe are also conceivable. The heat transfer to the heat medium is greatly improved by the turbulence promoters such as fins and helical ribbons in the heat collection tube.
[0017]
One module shown in FIG. 1 is connected in parallel or in series in accordance with the scale of heat collection to form one module, and this module becomes a unit as a device. Incidentally, FIG. 1 shows an embodiment in the CPC-type three-dimensional shape reflector is rotated around the axis a cross section of FIG. 2, that is bowl-shaped.
[0018]
As another embodiment, there is a thin solar heat collecting apparatus constituted by a CPC type reflecting mirror having a two-dimensional shape as shown in FIG. This cross-sectional shape is the same as that of the three-dimensional shape of FIG. 1, but the three-dimensional CPC type reflector is shaped like a flat bowl at the bottom, which is shown in FIG. This is a bowl-shaped reflector having the same cross-sectional shape as shown. In the case of a 3D shape, the concentration ratio is larger than that of a 2D shape, so it is suitable for high-temperature heat collection and steam production, but the 2D shape is suitable for collecting heat at a relatively lower temperature than the 3D shape. It is desirable to use properly depending on the purpose.
[0019]
As another embodiment, as shown in FIG. 6, a structure in which the reflectance is suppressed by forming a grid-like absorber having a size of submicron to 2 to 3 μm instead of a reflecting mirror is obtained. included.
[0020]
As another embodiment, as shown in FIG. 7, by attaching a solar cell 13 to the heat collecting section 2, it can be used not only as a heat collecting device but also as a solar power generation device . In addition, this can greatly reduce the area of the solar cell. In this case, the solar cell 13 is cooled by flowing a heat medium 3 to Atsumarinetsukan 4, it is possible to improve the efficiency, because it leads to an improvement in power generation efficiency, high in conjunction with the condensing action of the CPC type reflector Efficient solar power generation is possible.
[0021]
FIG. 8 shows the result of comparing the heat collection efficiency of the thin solar heat collector of the present invention with the heat collection efficiency of the conventional vacuum tube heat collector and the flat plate heat collector. From Figure 8, it can be seen to exhibit a much better heat collection performance in cold climates and high temperature condensing heat of the vacuum tube type heat collecting device and the flat plate type heat collecting apparatus.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional perspective view showing a thin solar heat collecting apparatus according to an embodiment of the present invention .
Figure 2 is a schematic view around the reflector and the heat collection tube in thin solar heat collector of FIG. 1 shows a (a) shows a cross section perpendicular to the heat collecting tube, (b) is a cross section that is parallel to the heat collecting pipe .
FIG. 3 is a perspective view showing a reflecting mirror having a regular hexagonal opening .
FIG. 4 is a schematic view showing the internal structure of the heat collecting tube .
FIG. 5 is a partial cross-sectional perspective view showing a thin solar heat collecting apparatus according to another embodiment of the present invention .
FIG. 6 is a schematic view showing a thin solar collector according to still another embodiment of the present invention .
FIG. 7 is a perspective view showing a relationship between a heat collecting tube, a heat collecting portion, and a composite parabolic condensing reflector .
FIG. 8 is a graph comparing the heat collection efficiency of the thin-film solar heat collector, vacuum tube heat collector, and flat plate heat collector of the present invention .
FIG. 9 is a schematic view showing a conventional flat plate heat collecting apparatus .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reflector 2 ... Heat collection part 3 ... Heat medium 4 ... Heat collection tube 5 ... Transmission body 6 ... Heat insulating material 7 ... Permissible deflection angle 8 ... Opening length 9 ... Sunlight incident angle
10 ... Sun rays
11 ... Internal fin
12 ... Health ribbon
13 ... Solar cell
14 ... Heat collection fin

Claims (5)

