JPS6234931A - Electrically conductive composite material - Google Patents

Electrically conductive composite material

Info

Publication number
JPS6234931A
JPS6234931A JP17518885A JP17518885A JPS6234931A JP S6234931 A JPS6234931 A JP S6234931A JP 17518885 A JP17518885 A JP 17518885A JP 17518885 A JP17518885 A JP 17518885A JP S6234931 A JPS6234931 A JP S6234931A
Authority
JP
Japan
Prior art keywords
filler
composite material
stainless steel
electrically conductive
fiber diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17518885A
Other languages
Japanese (ja)
Other versions
JPH0240264B2 (en
Inventor
Masaki Murakami
正樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP17518885A priority Critical patent/JPS6234931A/en
Publication of JPS6234931A publication Critical patent/JPS6234931A/en
Publication of JPH0240264B2 publication Critical patent/JPH0240264B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain a polymeric composite material having decreased filler content and improved electrical conductivity while preventing the breakage and deformation of filler during molding, by mixing a specific fibrous filler randomly in a polymeric material. CONSTITUTION:The filler for the above composite material is an electrically conductive fibrous material having a fiber diameter of 2-30mum and length of 1-10mm and obtained from a SUS 304 stainless steel fiber cold-worked at a working ratio of 60-98%, e.g. a collected strand of composite filaments produced by covering SUS 304 stainless steel filaments with a matrix composed of other metal, subjecting the strand to a prescribed cold-working optionally after heat-treatment to the final working ratio of 60-98% to attain the target fiber diameter, dissolving and removing the matrix material exclusively, and cutting to prescribed length. The objective electrically conductive composite material can be produced by mixing and kneading the filler to a polymeric material.

Description

【発明の詳細な説明】 く技術分野〉 本発明は1例えば電磁波シールド効果等の導電性にすぐ
れた高分子複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a polymer composite material having excellent electrical conductivity, for example, electromagnetic shielding effect.

〈従来技術〉 近年、コンピューター、通信機器など各種の電子機器の
普及に伴い機器の内部あるいは外部からの電磁波等によ
る障害を防止しようとすることがさかんに試みられてい
る。
<Prior Art> In recent years, with the spread of various electronic devices such as computers and communication devices, many attempts have been made to prevent interference caused by electromagnetic waves or the like from inside or outside the devices.

その一手段としては、その筐体材料であるプラスチック
等の高分子材料に粉末状、りん片状、繊維状などでなる
導電性フィラーを、均一かつ互いに当接して分散させる
乙とにより達成されるが、特に繊維状フィラーにおいて
は、小径かつアスペクト比(長さ/繊維径)の大なる素
材を選択使用することによって、その混入量の低減が可
能となることが知られている。
One way to achieve this is to uniformly disperse a conductive filler in the form of powder, flakes, fibers, etc. in a polymeric material such as plastic that is the material of the casing, in contact with each other. However, it is known that the amount of fibrous filler mixed in can be reduced by selectively using a material with a small diameter and a large aspect ratio (length/fiber diameter).

例えば、日経メカニカル・1983年5月23日号によ
れば、アスペクト比の大きな金属繊維をわずか1〜2重
量%程度の低率で混入させただけでも40 db以上(
I GHz)のシールド効果が得られることが報告され
、大きな注目を集めている。
For example, according to the May 23, 1983 issue of Nikkei Mechanical, even if metal fibers with a large aspect ratio are mixed in at a low rate of about 1 to 2% by weight, the amount of metal fibers of 40 db or more (
It has been reported that a shielding effect can be obtained for I GHz), and it is attracting a lot of attention.

しかしながら、その一方においては溶融状態にあるゴム
、プラスチック等の高分子材料は、極めて高い粘性を有
し、例えば熱可塑性プラスチックの代表的成形法である
射出成形機での加工においては、シリンダー中での混練
やあるいはノズル通過時での流動性その他加工諸条件に
影響され、該フィラーにはそれに伴うかなり大きな引っ
張り力。
However, on the other hand, polymeric materials such as rubber and plastics in a molten state have extremely high viscosity. The filler is affected by kneading, fluidity during nozzle passage, and other processing conditions, and the filler has a considerable tensile force associated with it.

曲げ力、せん断力等の外力が加わる。その結果それに耐
えられないような低強度フィラーには曲りなどの変形や
折損が発生する為、良好な導電回路の形成がむずかしく
所望の特性が得られ難いという重要な問題があった。
External forces such as bending force and shear force are applied. As a result, low-strength fillers that cannot withstand these conditions are subject to deformation such as bending or breakage, making it difficult to form good conductive circuits and making it difficult to obtain desired characteristics, which is an important problem.

従来においては例えば特開昭57−150203号公報
に示されるように、そのほとんどは加工方法や作業条件
の改良に係るものであって、フィラー材料についての材
料特性は未だ十分に検討されたとはいいがたい。
In the past, as shown in Japanese Patent Application Laid-Open No. 57-150203, most of the efforts have been related to improvements in processing methods and working conditions, and it is said that the material properties of filler materials have not yet been sufficiently studied. It's tough.

(発明の目的) 本発明は、このような問題に対し積極的に検討した結果
なされたものであって、所定特性の繊維状フィラーを用
いることによって、加工処理中でのフィラーの折損や変
形を防ぎ、その混入率低下を図ると共に導電性をも向上
させた高分子複合材料の提供を目的とする。
(Objective of the Invention) The present invention was made as a result of active investigation into such problems, and by using a fibrous filler with predetermined characteristics, it is possible to prevent breakage and deformation of the filler during processing. The purpose of the present invention is to provide a polymer composite material that prevents the occurrence of oxidation and reduces the rate of contamination, and also improves conductivity.

(発明の開示) 本発明において使用されろ繊維状導電性フィラーは、2
〜30μmmの繊維径と、長さ1〜10rnmの寸法を
有しているとともに、該フィラー(とは加工率60〜9
8%の範囲内での冷間加工が施された5US304系ス
テンレス鋼繊維材料を用したものである。
(Disclosure of the Invention) The fibrous conductive filler used in the present invention comprises 2
The filler has a fiber diameter of ~30 μmm and a length of 1 to 10 nm, and has a processing rate of 60 to 9.
It uses 5US304 series stainless steel fiber material that has been cold worked within the range of 8%.

このようなステンレス鋼繊維には、例えば特公昭56−
11523号明細書が開示するようにSUS 304系
ステンレス錆でなるフィラメント素材を、他の金属でな
るマトリック材で被包した複合線材の集束線に、所定の
冷間加工あるいは、その間に熱処理工程を押入し目的の
繊維径になるよう最終での加工率60〜98%を施し、
さらに前記マトリックス材のみを溶解除去することによ
って連続フィラメントのトウを製造する。
Such stainless steel fibers include, for example,
As disclosed in the specification of No. 11523, a filament material made of SUS 304 stainless steel rust is encapsulated with a matrix material made of another metal to form a bundled wire of a composite wire material, and subjected to a predetermined cold working process or a heat treatment process in between. A final processing rate of 60 to 98% is applied to obtain the desired fiber diameter for pressing.
Further, a continuous filament tow is manufactured by dissolving and removing only the matrix material.

その後その長さは、1〜10IIWl範囲内での短wA
維状になるよう、例えばカッター等で切断することによ
って前記導電性フィラーを得ることができる。
Then its length is short wA in the range 1-10IIWl
The conductive filler can be obtained by cutting it into a fiber shape, for example, with a cutter.

ここで、前記フィラーの繊維径を2〜30μmmとする
理由は、30μmmを越えると例えば射出成形などでの
混練2押出し時において金型等との摩耗が激しくなり、
また得られる製品にもその表面上に前記フィラーが突出
、W&出しゃすくなるため外観上好=  3 − ましくない。また、導電性においてもその直径が大きい
ことは必然的に混入率の増加を意味し、本発明の主旨に
反するものとなる。
Here, the reason why the fiber diameter of the filler is set to 2 to 30 μmm is that if it exceeds 30 μmm, wear with the mold etc. will be severe during kneading and extrusion in injection molding, etc.
In addition, the filler protrudes on the surface of the obtained product, making it difficult for W& to come out, resulting in an unfavorable appearance (3-3). Furthermore, in terms of conductivity, a large diameter inevitably means an increase in the mixing rate, which goes against the gist of the present invention.

すなわち、所定混入量という制約を考えた場合、その導
電性を少しでも向上させるためには混入されるフィラー
のアスペクト比(長さ/繊維径)を太き(する必要があ
り、この場合より細い繊維径のフィラーを用いることは
有効である。しかし、2μmm以下では逆に細くなりす
ぎる為、強度に劣ることとなり好ましくない。乙のよう
な観点より、$a維径は2〜30μmm、より好ましく
は2−20μmmとする。
In other words, when considering the constraint of a predetermined amount of mixed filler, in order to improve the conductivity even a little, the aspect ratio (length/fiber diameter) of the filler to be mixed needs to be thicker. It is effective to use a filler with a fiber diameter of 2 μmm or less. However, if it is less than 2 μmm, it becomes too thin, resulting in poor strength, which is not preferable. From the point of view (B), the $a fiber diameter is more preferably 2 to 30 μmm. shall be 2-20 μmm.

一方その長さについては、高分子材料内に均一分散しや
すい1〜10mmの範囲で設定されるが、10Iを越え
ると混練中でのフィラー同志のからまりが多発しやすい
問題がある。また逆に1mm未満ではその形状が粉末状
となる為、分散性は向上するものの、少量の混入量で、
は十分な導電回路の形成が困難となり、導電性に劣った
ものとなる。
On the other hand, the length is set in the range of 1 to 10 mm, which facilitates uniform dispersion within the polymer material, but if it exceeds 10 I, there is a problem that the fillers tend to become entangled frequently during kneading. On the other hand, if it is less than 1 mm, the shape becomes powder-like, so although dispersibility improves, if the amount is small,
It becomes difficult to form a sufficient conductive circuit, resulting in poor conductivity.

さらに本発明においては前記フィラー処理中で−4= の折損や変形を防ぐ為、その強度と靭性とをバランスよ
く兼ね備えるように、フィラー材料ば5US304系ス
テンレス紹at維材料を加工率60〜98%範囲内で冷
r!R加工を施こしたものであることを特徴としている
Furthermore, in the present invention, in order to prevent breakage and deformation during the filler treatment, the filler material is 5US304 stainless steel fiber material with a processing rate of 60 to 98% in order to have a good balance of strength and toughness. Cold within range! It is characterized by having been subjected to R processing.

一般に溶融状態での高分子材料はポリマー状で粘性が高
く、また強加工の一種である射出成形での混練や射出時
には、その加工に伴って該フィラーには非常に大きな引
っ張り、せん断2曲げ等の外力が加わる。従って、それ
に耐えほぼ真直状で分散させろためには一、フィラーに
は所定の強度が備わっていなければならない。
In general, polymer materials in a molten state are polymer-like and highly viscous, and during kneading and injection in injection molding, which is a type of strong processing, the filler is subject to extremely large tensile forces, shearing, bending, etc. external force is applied. Therefore, in order to withstand this and be dispersed in a substantially straight shape, the filler must have a certain level of strength.

また、ステンレス鋼は高い強度と、加工に伴う加工硬化
率が大きいことは周知であるが、半面加工に伴ってもろ
くなり、曲げなどによって折損しやすくなるという性質
を有している。
Furthermore, although it is well known that stainless steel has high strength and a high rate of work hardening due to processing, it has the property that it becomes brittle when processed in half and is easily broken due to bending or the like.

このような傾向はフィラー材料中の各種元素の添加量に
よって異な秒、特にSUS  304系でなるステンレ
ス鋼は、少ない加工率でも非常に高い強度を容易に得る
ことができる利点があり、例えば加工率60%以下での
冷間加工では、フィラーは引っ張り強さ140 Kg/
mm2以上の強度と、例えばθ=200エルステッドで
は、μ=10息上という高い透磁率を得ることもでき、
複合充填させた場合には、それらが作用して電界波や磁
界波の両シールド性改善に寄与する。
This tendency varies depending on the amount of various elements added in the filler material.In particular, stainless steel made of SUS 304 has the advantage of being able to easily obtain extremely high strength even with a small processing rate. When cold worked below 60%, the filler has a tensile strength of 140 Kg/
With a strength of more than mm2 and, for example, θ = 200 oersteds, it is possible to obtain a high magnetic permeability of μ = 10 breaths.
In the case of composite filling, they act and contribute to improving the shielding properties for both electric field waves and magnetic field waves.

また、前記加工率”の上限は繊維材料の前記靭性低下を
防ぎ、また処理中での折損防止という観点より98%以
下で行なうのがよい。
Further, the upper limit of the processing rate is preferably 98% or less from the viewpoint of preventing the reduction in the toughness of the fiber material and preventing breakage during processing.

以上説明したように、高粘性状態中で強加工を受ける導
電性フィラーには、所定の強度(弾性、引っ張り強さ)
と靭性を有していなければならず、前記加工率60〜9
8%はバランスされた最も好ましい範囲と考えられる。
As explained above, conductive fillers that undergo severe processing in a highly viscous state have a certain level of strength (elasticity, tensile strength).
and toughness, and the processing rate is 60 to 9.
8% is considered the most balanced range.

また、フィラー状にあらかじめ切断するその長さについ
ては、前記引っ張り強さとアスペクト比(長さ/繊維径
)との間にも関係があるものと考えられる。
Further, regarding the length of the filler cut in advance, it is thought that there is a relationship between the tensile strength and the aspect ratio (length/fiber diameter).

すなわち、引っ張り強さの低い繊維材料では、弾性に劣
り小さい力でも容易に変形、切断する為、前記アスペク
ト比をあまり大きく設定することができず、その長さも
おのずと短いものとしなければならない。
That is, fiber materials with low tensile strength have poor elasticity and are easily deformed and cut even by small forces, so the aspect ratio cannot be set too large, and the length must naturally be short.

このような関係は、例えば次式で示すこともでき、この
場合その好ましい値(A)の範囲は2〜25程度であっ
て、その値(A)は大きくなるほど変形しにくいことを
意味している。
Such a relationship can be expressed, for example, by the following formula, in which case the preferred value (A) ranges from about 2 to 25, and the larger the value (A), the less deformed it is. There is.

このような関係から、例えば高分子材料の溶融粘性の高
いものに対しては、前記(A)の値が高いフィラーを選
択し、その中でもよりアスペクト比が大きなフィラーを
用いることにより、折損、変形を防ぎ且つ導電性をより
向上させることができる。
Based on this relationship, for example, for polymeric materials with high melt viscosity, by selecting a filler with a high value of (A) and using a filler with a larger aspect ratio, it is possible to prevent breakage and deformation. It is possible to prevent this and further improve conductivity.

なお本発明に用いる高分子材料としては、例えば塩化ビ
ニール樹脂、A B S@脂、ポリエチレン樹脂、ポリ
プロピレン樹脂、ポリアミド樹脂、などの熱可塑性樹脂
はその一例であり、それ以外にも熱硬化性樹脂や合成ゴ
ム等種々な材料に応用でき次に、本発明の実施例をその
効果と共に説明する。
Examples of polymeric materials used in the present invention include thermoplastic resins such as vinyl chloride resin, ABS@resin, polyethylene resin, polypropylene resin, and polyamide resin. Next, embodiments of the present invention will be described along with their effects.

〈実施例−1〉 最終冷間伸線加工率75%によって得たSUS 304
ステンレス鋼繊維は、引っ張り強さl g l Kg/
m+++2と繊維径8μllll11を有する300本
の集束トウでなり、これらを連続してスチロール樹脂の
溶液中に浸せきし、125℃の熱風にて乾燥した。この
時の充填率は50Vo1%であった。
<Example-1> SUS 304 obtained with a final cold drawing processing rate of 75%
Stainless steel fiber has tensile strength l g l Kg/
It consisted of 300 bundled tows having a diameter of m+++2 and a fiber diameter of 8 μllll11, which were continuously immersed in a styrene resin solution and dried with hot air at 125°C. The filling rate at this time was 50Vo1%.

その後、この複合集束材を5關の長さになるようカッタ
ーにて切断し、複合ペレットとしたのち、ABS@脂純
粋ペレットと所定の割合で混合、混練する為の射出成形
機(ζ投入し、フィラー充填率が5 wt、%、10w
t、%、15wt%になるよう処理し、大きさ10cm
角、厚さ31111の試料A −1〜3を得た。
After that, this composite bundle material is cut with a cutter to have a length of 5 mm to make composite pellets, and then mixed and kneaded with ABS@ fat pure pellets in a predetermined ratio using an injection molding machine (ζ injection molding machine). , filler filling rate is 5 wt,%, 10w
t,%, processed to 15wt%, size 10cm
Samples A-1 to A-3 having a square angle and a thickness of 31,111 mm were obtained.

その結果得られた各試料には、フィラーの変形や折損の
発生が少なく、はとんどは真直状で分散していることが
認められた。また、その試料のシー・    −8− ルド性は第−表に示すようにきわめて良好であった。
In each sample obtained as a result, it was observed that the filler had little deformation or breakage, and was mostly straight and dispersed. In addition, the shielding properties of the sample were extremely good as shown in Table 1.

〈比較例〉 最終加工率50%で集束伸線加工した5US316Lス
テンレス鋼繊維材料は、平均繊維径8μml11と12
0 Kg/+w2の引っ張り強さを備えており、これを
使用して長さ5IIII11に切断したのち、実施例1
と同様の処理を施すことによって、5wt%、10wt
%、15wt。
<Comparative example> 5US316L stainless steel fiber material subjected to focused wire drawing at a final processing rate of 50% has an average fiber diameter of 8 μml11 and 12
It has a tensile strength of 0 Kg/+w2, and after cutting it into length 5III11 using this, Example 1
By applying the same treatment as 5 wt%, 10 wt%
%, 15wt.

%の比較試料B−1〜3を得た。% comparative samples B-1 to B-3 were obtained.

その結果を第−表に示す。The results are shown in Table 1.

第−表 〈実施例−2〉 次に、先の実施例−1で得たSUS 304.8μステ
ンレスmm維フィラーを10 wt%混入させた試料A
−2と、比較材として同様ζこSUS 316Lステン
レスff!!m維フィラー10 wt%混入させた試料
B−2とを各々用いて、ヒートサイクル試験を行ない、
シールド効果の変化を調査した。
Table 1 (Example 2) Next, sample A in which 10 wt% of the SUS 304.8μ stainless steel fiber filler obtained in Example 1 was mixed was prepared.
-2 and the same SUS 316L stainless steel as a comparison material ff! ! A heat cycle test was conducted using sample B-2 mixed with 10 wt% m-fiber filler,
We investigated changes in shielding effectiveness.

なお、その試験方法には、前記各試料を、A1+80℃
炉中に30分間保持した後、B、−40℃炉中に移し替
え、同様に30分間保持する。
In addition, in the test method, each sample was heated at A1+80°C.
After being kept in the oven for 30 minutes, it was transferred to B, a -40°C oven, and kept in the same manner for 30 minutes.

とのA、 B、工程を1サイクルとして、合計3サイク
ルの繰り返し処理する方法をもちいた。
A method was used in which processes A and B were treated as one cycle, and a total of three cycles were repeated.

その結果を第2表に述べる 息下余白 第2表 〈効果〉 す上詳述したように、本発明はそのフィラー材料として
60〜98%で冷間加工したSUS  304ステンレ
ス鋼繊維材料を用いることにより、強度と靭性とのバラ
ンスを保tこせており、その為混線などでの処理中にお
けろ折損、変形の発生を防ぐことができ、その結果シー
ルド性においても大きな向上を見る乙とができた。
The results are shown in Table 2. Table 2 (Effects) As detailed above, the present invention uses 60-98% cold-worked SUS 304 stainless steel fiber material as the filler material. This allows us to maintain a balance between strength and toughness, which prevents breakage and deformation during processing due to crosstalk, and as a result, we see a significant improvement in shielding performance. did it.

つまり第1表に示されたように、例えば1.00 Ml
(zで45 dbの電界波のシールド効果を得ようとす
る場合には、従来ては、10wt%の混入率を、必要と
したのに対し、本発明てはわずか5wt%と約半分の混
入率で達成でき、同様に磁界波についてもその混入率の
半減が可能となった。
That is, as shown in Table 1, for example, 1.00 Ml
(When trying to obtain a shielding effect of 45 db electric field waves at z, conventional methods required a mixing rate of 10 wt%, but with the present invention, the mixing rate is only 5 wt%, which is about half the mixing rate. Similarly, it has become possible to reduce the mixing rate of magnetic field waves by half.

また、実施例−2では、複合量にとって苛酷な試験の1
つであるヒートサイクル試験の結果が示されているが、
この結果から解かるように、本発明の複合材料では、加
熱、冷却等熱影響によるシールド性の変化は、56程度
の減少にとどまり非常に良好であった。
In addition, in Example 2, one of the severe tests for the composite amount
The results of a heat cycle test are shown,
As can be seen from this result, in the composite material of the present invention, the change in shielding properties due to thermal effects such as heating and cooling was only reduced by about 56, which was very good.

これは、その内部フィラーの有する強度弾性等によって
、樹脂材料母材の熱変形にもよく追従し得ることの効果
と考えられる。
This is thought to be due to the fact that the internal filler can follow thermal deformation of the resin material base material well due to its strength and elasticity.

このように本発明の複合材料は、フィラーの混入率低減
が図れるとともに、得られたものにおいても使用環境に
よる特性の変化も少なく理想的であり、本発明の持つ工
業的価値は非常に高いものである。
As described above, the composite material of the present invention is ideal because it is possible to reduce the percentage of filler mixed in, and the characteristics of the obtained material do not change much depending on the usage environment, and the industrial value of the present invention is extremely high. It is.

Claims (1)

【特許請求の範囲】[Claims] (1)繊維径2〜30μmm、長さ1〜10mmの導電
性フィラーをランダムに高分子材料内に混入してなる複
合材料であって、前記導電性フィラーは加工率60〜9
8%の範囲内での冷間加工を施したSUS304系ステ
ンレス鋼繊維材料を用いたものであることを特徴とする
導電性複合材料。
(1) A composite material formed by randomly mixing a conductive filler with a fiber diameter of 2 to 30 μmm and a length of 1 to 10 mm into a polymer material, wherein the conductive filler has a processing rate of 60 to 9.
A conductive composite material characterized in that it is made of SUS304 stainless steel fiber material that has been cold-worked within a range of 8%.
JP17518885A 1985-08-08 1985-08-08 Electrically conductive composite material Granted JPS6234931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17518885A JPS6234931A (en) 1985-08-08 1985-08-08 Electrically conductive composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17518885A JPS6234931A (en) 1985-08-08 1985-08-08 Electrically conductive composite material

Publications (2)

Publication Number Publication Date
JPS6234931A true JPS6234931A (en) 1987-02-14
JPH0240264B2 JPH0240264B2 (en) 1990-09-11

Family

ID=15991821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17518885A Granted JPS6234931A (en) 1985-08-08 1985-08-08 Electrically conductive composite material

Country Status (1)

Country Link
JP (1) JPS6234931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160092A (en) * 1987-12-17 1989-06-22 Kawatetsu Techno Res Corp Electromagnetic wave shielding material
JP2008546193A (en) * 2005-06-02 2008-12-18 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Polymer EMI housing containing conductive fibers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406126A (en) * 1966-12-07 1968-10-15 Avco Corp Conductive synthetic resin composition containing carbon filaments
JPS5611523A (en) * 1979-07-06 1981-02-04 Nissin Electric Co Ltd Suppressing unit for voltage variance
JPS58129031A (en) * 1982-01-27 1983-08-01 Mitsubishi Rayon Co Ltd Electrically conductive resin composition
JPS58150203A (en) * 1981-12-30 1983-09-06 エヌ・ヴイ・ベカルト・エス・エイ Prastic product with conductive fiber
JPS58176220A (en) * 1982-04-09 1983-10-15 Fukuda Kinzoku Hakufun Kogyo Kk Production of conductive plastic
JPS58222124A (en) * 1982-06-18 1983-12-23 Aron Kasei Co Ltd Thermoplastic resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406126A (en) * 1966-12-07 1968-10-15 Avco Corp Conductive synthetic resin composition containing carbon filaments
JPS5611523A (en) * 1979-07-06 1981-02-04 Nissin Electric Co Ltd Suppressing unit for voltage variance
JPS58150203A (en) * 1981-12-30 1983-09-06 エヌ・ヴイ・ベカルト・エス・エイ Prastic product with conductive fiber
JPS58129031A (en) * 1982-01-27 1983-08-01 Mitsubishi Rayon Co Ltd Electrically conductive resin composition
JPS58176220A (en) * 1982-04-09 1983-10-15 Fukuda Kinzoku Hakufun Kogyo Kk Production of conductive plastic
JPS58222124A (en) * 1982-06-18 1983-12-23 Aron Kasei Co Ltd Thermoplastic resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160092A (en) * 1987-12-17 1989-06-22 Kawatetsu Techno Res Corp Electromagnetic wave shielding material
JP2008546193A (en) * 2005-06-02 2008-12-18 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Polymer EMI housing containing conductive fibers

Also Published As

Publication number Publication date
JPH0240264B2 (en) 1990-09-11

Similar Documents

Publication Publication Date Title
US5397608A (en) Plastic article containing electrically conductive fibers
EP1421838B1 (en) Method for forming electrically conductive impregnated fibers and fiber pellets
EP0131067B2 (en) Conductive synthetic resin molding material
US7078098B1 (en) Composites comprising fibers dispersed in a polymer matrix having improved shielding with lower amounts of conducive fiber
CA1194688A (en) Plastic article containing electrically conductive fibers
CN108929487A (en) A kind of thermally conductive electromagnetic shielding polypropylene composite material and preparation method
JPS58127761A (en) High specific gravity composite material reinforced with organic fiber
EP0286168B1 (en) Granular composite containing metal fibers and plastic articles made therefrom
JPH10195311A (en) Thermoplastic resin molding, material for molding and production of molding
JPS6234931A (en) Electrically conductive composite material
JPS58176220A (en) Production of conductive plastic
JPS61287962A (en) Electrically conductive composite resin composition
JPS6151311A (en) Preparation of composite electrically-conductive resin pellet
CN110240801A (en) A kind of high performance carbon fiber enhanced nylon composite material and preparation method
WO2019069134A1 (en) Carbon fiber reinforced polypropylene and polyethylene composite materials
CN102604215A (en) Phase separation conductive high molecular composite material
JPS6286053A (en) Electrically conductive resin composition
JPS61133266A (en) Thermoplastic resin composition
JPS6319543B2 (en)
JP2005225126A (en) Method for producing molding of conductive thermoplastic resin
JPS59161450A (en) Production of electrically conductive composite plastic
JPS6026043A (en) Electrically conductive thermoplastic resin composition
JPS6129505A (en) Manufacture of master pellet for forming electromagnetic shielding material
JPS61209120A (en) Manufacture of electrically conductive termoplastic resin molding
JPH0230646A (en) Production of reinforcing glass fiber bundle and resin body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term