JPS62346B2 - - Google Patents
Info
- Publication number
- JPS62346B2 JPS62346B2 JP20302981A JP20302981A JPS62346B2 JP S62346 B2 JPS62346 B2 JP S62346B2 JP 20302981 A JP20302981 A JP 20302981A JP 20302981 A JP20302981 A JP 20302981A JP S62346 B2 JPS62346 B2 JP S62346B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- control
- engine
- lean
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 145
- 238000000034 method Methods 0.000 claims description 25
- 238000012937 correction Methods 0.000 claims description 19
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 238000002347 injection Methods 0.000 description 29
- 239000007924 injection Substances 0.000 description 29
- 239000000498 cooling water Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000002826 coolant Substances 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2454—Learning of the air-fuel ratio control
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の詳細な説明】
本発明は、内燃機関の空燃比制御方法に係り、
特に、三元触媒を用いて排気ガス浄化対策が施さ
れた自動車用エンジンにおいて、エンジン運転状
態に応じて空燃比が理論空燃比よりリーン側とな
るように空燃比をフイードフオワード制御するリ
ーン制御と、空燃比センサの出力に応じて空燃比
が理論空燃比となるように空燃比をフイードバツ
ク制御するフイードバツク制御とを、エンジン運
転状態により切替える部分リーン制御を行なうよ
うにした内燃機関の空燃比制御方法の改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for an internal combustion engine,
In particular, in automobile engines that are equipped with exhaust gas purification measures using three-way catalysts, lean air-fuel ratio control is used to feed-forward control the air-fuel ratio so that the air-fuel ratio is leaner than the stoichiometric air-fuel ratio depending on the engine operating condition. An air-fuel ratio of an internal combustion engine that performs partial lean control that switches between control and feedback control that feedback controls the air-fuel ratio so that the air-fuel ratio becomes the stoichiometric air-fuel ratio according to the output of an air-fuel ratio sensor, depending on the engine operating state. Concerning improvements in control methods.
一般に、内燃機関、特に、三元触媒を用いて排
気ガス浄化対策が施された自動車用エンジンにお
いては、その混合気の一次空燃比、或いは、触媒
流入ガスの二次空燃比を、理論空燃比に保持する
必要があり、そのため、種々の空燃比制御方法が
提案されている。その一つに、空燃比センサを排
気マニホルドに配設し、該空燃比センサの出力に
応じて空燃比が理論空燃比となるように一次空燃
比或いは二次空燃比をフイードバツク制御する方
法が知られており、このフイードバツク制御によ
れば、一次空燃比或いは二次空燃比を厳密に理論
空燃比近傍に保持できるという特徴を有する。従
つて、従来は、このフイードバツク制御をエンジ
ン運転状態に拘らず常時実施するようにしていた
ものであるが、一方、燃料消費量に着目すると、
このフイードバツク制御を常時行なう方法は、最
善の方法ではなく、例えば、軽負荷運転状態にお
いては、排気ガス中の有害成分である窒素酸化物
の排出量がもともと小さいため、排気ガス浄化性
能を若干犠性にしても、空燃比が理論空燃比より
リーン側となるように制御した方が、エンジンの
燃費性能は向上する。なお空燃比を理論空燃比よ
りリーン側とした場合には、エンジンの出力も若
干低下するが、軽負荷運転状態であれば特に問題
を生じることはない。 In general, in internal combustion engines, especially automobile engines in which exhaust gas purification measures are taken using a three-way catalyst, the primary air-fuel ratio of the air-fuel mixture or the secondary air-fuel ratio of the catalyst inflow gas is set to the stoichiometric air-fuel ratio. Therefore, various air-fuel ratio control methods have been proposed. One of the known methods is to install an air-fuel ratio sensor in the exhaust manifold and perform feedback control on the primary air-fuel ratio or secondary air-fuel ratio so that the air-fuel ratio becomes the stoichiometric air-fuel ratio according to the output of the air-fuel ratio sensor. According to this feedback control, the primary air-fuel ratio or the secondary air-fuel ratio can be maintained strictly close to the stoichiometric air-fuel ratio. Therefore, in the past, this feedback control was always carried out regardless of the engine operating state, but on the other hand, when focusing on fuel consumption,
This method of constantly performing feedback control is not the best method; for example, under light load operating conditions, the amount of nitrogen oxide emissions, which are harmful components in exhaust gas, is small to begin with, so the exhaust gas purification performance may be slightly sacrificed. In general, engine fuel efficiency improves when the air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio. Note that when the air-fuel ratio is set to be leaner than the stoichiometric air-fuel ratio, the engine output also decreases slightly, but this does not cause any particular problem if the engine is operated under light load.
上記のような知見に基づいて、エンジン運転状
態に応じて空燃比が理論空然比よりリーン側とな
るように空燃比をフイードフオワード制御するリ
ーン制御と、空燃比センサの出力に応じて空燃比
が理論空燃比なるように空燃比をフイードバツク
制御するフイードバツク制御とを、エンジン運転
状態により切替える部分リーン制御が考えられて
いる。この部分リーン制御においては、第1図に
示すような、エンジン回転数Nに対する吸気管圧
力の変化特性と、同じくエンジン回転数Nに対す
る基本燃料噴射時間Tpとの相関性の良さを利用
して、例えば第2図に示す如く、基本燃料噴射時
間Tpが、Tp0〜Tp1の間にある吸気絞り弁の全
閉時にはフイードバツク制御を実施し、基本燃料
噴射時間Tpが、Tp1〜Tp〓の間にある軽負荷域
においてはリーン制御を実施し、基本燃料噴射時
間Tpが、Tp〓〜Tp〓の間にある通常運転状態
ではフイードバツク制御を実施し、更に、基本燃
料噴射時間Tpが、Tp〓〜Tpo(絞り弁全開状
態)に対応する出力領域では空燃比が理論空燃比
よりリツチ側の出力空燃比、例えば12〜13となる
ように空燃比をフイードフオワード制御するよう
にしている。ここで、前記基本燃料噴射時間Tp
は、機関の吸入空気量Qとエンジン回転数Nを用
いて、次式により算出されるもである。 Based on the above knowledge, we have developed a lean control system that feedforward controls the air-fuel ratio so that the air-fuel ratio is leaner than the stoichiometric air-fuel ratio depending on the engine operating state, and a lean control that controls the air-fuel ratio in a feed-forward manner so that the air-fuel ratio is leaner than the stoichiometric air-fuel ratio. Partial lean control has been considered in which feedback control is performed to control the air-fuel ratio so that the air-fuel ratio becomes the stoichiometric air-fuel ratio, and the feedback control is switched depending on the engine operating state. This partial lean control utilizes the good correlation between the change characteristics of intake pipe pressure with respect to engine speed N and the basic fuel injection time T p with respect to engine speed N, as shown in Fig. 1. For example, as shown in FIG. 2, when the intake throttle valve is fully closed when the basic fuel injection time T p is between T p0 and T p1 , feedback control is performed, and the basic fuel injection time T p is between T p1 and T p1 . In the light load range between T p 〓, lean control is carried out, and in the normal operating state where the basic fuel injection time T p is between T p 〓 and T p 〓, feedback control is carried out. In the output range where the fuel injection time T p corresponds to T p 〓 to T po (throttle valve fully open state), the air-fuel ratio is adjusted so that the air-fuel ratio becomes an output air-fuel ratio richer than the stoichiometric air-fuel ratio, for example, 12 to 13. I'm trying to control the feed forward. Here, the basic fuel injection time T p
is calculated by the following equation using the engine intake air amount Q and the engine rotational speed N.
Tp=AQ/N ……(1) ここでAは定数である。 T p =AQ/N...(1) Here, A is a constant.
前記のような部分リーン制御におけるリーン制
御領域の減量比は、例えば第3図に示す如く設定
されており、従つて、同じくリーン制御領域にお
ける空燃比は、第4図に示す如くとなつている。 The reduction ratio in the lean control region in the above partial lean control is set as shown in FIG. 3, for example, and therefore, the air-fuel ratio in the lean control region is also as shown in FIG. 4. .
この部分リーン制御は、例えば第5図に示すよ
うな流れ図に沿つて実施される。即ち、まずステ
ツプ101において、算出された基本燃料噴射時間
TpがTp〓以上であるか否かが判定され、Tp〓
以上である場合には、生力制御領域であるので、
ステツプ102に進んで出力空燃比を得るのに必要
な出力制御値が計算され、更にステツプ103で計
算値に応じて補正量がセツトされる。一方、基本
燃料噴射時間TpがTp〓未満である場合には、ス
テツプ104に進み、基本燃料噴射時間TpがTp〓
以上であるか否かが判定される。基本燃料噴射時
間TpがTp〓以上である場合には、フイードバツ
ク制御領域であるので、ステツプ105に進み、空
燃比センサの出力に応じてフイードバツク制御値
が計算され、ステツプ103で補正量がセツトされ
る。又、基本燃料噴射時間TpがTp〓未満である
場合には、ステツプ106に進み、基本燃料噴射時
間TpがTp1未満であるか否かが判定される。基
本燃料噴射時間TpがTp1以上の場合には、リー
ン制御領域であるので、ステツプ107に進み、第
3図に示したような減量比に従つてTp値に応じ
たリーン値を計算し、ステツプ103で補正量をセ
ツトする。又、ステツプ106で基本燃料噴射時間
TpがTp1未満であると判定された場合には、前
出ステツプ105に進み、フイードバツク制御値を
計算して、ステツプ103で補正量をセツトする。 This partial lean control is performed, for example, according to a flowchart as shown in FIG. That is, first, in step 101, it is determined whether the calculated basic fuel injection time T p is greater than or equal to T p 〓, and T p 〓
If it is above, it is in the biopower control area, so
The process proceeds to step 102, where the output control value necessary to obtain the output air-fuel ratio is calculated, and further, at step 103, a correction amount is set in accordance with the calculated value. On the other hand, if the basic fuel injection time T p is less than T p 〓, the process proceeds to step 104, and the basic fuel injection time T p is less than T p 〓.
It is determined whether or not the value is greater than or equal to the value. If the basic fuel injection time T p is greater than or equal to T p 〓, it is in the feedback control region, so the process proceeds to step 105, where the feedback control value is calculated according to the output of the air-fuel ratio sensor, and the correction amount is determined in step 103. is set. If the basic fuel injection time T p is less than T p , the routine proceeds to step 106, where it is determined whether the basic fuel injection time T p is less than T p1 . If the basic fuel injection time T p is greater than or equal to T p1 , it is in the lean control region, so proceed to step 107, and calculate the lean value according to the T p value according to the reduction ratio shown in Fig. 3. Then, in step 103, the correction amount is set. If it is determined in step 106 that the basic fuel injection time Tp is less than Tp1 , the process proceeds to step 105, where a feedback control value is calculated, and a correction amount is set in step 103.
この部分リーン制御によれば、従来の、フイー
ドバツク制御を常時行なう方法に比べて、排気ガ
ス浄化性能を損なうことなく、燃費性能を大幅に
向上することができるものであるが、部品のばら
つき等によりリーン制御領域の空燃比がばらつく
と、排気ガス浄化性能、車両運転性能等に悪影響
を及ぼすことが心配される。 According to this partial lean control, compared to the conventional method of constantly performing feedback control, it is possible to significantly improve fuel efficiency without impairing exhaust gas purification performance, but due to variations in parts etc. There is a concern that variations in the air-fuel ratio in the lean control region may adversely affect exhaust gas purification performance, vehicle driving performance, etc.
従つて、前記部分リーン制御中のフイードバツ
ク制御領域を利用して、フイードバツク制御を実
行した時の空燃比帰還補正量に応じて、理論空燃
比の偏差を学習することにより、リーン制御時に
おける空燃比制御の精度を高めることが考えられ
る。しかしながら、空燃比の学習は、フイードバ
ツク制御している状態でしか実行できないため、
エンジン始動直後の冷間時制御が終了した後、直
ちに部分リーン制御を実行するようにすると、吸
入空気量分割或いは基本燃料噴射時間分割いずれ
の方式の学習を行なつた場合においても、リーン
制御領域の学習の機会が非常に少なく(基本燃料
噴射時間Tpで分割した場合には、Tp1〜Tp〓は
学習の機会がない)、又、実際に使いたいところ
を直接学習することができず、その結果、リーン
制御領域の空燃比のばらつきを十分吸収すること
ができない可能性があつた。 Therefore, by using the feedback control area during the partial lean control to learn the deviation of the stoichiometric air-fuel ratio according to the air-fuel ratio feedback correction amount when the feedback control is executed, the air-fuel ratio during the lean control can be adjusted. It is possible to improve the accuracy of control. However, since air-fuel ratio learning can only be performed under feedback control,
If partial lean control is executed immediately after cold-time control ends immediately after engine startup, the lean control region will be maintained regardless of whether the intake air amount division or basic fuel injection time division method is learned. There are very few learning opportunities (if divided by the basic fuel injection time T p , there is no learning opportunity for T p1 to T p 〓), and it is not possible to directly learn what you actually want to use. First, as a result, there was a possibility that variations in the air-fuel ratio in the lean control region could not be sufficiently absorbed.
本発明は、前記のような問題点を解消するべく
なされたもので、リーン制御に移る前に確実に学
習を行なうことができ、従つて、リーン制御領域
においても正しい補正が可能となり、部品ばらつ
き等による空燃比のばらつきを吸収して、排気ガ
ス浄化性能、運転性能を向上すると共に、部品の
精度管理を簡略化することができる内燃機関の空
燃比制御方法を提供することを目的とする。 The present invention was made to solve the above-mentioned problems, and it is possible to reliably perform learning before switching to lean control. Therefore, correct correction can be made even in the lean control region, and component variations can be reduced. It is an object of the present invention to provide an air-fuel ratio control method for an internal combustion engine, which can improve exhaust gas purification performance and driving performance by absorbing variations in the air-fuel ratio due to such factors, and can simplify precision control of parts.
本発明は、エンジン運転状態に応じて空燃比が
理論空燃比よりリーン側となるように空燃比をフ
イードフオワード制御するリーン制御と、空燃比
センサの出力に応じて空燃比が理論空燃比となる
ように空燃比をフイードバツク制御するフイード
バツク制御とを、エンジン運転状態により切替え
る部分リーン制御を行なうようにした内燃機関の
空燃比制御方法において、暖機終了直後或いはエ
ンジン始動直後の所定時間は、エンジン運転状態
に拘らず、強制的に前記フイードバツク制御を実
行し、この時の空燃比帰還補正量に応じて、理論
空燃比と設定空燃比の偏差を学習するようにし
て、前記目的を達成したものである。 The present invention provides lean control that performs feedforward control of the air-fuel ratio so that the air-fuel ratio is leaner than the stoichiometric air-fuel ratio according to engine operating conditions, and a lean control that controls the air-fuel ratio in a feedforward manner so that the air-fuel ratio is leaner than the stoichiometric air-fuel ratio according to the output of an air-fuel ratio sensor. In the air-fuel ratio control method for an internal combustion engine, which performs partial lean control in which feedback control is performed to control the air-fuel ratio so that the air-fuel ratio is switched depending on the engine operating state, for a predetermined period of time immediately after warm-up or immediately after engine startup, The above objective is achieved by forcibly executing the feedback control regardless of the engine operating state and learning the deviation between the stoichiometric air-fuel ratio and the set air-fuel ratio according to the air-fuel ratio feedback correction amount at this time. It is something.
以下の図面を参照して、本発明の実施例を詳細
に説明する。 Embodiments of the present invention will be described in detail with reference to the following drawings.
本実施例は、第6図に示すような、外気を取入
れるためのエアクリーナ12と、該エアクリーナ
12により取入れられた吸入空気の流量を検出す
るためのエアフローメータ14と、該エアフロー
メータ14に内蔵された、例えばポテンシヨンメ
ータ式の吸気量センサ16と、同じくエアフロメ
ータ14に内蔵された、吸入空気の温度を検出す
るための吸気温センサ18と、吸気管20に配設
され、運転席に配設されたアクセルペダル(図示
省略)と連動して回動するようにされた、吸入空
気の流量を制御するための吸気絞り弁22と、吸
気マニホルド24に配設された、エンジン10の
吸気ポートに向けて燃料を噴射するためのインジ
エクタ26と、エンジン10の冷却水温度を検出
するための冷却水温センサ30と、エンジン10
のクランク軸の回転速度に応じた周波数のパルス
信号を出力する回転速度センサ28と、排気マニ
ホルド32の出口側に配設された、排気ガス中の
残存酸素濃度から空燃比を検知するための酸素濃
度センサ34と、排気管36の下流側に配設され
た三元触媒コンバータ38と、前記エアフロメー
タ14の吸気量センサ16出力から求められるエ
ンジン10の吸入空気量Qと前記回転速度センサ
28出力から求められるエンジン回転数Nから前
出(1)式に従つて基本燃料噴射時間Tpを算出し、
更に冷却水温センサ30出力の冷却水温、酸素濃
度センサ34出力の空燃比等に応じて補正を加え
て開弁時間信号を作成し、前記インジエクタ26
の開弁時間を制御することによつて空燃比を制御
する空燃比制御回路40とを備えた、自動車用エ
ンジン10の吸入空気量式電子制御燃料噴射装置
において、前記空燃比制御回路40内で、エンジ
ン運転状態に応じて空燃比が理論空燃比よりリー
ン側となるように空燃比をフイードフオワード制
御するリーン制御と、酸素濃度センサ34の出力
に応じて空燃比が理論空燃比となるように空燃比
をフイードバツク制御すると共に、この時の空燃
比帰還補正量に応じて、理論空燃比と設定空燃比
の偏差を学習するフイードバツク制御とを、エン
ジン運転状態により切替える部分リーン制御を行
なうと共に、暖機終了直後或いはエンジン始動直
後の所定時間は、エンジン運転状態に拘らず、強
制的に前記フイードバツク制御を実行し、この時
の空燃比帰還補正量に応じて、理論空燃比と設定
空燃比の偏差を学習するようにしたものである。 This embodiment includes an air cleaner 12 for taking in outside air, an air flow meter 14 for detecting the flow rate of the intake air taken in by the air cleaner 12, and a built-in air flow meter 14, as shown in FIG. an intake air amount sensor 16 of, for example, a potentiometer type; an intake air temperature sensor 18 for detecting the temperature of intake air also built into the air flow meter 14; An intake throttle valve 22 for controlling the flow rate of intake air, which is configured to rotate in conjunction with a disposed accelerator pedal (not shown), and an intake throttle valve 22 for controlling the intake air of the engine 10, which is disposed in an intake manifold 24. An injector 26 for injecting fuel toward a port, a cooling water temperature sensor 30 for detecting the cooling water temperature of the engine 10, and an engine 10.
a rotational speed sensor 28 that outputs a pulse signal with a frequency corresponding to the rotational speed of the crankshaft; and an oxygen sensor disposed on the outlet side of the exhaust manifold 32 for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas. The intake air amount Q of the engine 10 determined from the concentration sensor 34, the three-way catalytic converter 38 disposed downstream of the exhaust pipe 36, the intake air amount sensor 16 output of the air flow meter 14, and the output of the rotation speed sensor 28. Calculate the basic fuel injection time T p according to the above formula (1) from the engine rotation speed N obtained from
Furthermore, a valve opening time signal is created by making corrections according to the cooling water temperature output from the cooling water temperature sensor 30, the air-fuel ratio output from the oxygen concentration sensor 34, etc.
In the intake air amount type electronically controlled fuel injection device for an automobile engine 10, the air-fuel ratio control circuit 40 controls the air-fuel ratio by controlling the valve opening time of the engine. , Lean control that feedforward controls the air-fuel ratio so that the air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio according to the engine operating state, and lean control that controls the air-fuel ratio in a feedforward manner so that the air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio according to the output of the oxygen concentration sensor 34. According to the air-fuel ratio feedback correction amount at this time, the air-fuel ratio is feedback-controlled as shown in FIG. , For a predetermined period of time immediately after warm-up or immediately after engine start, the feedback control is forcibly executed regardless of the engine operating state, and the stoichiometric air-fuel ratio and the set air-fuel ratio are adjusted according to the air-fuel ratio feedback correction amount at this time. The system is designed to learn the deviation of
前記空燃比制御回路40は、例えば第7図に詳
細に示す如く、燃料噴射量を演算するマイクロプ
ロセツサ42と、前記回転速度センサ28の出力
によりエンジン1回転に1回エンジン回転数を計
数すると共に、その計数の終了時に割込み制御部
46に割込み指冷信号を出力する回転数カウンタ
44と、該回転数カウンタ44出力の割込み指令
信号に応じて割込み信号を発生し、マイクロプロ
セツサ42に燃料噴射量の演算を行なう割込み処
理ルーチンを実行させる割込み制御部46と、ス
タータ(図示省略)の作動を制御しているスター
タスイツチ50から入力されるスタータ信号等の
デジタル信号をマイクロプロセツサ42に入力す
るためのデイジタル入力ポート52と、前記吸気
量センサ16、吸気温センサ18、冷却水温セン
サ30、酸素濃度センサ34等から入力される各
アナログ信号を、デジタル信号に変換して順次マ
イクロプロセツサ42に入力するための、アナロ
グマルチプレクサ及びアナログ―デジタル変換器
からなるアナログ入力ポート54と、前記回転数
カウンタ44、割込み制御部46、デジタル入力
ポート52、アナログ入力ポート54等の出力情
報をマイクロプロセツサ42に伝達するためのコ
モンバス56と、キイスイツチ58を介してバツ
テリ60に接続された電源回路62と、マイクロ
プロセツサ42における計算データ等を一時的に
記憶しておくための、読取り、書込みを行なえる
ランダムアクセスメモリ64と、プログラムや各
種の定数等を記憶しておくためのリードオンリー
メモリ66と、マイクロプロセツサ42で算出さ
れたインジエクタ26の開弁時間、即ち、燃料噴
射量を表わすデジタル信号を実際のインジエクタ
26の開弁時間を与えるパルス幅のパルス信号に
変換するための、レジスタを含むダウンカウンタ
よりなる燃料噴射時間制御用カウンタ68と、該
カウンタ68出力のパルス信号を、前記インジエ
クタ26を駆動する開弁時間信号に変換する電力
増幅部70と、経過時間を測定するためのタイマ
72とから構成されている。 As shown in detail in FIG. 7, for example, the air-fuel ratio control circuit 40 includes a microprocessor 42 that calculates the amount of fuel to be injected, and counts the engine rotation speed once per engine rotation based on the output of the rotation speed sensor 28. At the same time, the rotation number counter 44 outputs an interrupt instruction cooling signal to the interrupt control unit 46 at the end of counting, and generates an interrupt signal in response to the interrupt command signal output from the rotation number counter 44 to cause the microprocessor 42 to output fuel. A digital signal such as a starter signal is input to the microprocessor 42 from an interrupt control unit 46 that executes an interrupt processing routine for calculating the injection amount and a starter switch 50 that controls the operation of a starter (not shown). The analog signals input from the intake air amount sensor 16, intake air temperature sensor 18, cooling water temperature sensor 30, oxygen concentration sensor 34, etc. are converted into digital signals and sequentially sent to the microprocessor 42. An analog input port 54 consisting of an analog multiplexer and an analog-to-digital converter is used to input information to the microprocessor. A common bus 56 for transmitting data to the microprocessor 42, a power supply circuit 62 connected to the battery 60 via a key switch 58, and a read/write bus for temporarily storing calculation data etc. in the microprocessor 42. a read-only memory 66 for storing programs and various constants, and a digital signal representing the valve opening time of the injector 26 calculated by the microprocessor 42, that is, the fuel injection amount. A fuel injection time control counter 68 consisting of a down counter including a register is used to convert the pulse width into a pulse signal having a pulse width that gives the actual valve opening time of the injector 26. It is composed of a power amplifying section 70 that converts the signal into a valve opening time signal for driving the valve, and a timer 72 that measures the elapsed time.
以下作用を説明する。 The action will be explained below.
本実施例における冷間時制御、部分リーン制
御、フイードバツク制御の切替えは、第8図に示
すような切替プログラムに従つて実施される。即
ち、まず、ステツプ111で、前記冷却水温センサ
30で検出されるエンジン冷却水温Twが、冷間
時増量制御から部分リーン制御等に移行するに適
した所定温度A℃(例えば40℃)に到達したか否
かが判定され、エンジン冷却水温TwがA℃未満
である場合には、ステツプ112に進んで、公知の
冷間時増量制御が実施される。一方、エンジン冷
却水温TwがA℃以上となつている場合には、ス
テツプ113に進み、各種増量が完全に終了した、
第2の所定温度B℃(例えば70℃)に到達してい
るか否かが判定され、エンジン冷却水温TwがB
℃未満である場合には、ステツプ114に進んでフ
イードバツク制御のみが実施される。更に、エン
ジン冷却水温TwがB℃以上となつた時には、ス
テツプ115に進み、エンジン冷却水温TwがB℃
となつてから所定時間(x時間)経過したが否か
が判定され、x時間(例えば200秒)経過するま
では、ステツプ114でフイードバツク制御が実施
され、この時の空燃比帰還補正量に応じて、理論
空燃比と設定空燃比の偏差が学習される。エンジ
ン冷却水温TwがB℃となつてからx時間以上経
過した場合には、ステツプ116に進み、部分リー
ン制御が実施され、該部分リーン制御中のフイー
ドバツク制御時に、この時の空燃比帰還補正量に
応じて、理論空燃比と設定空燃比の偏差が学習さ
れる。 Switching between cold time control, partial lean control, and feedback control in this embodiment is performed according to a switching program as shown in FIG. That is, first, in step 111, the engine coolant temperature Tw detected by the coolant temperature sensor 30 reaches a predetermined temperature A°C (for example, 40°C) suitable for transitioning from cold increase control to partial lean control, etc. It is determined whether or not the engine cooling water temperature Tw is lower than A° C., the process proceeds to step 112, and a known cold-time increase control is implemented. On the other hand, if the engine coolant temperature Tw is equal to or higher than A℃, the process advances to step 113, and the various increases have been completely completed.
It is determined whether the second predetermined temperature B°C (for example, 70°C) has been reached, and the engine cooling water temperature Tw is
If it is less than 0.degree. C., the process advances to step 114 and only feedback control is performed. Furthermore, when the engine coolant temperature Tw becomes equal to or higher than B℃, the process proceeds to step 115, and the engine coolant temperature Tw reaches B℃.
It is determined whether a predetermined time (x hours) has elapsed since then, and until x time (for example, 200 seconds) has elapsed, feedback control is performed in step 114, and the feedback control is performed according to the air-fuel ratio feedback correction amount at this time. Then, the deviation between the stoichiometric air-fuel ratio and the set air-fuel ratio is learned. If x hours or more have passed since the engine coolant temperature Tw reached B°C, the process proceeds to step 116, where partial lean control is implemented, and during feedback control during the partial lean control, the air-fuel ratio feedback correction amount at this time is determined. The deviation between the stoichiometric air-fuel ratio and the set air-fuel ratio is learned accordingly.
前記フイードバツク制御時における学習は、例
えば次のようにして行なわれる。即ち、まず、第
9図に示すような学習条件判定ルーチンに従つ
て、学習制御に適した条件が成立しているか否か
が判定される。具体的には、ステツプ121で、フ
イードバツク制御実施中か否かが判定され、フイ
ードバツク制御実施中でない場合には学習条件非
成立と判断して学習制御は行なわない。フイード
バツク制御実施中である場合には、ステツプ122
に進み、前記冷却水温センサ30出力により検出
されるエンジン冷却水温Twが、学習制御に適し
たエンジン暖機終了後の温度B℃(例えば70℃)
に到達しているか否かが判定され、エンジン冷却
水温がB℃に到達していない場合には、学習制御
を行なわない。エンジン冷却水温TwがB℃以上
となつている場合には、ステツプ123に進み、例
えば、エンジン運転状態が過渡領域等の不安定領
域でないか等の、その他の学習停止条件が成立し
ているか否かを判定する。その他の学習停止条件
が成立している場合には、やはり学習制御は行な
わない。その他の学習停止条件も成立しておら
ず、学習制御に適した状態となつている場合に
は、ステツプ124で、その時の空燃比帰還補正量
に応じて、理論空燃比と設定空燃比の偏差を学習
する。このステツプ124における空燃比の学習
は、具体的には第10図に示すような学習ルーチ
ンに従つて行なわれる。即ち、まずステツプ131
で、現在の吸入空気量Q或いは基本燃料噴射時間
Tpに応じて、学習される補正量のブロツクを決
定する。ついで、ステツプ132に進み、フイード
バツク補正方向がリツチ方向であるかリーン方向
であるかを判定する。フイードバツク補正方向が
リーン方向である場合にはステツプ133に進み、
リーン方向へC%学習する。一方、フイードバツ
ク補正方向がリツチ方向である場合には、ステツ
プ134に進み、リツチ方向へC%学習する。この
ようにして学習された学習量と各ブロツクの関係
は例えば第11図に示す如くとなる。 Learning during the feedback control is performed, for example, as follows. That is, first, according to a learning condition determination routine as shown in FIG. 9, it is determined whether conditions suitable for learning control are established. Specifically, in step 121, it is determined whether or not feedback control is being performed. If feedback control is not being performed, it is determined that the learning condition is not satisfied and learning control is not performed. If feedback control is in progress, step 122
The engine cooling water temperature Tw detected by the output of the cooling water temperature sensor 30 is set to a temperature B°C (for example, 70°C) after engine warm-up suitable for learning control.
It is determined whether or not the engine cooling water temperature has reached B°C, and if the engine cooling water temperature has not reached B°C, no learning control is performed. If the engine cooling water temperature Tw is equal to or higher than B°C, the process proceeds to step 123, and checks whether other learning stop conditions are met, such as whether the engine operating state is not in an unstable region such as a transient region. Determine whether If other learning stop conditions are met, no learning control is performed. If the other learning stop conditions are not satisfied and the state is suitable for learning control, in step 124, the difference between the stoichiometric air-fuel ratio and the set air-fuel ratio is calculated according to the air-fuel ratio feedback correction amount at that time. Learn. Specifically, the learning of the air-fuel ratio in step 124 is performed according to a learning routine as shown in FIG. That is, first step 131
Then, a block of the correction amount to be learned is determined according to the current intake air amount Q or the basic fuel injection time Tp . Next, the process proceeds to step 132, where it is determined whether the feedback correction direction is the rich direction or the lean direction. If the feedback correction direction is in the lean direction, proceed to step 133;
Learn C% towards lean. On the other hand, if the feedback correction direction is the rich direction, the process proceeds to step 134, where C% learning is performed in the rich direction. The relationship between the learning amount learned in this way and each block is as shown in FIG. 11, for example.
本実施例におけるエンジン始動後の経過時間と
各制御の切替え状態の一例を第12図に示す。 FIG. 12 shows an example of the elapsed time after starting the engine and the switching state of each control in this embodiment.
本実施例においては、学習を行なうためのフイ
ードバツク制御を、暖機終了直後の所定時間即
ち、エンジン冷却水温70℃に到達してからx時間
行なうようにしているため、安定したデータを用
いて精度の高い学習を行なう事ができる。なお冷
間時増量制御から部分リーン制御に移る前に学習
を行なう方法はこれに限定されず、例えば、エン
ジン始動直後の所定時間だけ、学習を行なうため
のフイードバツク制御を強制的に行なうことも可
能である。 In this embodiment, the feedback control for learning is performed for a predetermined period of time immediately after the end of warm-up, that is, for x hours after the engine coolant temperature reaches 70°C, so stable data is used to improve accuracy. A high level of learning can be achieved. Note that the method of performing learning before moving from cold time increase control to partial lean control is not limited to this, for example, it is also possible to forcibly perform feedback control for learning for a predetermined period of time immediately after engine startup. It is.
尚、前記実施例は、本発明を、吸入空気量式の
電子制御燃料噴射装置を備えた自動車用エンジン
に適用したものであるが、本発明の適用範囲はこ
れに限定されず、吸気圧力式の電子制御燃料噴射
装置を備えた自動車用エンジン、或いは気化器を
備えた一般の内燃機関にも同様に適用できること
は明らかである。 In the above embodiment, the present invention is applied to an automobile engine equipped with an intake air volume type electronically controlled fuel injection device, but the scope of application of the present invention is not limited to this, and It is obvious that the present invention can be similarly applied to an automobile engine equipped with an electronically controlled fuel injection device or a general internal combustion engine equipped with a carburetor.
以上説明した通り、本発明によれば、部分リー
ン制御に移行する前に確実に学習が行なわれ、広
範囲な領域で理論空燃比と設定空燃比の偏差を十
分に学習できる。従つて、リーン制御領域におい
ても正しい補正が可能となり、部品のばらつき等
を十分に吸収でき、排気ガス浄化性能、運転性能
を向上すると共に、部品の精度管理を簡略化する
ことによりコスト低下をはかることができる等の
優れた効果を有する。 As described above, according to the present invention, learning is reliably performed before shifting to partial lean control, and the deviation between the stoichiometric air-fuel ratio and the set air-fuel ratio can be sufficiently learned over a wide range. Therefore, correct correction is possible even in the lean control region, and variations in parts can be fully absorbed, improving exhaust gas purification performance and operational performance, and reducing costs by simplifying parts precision control. It has excellent effects such as:
第1図は、部分リーン制御の原理を説明するた
めの、エンジン回転数と吸気管圧力及び基本燃料
噴射時間の関係を示す線図、第2図は、同じく、
エンジン回転数及び吸気管圧力と各制御領域の関
係を示す線図、第3図は、同じく、リーン制御領
域における基本燃料噴射時間と減量比の関係を示
す線図、第4図は、同じく、基本燃料噴射時間と
制御空燃比の関係を示す線図、第5図は、同じ
く、部分リーン制御の基本的なプログラムの一例
を示す流れ図、第6図は、本発明に係る内燃機関
の空燃比制御方法の実施例が採用された、自動車
用エンジンの吸入空気量式電子制御燃料噴射装置
の構成を示すブロツク線図、第7図は、前記装置
で用いられている空燃比制御回路の構成例を示す
ブロツク線図、第8図は、前記実施例で用いられ
ている、各制御状態を切替えるためのプログラム
を示す流れ図、第9図は、同じく、学習条件の成
立の有無を判定するためのプログラムを示す流れ
図、第10図は、同じく、空燃比を学習するため
のプログラムを示す流れ図、第11図は、前記実
施例における、吸入空気量或いは基本燃料噴射時
間のブロツクと学習量の関係の一例を示す線図、
第12図は、同じく、エンジン始動後の経過時間
と各制御の切替状態の一例の関係を示す線図であ
る。
10……エンジン、16……吸気量センサ、2
6……インジエクタ、28……回転速度センサ、
34……酸素濃度センサ、40……空燃比制御回
路。
FIG. 1 is a diagram showing the relationship between engine speed, intake pipe pressure and basic fuel injection time to explain the principle of partial lean control, and FIG. 2 is a diagram showing the relationship between engine speed, intake pipe pressure and basic fuel injection time.
Similarly, FIG. 3 is a diagram showing the relationship between engine speed and intake pipe pressure and each control region, and FIG. 4 is a diagram showing the relationship between basic fuel injection time and reduction ratio in the lean control region. A diagram showing the relationship between the basic fuel injection time and the controlled air-fuel ratio, FIG. 5 is a flow chart showing an example of a basic program for partial lean control, and FIG. 6 is a diagram showing the air-fuel ratio of the internal combustion engine according to the present invention. A block diagram showing the configuration of an intake air amount type electronically controlled fuel injection device for an automobile engine in which an embodiment of the control method is adopted, FIG. 7 is a configuration example of an air-fuel ratio control circuit used in the device. FIG. 8 is a flowchart showing a program for switching each control state used in the above embodiment, and FIG. FIG. 10 is a flowchart showing the program, and FIG. 11 is a flowchart showing the program for learning the air-fuel ratio. FIG. A diagram showing an example,
Similarly, FIG. 12 is a diagram showing the relationship between the elapsed time after starting the engine and an example of the switching state of each control. 10...Engine, 16...Intake amount sensor, 2
6...Injector, 28...Rotation speed sensor,
34...Oxygen concentration sensor, 40...Air-fuel ratio control circuit.
Claims (1)
比よりリーン側となるように空燃比をフイードフ
オワード制御するリーン制御と、空燃比センサの
出力に応じて空燃比が理論空燃比となるように空
燃比をフイードバツク制御するフイードバツク制
御とを、エンジン運転状態により切替える部分リ
ーン制御を行なうようにした内燃機関の空燃比制
御方法において、暖機終了直後或いはエンジン始
動直後の所定時間は、エンジン運転状態に拘ら
ず、強制的に前記フイードバツク制御を実行し、
この時の空燃比帰還補正量に応じて、理論空燃比
と設定空燃比の偏差を学習するようにしたことを
特徴とする内燃機関の空燃比制御方法。1 Lean control that feedforward controls the air-fuel ratio so that the air-fuel ratio is leaner than the stoichiometric air-fuel ratio depending on the engine operating state, and a lean control that controls the air-fuel ratio so that the air-fuel ratio becomes the stoichiometric air-fuel ratio depending on the output of the air-fuel ratio sensor. In an air-fuel ratio control method for an internal combustion engine that performs partial lean control in which feedback control is performed to control the air-fuel ratio depending on the engine operating state, the engine operating state is regardless of the above, forcibly executing the feedback control,
An air-fuel ratio control method for an internal combustion engine, characterized in that a deviation between a stoichiometric air-fuel ratio and a set air-fuel ratio is learned according to an air-fuel ratio feedback correction amount at this time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20302981A JPS58104341A (en) | 1981-12-16 | 1981-12-16 | Air-fuel ratio controlling method for internal- combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20302981A JPS58104341A (en) | 1981-12-16 | 1981-12-16 | Air-fuel ratio controlling method for internal- combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58104341A JPS58104341A (en) | 1983-06-21 |
JPS62346B2 true JPS62346B2 (en) | 1987-01-07 |
Family
ID=16467164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20302981A Granted JPS58104341A (en) | 1981-12-16 | 1981-12-16 | Air-fuel ratio controlling method for internal- combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58104341A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4357663B2 (en) * | 1999-09-07 | 2009-11-04 | トヨタ自動車株式会社 | Combustion control device for internal combustion engine |
-
1981
- 1981-12-16 JP JP20302981A patent/JPS58104341A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58104341A (en) | 1983-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58152147A (en) | Air-fuel ratio control method for internal combustion engine | |
JPH0442533B2 (en) | ||
JPS60240840A (en) | Control device of air-fuel ratio in internal-combustion engine | |
JPS6254979B2 (en) | ||
JPS62346B2 (en) | ||
JPH045818B2 (en) | ||
JPS6354888B2 (en) | ||
JP3601101B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS61187570A (en) | Intake secondary air feeder of internal-combustion engine | |
JPS62162748A (en) | Air-fuel ratio control for internal-combustion engine | |
JPH0419377B2 (en) | ||
US4649882A (en) | Air intake side secondary air supply system for an internal combustion engine equipped with a fuel increment control system | |
JPS58217745A (en) | Air-fuel ratio control method for internal-combustion engine | |
JPS6232336B2 (en) | ||
JPS6232337B2 (en) | ||
JPS5841231A (en) | Method of electronic controlling for fuel injection | |
JP2807554B2 (en) | Air-fuel ratio control method for internal combustion engine | |
JP2873506B2 (en) | Engine air-fuel ratio control device | |
JPS629741B2 (en) | ||
JP2796182B2 (en) | Air-fuel ratio control method for internal combustion engine | |
JPS5848746A (en) | Apparatus for controlling air-fuel ratio of internal-combustion engine | |
JPS623159A (en) | Intake secondary air supply device for internal-combustion engine | |
JPH025729A (en) | Engine air-fuel ratio control device | |
JPH0251063B2 (en) | ||
JPS6098136A (en) | Air-fuel ratio control method of internal-combustion engine |