厚さが 20 mm以下のグレージング層を形成する透過体を有する外装箱と、前記グレージング層の内部に設けられた集熱管と、前記集熱管に接着された複数の集熱部と、前記集熱部の上に設けられて太陽光線を前記集熱部の各々に入射させる複数の複合放物面集光型反射鏡とを有し、前記反射鏡はその内側での自然対流現象を抑制する程度に微細であることを特徴とする薄型太陽集熱装置 An outer box having a transparent body that forms a glazing layer having a thickness of 20 mm or less; a heat collecting tube provided in the glazing layer; a plurality of heat collecting portions bonded to the heat collecting tube; A plurality of composite paraboloidal concentrating reflectors that are provided on the unit and that allow solar rays to enter each of the heat collecting units, and the reflecting mirrors suppress a natural convection phenomenon inside thereof Thin solar heat collector characterized by being extremely fine . 請求項1に記載の薄型太陽集熱装置において、前記複合放物面集光型反射鏡が円形又は正六角形の開口部を有する3次元形状であることを特徴とする薄型太陽集熱装置 2. The thin solar collector according to claim 1, wherein the composite parabolic concentrating reflector has a three-dimensional shape having a circular or regular hexagonal opening . 請求項1に記載の薄型太陽集熱装置において、前記複合放物面集光型反射鏡が樋型の2次元形状であることを特徴とする薄型太陽集熱装置 2. The thin solar collector according to claim 1, wherein the composite parabolic concentrating reflector has a bowl-shaped two-dimensional shape . 請求項1〜3のいずれかに記載の薄型太陽集熱装置において、前記反射鏡が前記集熱部と熱的に絶縁されていることを特徴とする薄型太陽集熱装置 The thin solar collector according to any one of claims 1 to 3, wherein the reflecting mirror is thermally insulated from the heat collector . 請求項1〜4のいずれかに記載の薄型太陽集熱装置において、前記グレージング層内に熱伝導率の不活性ガスが封入されていることを特徴とする薄型太陽集熱装置 The thin solar collector according to any one of claims 1 to 4, wherein an inert gas having a thermal conductivity is enclosed in the glazing layer .
JP2001354888A 2001-11-20 2001-11-20 Glazing collector Expired - Fee Related JP3958032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354888A JP3958032B2 (en) 2001-11-20 2001-11-20 Glazing collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354888A JP3958032B2 (en) 2001-11-20 2001-11-20 Glazing collector

Publications (2)

Publication Number Publication Date
JP2003161534A JP2003161534A (en) 2003-06-06
JP3958032B2 true JP3958032B2 (en) 2007-08-15

Family

ID=19166671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354888A Expired - Fee Related JP3958032B2 (en) 2001-11-20 2001-11-20 Glazing collector

Country Status (1)

Country Link
JP (1) JP3958032B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964001A (en) * 2016-06-28 2016-09-28 北京康孚科技股份有限公司 Solar-driven saline solution regeneration device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697219B2 (en) * 2007-01-10 2010-04-13 Xtreme Energetics Inc. Non-imaging facet based optics
US20120090663A1 (en) * 2010-10-15 2012-04-19 Brightleaf Technologies Incorporated Deriving economic value from waste heat from concentrated photovoltaic systems
MX2015004266A (en) * 2012-10-02 2015-11-13 Grace Coulter Solar air heating / cooling system.
AU2019292498A1 (en) 2018-06-26 2021-01-07 Grace COULTER Improvements to heat exchange
CN112611115B (en) * 2020-12-18 2022-07-19 广西赫阳能源科技有限公司 Heating device for photovoltaic and heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964001A (en) * 2016-06-28 2016-09-28 北京康孚科技股份有限公司 Solar-driven saline solution regeneration device

Also Published As

Publication number Publication date
JP2003161534A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
Gorjian et al. A review on recent advancements in performance enhancement techniques for low-temperature solar collectors
CN2913955Y (en) Heat self-dissipating solar energy accumulation type photovoltaic electricity generating system
CN101669221B (en) Solar thermoelectric conversion
US8226253B2 (en) Concentrators for solar power generating systems
CN101098112A (en) Self-radiation solar energy accumulation type photovoltaic generator
CN102052773A (en) Reflecting trench type vacuum flat plate type solar heat collector
JP3958032B2 (en) Glazing collector
CN102607206A (en) Solar photovoltaic photo-thermal composite heat pipe vacuum tube
CN109945512A (en) A kind of efficient photovoltaic and photothermal integrated system
JP2004205062A (en) Light-concentrating solar water heater
CN110957978A (en) Photovoltaic photo-thermal comprehensive utilization device using transparent aerogel
CN110513892A (en) Semi-circular thermal-collecting tube and big opening high concentration ratio slot light collection collecting system with fin
CN205037606U (en) Slot type spotlight type solar vacuum heat collection tube
JP2003227661A (en) Optical fiber solar collector
CN101776325B (en) Compound parabolic condenser combining inside condensation and outside condensation
CN210425600U (en) Solar cavity type receiver
CN213395965U (en) Fixed spotlight CPC solar collecting system of heat pipe formula
CN109297205B (en) Photovoltaic photo-thermal coupling complementary integrated utilization system
JP2004278837A (en) Solar heat collection device
KR101966213B1 (en) PVT module structure including solar thermal syetem with surface coating for absorbing efficiceny
CN2837545Y (en) Solar heat pipe thermoelectric generator
CN108413632B (en) Tower type solar volumetric heat collector
TWI321639B (en) A compound arc light-concentrating and heat-collecting device
CN211377981U (en) Photovoltaic photo-thermal comprehensive utilization device using transparent aerogel
CN219640464U (en) Energy gathering device of Fresnel columnar lens array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees