JPS6234687Y2 - - Google Patents

Info

Publication number
JPS6234687Y2
JPS6234687Y2 JP1982106025U JP10602582U JPS6234687Y2 JP S6234687 Y2 JPS6234687 Y2 JP S6234687Y2 JP 1982106025 U JP1982106025 U JP 1982106025U JP 10602582 U JP10602582 U JP 10602582U JP S6234687 Y2 JPS6234687 Y2 JP S6234687Y2
Authority
JP
Japan
Prior art keywords
polishing
media
spindles
workpiece
polishing tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982106025U
Other languages
Japanese (ja)
Other versions
JPS5912555U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10602582U priority Critical patent/JPS5912555U/en
Publication of JPS5912555U publication Critical patent/JPS5912555U/en
Application granted granted Critical
Publication of JPS6234687Y2 publication Critical patent/JPS6234687Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は乾式高速流動研摩機の改良に関する。 従来より、スピンドルに取り付けたワーク(被
研摩物)を研摩砥粒及び油脂を付着させたメデイ
アを充填した研摩槽内に入れ、前記スピンドルを
正逆に公転及び自転させることによりワークをメ
デイア中で高速流動させ、これによりワークを研
摩することが知られている(特公昭37−17646号
公報)。 しかしながら、従来のこの種の研摩機は、主と
してアルミニウム、亜鉛ダイカスト、真鍮類の比
較的複雑な形状を有した部品の研摩に用いられて
おり、鉄、ステンレススチール等の硬度の大きい
部品、特にギア等の円板状、平板状といつた単純
な形状を有する部品、小物部品などのメデイアを
十分撹拌し得ないようなもののバリ取り、研摩に
対しては仕上がりが不均一になるなど、良好な結
果が得られないため、従来はこれらの部品のバリ
取り、研摩は殆んど手作業で行なつているのが現
状である。また、従来の研摩機では上側に配置さ
れた部品と下側に配置された部品とで研摩仕上り
に相違が生じるなどの問題もあつた。更に、従来
の研摩機はスピンドルに取り付けられた遊星ギア
のギア数がこの遊星ギアと噛合する固定ギアのギ
ア数よりも少なく、従つてスピンドルの公転速度
が自転速度よりも遅いものであつたが、このよう
な研摩機では比較的深い凹面、例えば5〜100mm
の凹面を有する部品を研摩すると凹面部に研摩残
しが生じる問題があつた。 本考案は上記事情を改善するためになされたも
ので、従来の乾式高速流動研摩機では困難である
とされた鉄、ステンレススチール等の硬度の大き
い部品、ギア等の比較的単純な形状を有する部
品、小物部品などのバリ取り、仕上げ研摩などを
も確実に行い得、種々形状、材質の部品を良好に
研摩し得ると共に、研摩槽内における部品配置位
置に殆ど影響されることなく均一で外観の良好な
研摩仕上りを与えることができる乾式高速流動研
摩機を提供することを目的とする。 即ち、本考案は上記目的を達成するため、 固定ギアとこれに噛合する遊星ギアとを備え、
遊星ギアを固定ギアに沿つて150〜450rpmの速度
で公転させつつ自転させることにより前記遊星ギ
アと連結したスピンドルを公転かつ自転させ、前
記スピンドルに取り付けられたワークを回転せし
めて、研摩槽内に充填した乾式メデイアを前記ス
ピンドル及びワークの回転によつて撹拌すること
により乾式メデイアを前記研摩槽の内周壁付近の
流動方向が前記スピンドル及びワークの自転方向
と一致するように高速流動させると共に、この高
速流動する乾式メデイアに付着した研摩剤により
ワークを研摩するようにした乾式高速流動研摩機
であつて、前記研摩槽の側部中央部を側部上下部
よりも外方に膨出させたものである。 この点につき更に詳述すると、従来の乾式研摩
機においてスピンドル及びワークを150〜450rpm
という高速度で公転させると、メデイアの流動に
より研摩槽中央部付近に深いすりばち状の空洞部
が形成され、研摩槽の内周付近で研摩力が最大と
なり、中心部に向かうに従つて研摩力が弱まり、
ワークにメデイアが十分な圧力をもつて接触せ
ず、更に、研摩槽内周壁におけるメデイアの流動
方向がワークの自転方向と逆行し、メデイアがワ
ークに対向するものであるが、かかる研摩機では
ワーク表面上でのメデイアの流れがスムーズでな
く、特に高速回転させる場合は研摩面が縞状でな
く小さな凹凸状になり易く、きれいな研摩面が得
難いものである。 ところが、本考案の如く、研摩槽の内側部を外
方に膨出させ、研摩槽内周壁付近のメデイアの流
動方向をワークの自転方向と一致させた場合に
は、前記した問題が解決できるものである。 即ち、研摩槽の側部中央部を膨出したことによ
り、高速乾式研摩しても研摩槽中央部に深いすり
ばち状の空洞部が形成することが防止され、メデ
イアがワークに対して十分な圧力をもつて接触
し、良好で効率よく研摩が行われると共に、ワー
ク配置位置による研摩上りのバラツキが解決で
き、全体的に均一な研摩が達成されるものであ
る。 また、研摩槽内周壁付近のメデイアの流動方向
をワークの自転方向と一致させたことにより、ワ
ーク表面上でのメデイアの流れがスムーズにな
り、メデイアを高速流動させても研摩面が縞状の
良好な仕上り面を与え、ワーク全体を均一に研摩
できる上、スピンドルの自転、公転に要する力を
小さくでき、このため装置を小型化し得て、省力
化が図れるものである。 更に、スピンドルに取付けられた遊星ギアのギ
ア数をこの遊星ギアと噛合する固定ギアのギア数
より多くしてスピンドルの公転速度を自転速度よ
り早めることにより、比較的深い凹面を有する部
品をもこの凹面に研摩残しを生じさせることなく
全面的に研摩し得るものである。 以下、本考案の一実施例につき第1図を参照し
て説明する。 図中1は有底円筒状の研摩槽で、この内部にメ
デイア2が充填される。この研摩槽1は、その側
部中央部が側部上下部より外方に膨出した状態に
形成され、側部断面が円弧状に形成されてある。
3は機体(図示せず)に支持された有頭円筒状の
ボツクスで、この筒状ボツクス3内にギアボツク
ス4が配設されている。なお、前記研摩槽1の内
周壁上端部には筒状ボツクス3の外周壁下端部が
当接し、研摩操作時に研摩槽1内の内部に充填さ
れたメデイア2が外部に飛び出すことが防止され
ている。 前記ギアボツクス4の上壁中央部には円筒状軸
体5が突設されていると共に、この軸体5上端に
はリング状の駆動プーリー6が突設されている。
前記円筒状軸体5は前記筒状ボツクス3とその上
に載置された架台7とにそれぞれ固定された軸受
8,8により回転可能に支承されており、また前
記プーリー6はベルト9,9を介して図示してい
ないがモータと連結されており、このモータの駆
動によりプーリー6が回転し、これと一体に前記
円筒状軸体5及びギアボツクス4が回転するよう
になつている。 前記ギアボツクス4には、その上壁及び下壁に
それぞれ固定された軸受10,10,10′,1
0′にそれぞれ回転可能に支承された2本の回転
軸体11,11′が配設され、ギアボツクス4の
下壁をそれぞれ貫通して突出されたこれら軸体1
1,11′の下端部にジヨイント12,12′を介
してスピンドル13,13′が着脱可能に固定さ
れている。これらスピンドル13,13′の下部
にはそれぞれ治具14,14′が着脱可能に取り
付けられていると共に、これらの治具14,1
4′にワーク(被研摩物)15,15′が着脱可能
に固定され、前記ギアボツクス4の回転と一体に
前記回転軸体11,11′、スピンドル13,1
3′、ワーク15,15′が回転(後述する固定ギ
ア19に沿つて公転)するようになつている。 また、前記円筒状軸体5内には、固定軸体16
が配設されている。この固定軸体16の突出上端
部は機体の天井板17上に固定された支持体18
により固定されていると共に、固定軸体16の突
出下端部には円盤状の固定ギア19が固定されて
いる。なお、前記円筒状軸体5の内壁上下端部に
はそれぞれ軸受20,20が配設されており、こ
れによつて円筒状軸体5が固定軸体16に対しス
ムーズに回転し得るよう構成されている。 前記固定ギア19には、前記回転軸体11,1
1′にそれぞれ固定されたリング状の遊星ギア2
1,21′がそれぞれ噛合されており、前記ギア
ボツクス4の回転により回転軸体11,11′が
回転(公転)する際、遊星ギア21,21′が固
定ギア19に噛合されつつこの固定ギア19に沿
つて回転し、これにより回転軸体11,11′及
びこれらと連結しているスピンドル13,13′
が回転(自転)し、従つてスピンドル13,1
3′に取り付けられたワーク15,15′がスピン
ドル13,13′の軸線の周りを回転するように
なつている。 なお、前記研摩槽1は、図示していないがギア
ードモータ、空圧、油圧等によつて制御される適
宜な機構により上下方向に移動し得るようになつ
ており、第1図に示した研摩槽1の上昇限位置に
おいて、スピンドル13,13′の下部及びワー
ク15,15′が研摩槽1内のメデイア2中に埋
め込まれるようになると共に、研摩槽1の下降限
位置において、スピンドル13,13′下部及び
ワーク15,15′がメデイア2中より取り出さ
れ、ワーク15,15′の着脱が行なわれるよう
になつている。なおまた、第1図において22は
エア吹出管、23は収塵管であり、必要時にエア
吹出し管22からエアを導入し、メデイアの破損
した粉塵物や研摩くずなどを収塵管23から排出
し得るようになつている。 次に、上記研摩機を用いてワークを乾式高速流
動研摩する方法につき説明する。 まず、研摩槽1を下降限位置に移動させ、研摩
槽1内に生地のメデイア2を投入する。この場
合、メデイアとしては有機質メデイア、特に木質
メデイア、例えば木クズ、小木片、コーン、木の
実、皮等の微粉末等が優れており、またメデイア
投入量は研摩槽容量に対して60〜90%程度が好適
である。次いで、油脂と砥粒とを混合してなるペ
ースト状、液状或いは粉粒状形態の研摩剤をメデ
イア2に加え、スピンドル13,13′の治具1
4,14′にワークを取り付けない状態のまま研
摩槽1を上昇限位置に移動させ、プーリー6に連
結されたモータを駆動させて該プーリー6を回転
させることによりスピンドル13,13′を回転
(公転及び自転)させる。これによつてメデイア
2が流動し、メデイア2と前記研摩剤とが均一に
混合されてメデイア2表面に研摩剤が付着する。
この場合、研摩剤の添加量は作業の最初がメデイ
ア1Kgに対し約40〜80g、特に約50〜70gとし、
その後1回の研摩作業毎にメデイア1Kgに対し
0.2〜1gとすることが好ましく、またメデイア
と研摩剤との混合時間は通常3〜5分で十分であ
る。 次に、モータの駆動を停止し、研摩槽1を下降
限位置まで移動した後、スピンドル13,13′
の治具14,14′にワーク15,15′を取り付
け、研摩槽1を再度上昇限位置まで移動する(第
1図に示した状態)。この状態でモータを駆動さ
せ、プーリー6を回転させると、この回転と一体
に円筒状軸体5及びギアボツクス4が回転し、こ
れによりこのギアボツクス4に取り付けられた回
転軸体11,11′、スピンドル13,13′及び
ワーク15,15′がギアボツクス4の中心軸線
(固定軸体16の軸線)の周りを回転(公転)す
ると共に、この回転(公転)に伴なつて回転軸体
11,11′に取り付けられた遊星ギア21,2
1′が固定ギア19に噛合しつつそれに沿つて回
転することにより、回転軸体11,11′及びス
ピンドル13,13′が自転し、スピンドル1
3,13′に取り付けられたワーク15,15′が
そのスピンドル13,13′の軸線の周りを回転
する。また、前記モータの駆動は所定時間毎に正
逆に切り換え、これによつて上記の回転を所定時
間毎に正逆に切り換えるものである。この場合、
スピンドル13,13′及びワーク15,15′の
公転によつて高速で撹拌流動させる乾式メデイア
2の研摩槽1内周壁付近の流動方向はワーク1
5,15′の自転方向と一致するものである。 従つて、ワーク15,15′は、ギアボツクス
4の中心軸線(固定軸体16の軸線)及びスピン
ドル13,13′の軸線の周りを正逆回転し、こ
れらの回転の間にこれらの回転により流動状態に
撹拌されたメデイアと混合状態に接触し、メデイ
ア表面の研摩剤の作用で表面が研摩されるもので
ある。 研摩終了後は、モータの駆動を停止し、研摩槽
1を下降限位置まで移動し、研摩されたワークを
取りはずし、新しい研摩剤をメデイアに添加した
後、上述した操作を繰り返す。 この場合、本考案の研摩方式は、研摩槽内周壁
付近の乾式メデイアの流動方向とワークの自転方
向とが一致しているので、ワーク表面上でのメデ
イアの流れがスムーズになり、メデイアを高速流
動させても研摩面が縞状の良好な仕上り面を与
え、ワーク全体を均一に研摩できる上、スピンド
ルの自転、公転に要する力を小さくでき、このた
め装置を小型化し得て、省力化が図れるものであ
る。これに対し、研摩槽内周壁におけるメデイア
の流動方向がワークの自転方向と逆行し、メデイ
アがワークに対向する場合は、ワーク表面上での
メデイアの流れがスムーズでなく、特に高速回転
させる場合は研摩面が縞状でなく小さな凹凸状に
なり易く、きれいな研摩面が得難いという問題点
があるものである。また、上述した研摩操作にお
いて、この研摩機は研摩槽1の側部中央部を外方
に膨出させて形成しているため、その作用で研摩
槽1中のメデイア2とワーク(被研摩物)15,
15′の接触圧力が増圧され、これによつて従来
は困難或いは不可能とされた形状の単純なワーク
(被研摩物)、例えばギア、精密小物部品などのバ
リ取り、研摩仕上げが簡単かつ確実に、しかも均
一さをもつて行なわれる。 この点につき更に詳述すると、本考案者らはギ
ア等の比較的単純な部品の流動研摩方法を種々検
討した結果、研摩槽1の中央部を外方に膨出させ
ることがその目的を達成することを知見したもの
であり、上述したようにスピンドル13,1
3′、ワーク15,15′が公転及び自転すること
によつてメデイア2が撹拌、流動され、これによ
つてワーク15,15′が研摩されるものである
が、この場合研摩槽1の中央部を外方に膨出させ
ることにより、研摩槽1内周壁近傍のメデイア2
が筒状ボツクス3に上昇しようとする動きが抑制
され、これが増圧作用となつてメデイア2をワー
ク15,15′に確実に圧接させ、これにより比
較的形状の単純な部品をも確実に研摩し得ること
を見い出したものである。 実際、本考案者らの実験の結果では、側部中央
部を膨出させない単純円筒状の研摩槽1を用いた
従来の研摩機の場合、第2図に示したように、ス
ピンドル13,13′にワーク15a,15a′と
してギアを直接取り付け、研摩を行なうと(な
お、スピンドルの回転は通常150〜450rpmである
が、回転が遅いと研削量が少なくなり、しかも長
時間を要するため、ギアの研摩は300〜400rpmの
速度で行なつた。)、このようにワーク(被研摩
物)15a,15a′が単純な形状のギアであり、
しかもこれらがスピンドル13,13′に直接取
り付けられているため、スピンドル13,13′
及びワーク15a,15a′の公転、自転によるメ
デイア2(図中交叉斜線で示す)の混合撹拌能力
が極めて劣り、メデイア2が研摩槽1中央部付近
に深いすりばち状の空洞部27が形成された状態
に混合撹拌されてしまい、ワーク(ギア)15
a,15a′にメデイア2が十分な圧力をもつて接
触しないためにワーク15a,15a′に対する研
摩が良好に行なわれないことを確認した。これに
対し、第3図は本考案の他の実施例を示し、側部
中央部が外方に膨出する研摩槽1aの別の形状を
示したものであるが、このように側部中央部が膨
出した研摩槽1aを用いた場合には、メデイア2
が上昇する動きが妨げられ、第3図に示したよう
にすりばち状空洞部が殆んど形成されず、形成さ
れても浅く、これによりスピンドル13,1
3′、ワーク15a,15a′による混合撹拌能力
が小さくともワーク15a,15a′にメデイア2
が十分な圧力をもつて接触し、ワーク15a、1
5a′が実際良好に研摩されることを確認したもの
である。更に、第2図に示す従来の研摩機では上
述したようにメデイアのワークに対する接触圧力
が極めて弱くなる上、上側に配置したワークと下
側に配置したワークとに研摩上りの差異が生じ、
研摩槽内におけるワーク配置位置によつて研摩上
りにバラツキが起り易いものであるが、研摩槽の
側部中央部を外方に膨出させることにより、この
点も解決され、全体的にほぼ均一な研摩がなされ
得ることを確認した。しかも、側部中央部が膨出
した研摩槽を用いることにより、このように上下
のワーク間における研摩上りの差異が少ないもの
であるので、スピンドルに対しより多くのワーク
を取り付け、支障なく研摩することができて、生
産量が増大することも明らかになつたものであ
る。 上述した作用効果を更に具体的に説明すると、
容量80の第1図に示した形状の研摩槽(本考
案)と第2図に示した単純円筒状の従来型の研摩
槽(比較例)とをそれぞれ使用し、コーンをメデ
イアとして60充填し、これに油脂と砥粒とから
なる研摩剤3Kgを加え、予備混合してメデイア表
面をこの研摩剤で被覆した後、ギアの研摩を行な
つた。ギアとしては直径150mm、厚さ30mmで24個
の歯を有する自動車のミツシヨンギア部品を用い
た。研摩機は3本のスピンドルを備え、ギアは各
スピンドルの上下部にそれぞれ2個、合計6個を
取り付け、スピンドル回転数300rpmで操作し
た。また、研摩時間は正転5分、逆転5分の計10
分間とした。 下記に駆動モータの負荷(10HP負荷)の結果
と研摩力の結果を示す。なお、研摩力は、ギアの
24個の歯のうち何個の歯からバリが除去されてい
るかを調べ、その除去率で評価した。
The present invention relates to an improvement of a dry high speed fluidized sander. Conventionally, a workpiece (object to be polished) attached to a spindle is placed in a polishing tank filled with media to which abrasive grains and oil are attached, and the workpiece is rotated in the media by rotating the spindle in forward and reverse directions and rotating on its own axis. It is known to polish a workpiece by flowing it at high speed (Japanese Patent Publication No. 37-17646). However, conventional polishing machines of this type are mainly used for polishing parts with relatively complex shapes such as aluminum, zinc die-casting, and brass. It is difficult to deburr or polish parts with simple shapes such as disks and flat plates, small parts, etc. that cannot be sufficiently stirred, as the finish may become uneven. Due to the inability to obtain results, deburring and polishing of these parts has traditionally been done mostly manually. Furthermore, conventional polishing machines have had problems such as differences in polishing finish between parts placed on the upper side and parts placed on the lower side. Furthermore, in conventional polishing machines, the number of gears in the planetary gear attached to the spindle is smaller than the number of gears in the fixed gear that meshes with the planetary gear, and therefore the revolution speed of the spindle is slower than the rotation speed. , such a polishing machine can handle relatively deep concave surfaces, e.g. 5-100 mm.
When polishing a component having a concave surface, there was a problem in that polishing residue was left on the concave surface. The present invention was made to improve the above-mentioned situation, and has relatively simple shapes such as gears and hard parts made of iron, stainless steel, etc., which are difficult to use with conventional dry type high-speed fluidized sanders. Deburring and finish polishing of parts and small parts can be performed reliably, and parts of various shapes and materials can be well polished, and the appearance is uniform and almost unaffected by the position of the parts in the polishing tank. The purpose of the present invention is to provide a dry type high-speed fluidized sander that can give a good polishing finish. That is, in order to achieve the above object, the present invention includes a fixed gear and a planetary gear that meshes with the fixed gear,
By rotating the planetary gear along the fixed gear at a speed of 150 to 450 rpm, the spindle connected to the planetary gear is caused to revolve and rotate, and the workpiece attached to the spindle is rotated and placed in the polishing tank. By stirring the filled dry media by the rotation of the spindle and the workpiece, the dry media is made to flow at high speed so that the flow direction near the inner circumferential wall of the polishing tank coincides with the direction of rotation of the spindle and the workpiece. A dry high-speed fluid polishing machine that polishes a workpiece using an abrasive adhering to a high-speed flowing dry media, in which the center of the side of the polishing tank is bulged outward from the top and bottom of the side. It is. To elaborate further on this point, in a conventional dry sanding machine, the spindle and workpiece are rotated at a speed of 150 to 450 rpm.
When the media rotates at such a high speed, a deep cone-shaped cavity is formed near the center of the polishing tank due to the flow of the media, and the polishing force is maximum near the inner circumference of the polishing tank, and increases as it moves toward the center. weakens,
In such a polishing machine, the media does not come into contact with the workpiece with sufficient pressure, and the flow direction of the media on the inner peripheral wall of the polishing tank is opposite to the rotational direction of the workpiece, so that the media faces the workpiece. The flow of the media on the surface is not smooth, and especially when rotating at high speed, the polished surface tends to have small irregularities instead of stripes, making it difficult to obtain a clean polished surface. However, as in the present invention, the above-mentioned problem can be solved if the inner side of the polishing tank is bulged outward and the flow direction of the media near the inner circumferential wall of the polishing tank is made to match the direction of rotation of the workpiece. It is. In other words, by bulging out the central part of the side of the polishing tank, even during high-speed dry polishing, a deep slot-shaped cavity is prevented from forming in the central part of the polishing tank, and the media is able to apply sufficient pressure against the workpiece. This makes it possible to perform good and efficient polishing by contacting the workpieces with the same position, and also to solve the problem of variations in polishing results depending on the placement position of the workpiece, thereby achieving uniform polishing as a whole. In addition, by making the flow direction of the media near the inner circumferential wall of the polishing tank match the rotation direction of the workpiece, the flow of the media on the workpiece surface becomes smooth, and even when the media flows at high speed, the polished surface does not have stripes. In addition to giving a good surface finish and uniformly polishing the entire workpiece, the force required for the rotation and revolution of the spindle can be reduced, making it possible to downsize the device and save labor. Furthermore, by making the number of gears of the planetary gear attached to the spindle greater than the number of gears of the fixed gear that meshes with the planetary gear so that the revolution speed of the spindle is faster than the rotation speed of the spindle, parts with relatively deep concave surfaces can be manufactured. It is possible to polish the entire surface without leaving polishing residue on the concave surface. Hereinafter, one embodiment of the present invention will be described with reference to FIG. In the figure, 1 is a cylindrical polishing tank with a bottom, and a media 2 is filled inside this tank. The polishing tank 1 is formed such that the center portion of the side portion thereof bulges outward from the upper and lower portions of the side portion, and the cross section of the side portion is formed in an arc shape.
Reference numeral 3 denotes a cylindrical box with a head supported by a body (not shown), and a gear box 4 is disposed within this cylindrical box 3. Note that the lower end of the outer peripheral wall of the cylindrical box 3 is in contact with the upper end of the inner peripheral wall of the polishing tank 1, and the media 2 filled inside the polishing tank 1 is prevented from jumping out to the outside during the polishing operation. There is. A cylindrical shaft 5 is protruded from the center of the upper wall of the gearbox 4, and a ring-shaped drive pulley 6 is protruded from the upper end of the shaft 5.
The cylindrical shaft body 5 is rotatably supported by bearings 8, 8 fixed to the cylindrical box 3 and a pedestal 7 placed thereon, respectively, and the pulley 6 is supported by belts 9, 9. Although not shown, the pulley 6 is connected to a motor (not shown) through which the pulley 6 is rotated, and the cylindrical shaft body 5 and the gear box 4 are rotated together with the pulley 6. The gearbox 4 has bearings 10, 10, 10', 1 fixed to its upper and lower walls, respectively.
Two rotating shaft bodies 11 and 11' are rotatably supported at the gear box 4, and these shaft bodies 1 protrude through the lower wall of the gear box 4, respectively.
Spindles 13, 13' are removably fixed to the lower ends of the spindles 1, 11' via joints 12, 12'. Jigs 14, 14' are removably attached to the lower parts of these spindles 13, 13', respectively, and these jigs 14, 14'
Workpieces (objects to be polished) 15, 15' are removably fixed to 4', and as the gearbox 4 rotates, the rotating shafts 11, 11' and spindles 13, 1
3', the works 15, 15' are configured to rotate (revolution along a fixed gear 19, which will be described later). Further, within the cylindrical shaft body 5, a fixed shaft body 16 is provided.
is installed. The protruding upper end of the fixed shaft 16 is attached to a support 18 fixed on the ceiling plate 17 of the aircraft body.
A disc-shaped fixed gear 19 is fixed to the protruding lower end of the fixed shaft body 16. Note that bearings 20, 20 are provided at the upper and lower ends of the inner wall of the cylindrical shaft 5, respectively, so that the cylindrical shaft 5 can smoothly rotate relative to the fixed shaft 16. has been done. The fixed gear 19 includes the rotating shaft bodies 11 and 1.
Ring-shaped planetary gears 2 each fixed to 1'
1 and 21' are meshed with each other, and when the rotating shaft bodies 11 and 11' rotate (revolution) due to the rotation of the gear box 4, the planetary gears 21 and 21' are meshed with the fixed gear 19, and the fixed gear 19 The rotating shafts 11, 11' and the spindles 13, 13' connected thereto
rotates (rotates), so the spindle 13,1
Workpieces 15, 15' attached to the spindles 13, 13' rotate around the axes of the spindles 13, 13'. Although not shown, the polishing tank 1 can be moved vertically by a suitable mechanism controlled by a geared motor, pneumatic pressure, hydraulic pressure, etc. At the upper limit position of the polishing tank 1, the lower parts of the spindles 13, 13' and the works 15, 15' are embedded in the media 2 in the polishing tank 1, and at the lower limit position of the polishing tank 1, the spindles 13, The lower part 13' and the works 15, 15' are taken out from the medium 2, and the works 15, 15' are attached and detached. In addition, in FIG. 1, 22 is an air blowing pipe, and 23 is a dust collecting pipe. Air is introduced from the air blowing pipe 22 when necessary, and dust particles from damaged media, abrasive debris, etc. are discharged from the dust collecting pipe 23. It is becoming possible to do so. Next, a method of dry high-speed fluid polishing of a workpiece using the above-mentioned polishing machine will be explained. First, the polishing tank 1 is moved to the lower limit position, and the fabric media 2 is put into the polishing tank 1. In this case, organic media, especially wood media, such as fine powder of wood chips, small wood chips, corn, nuts, bark, etc., are excellent as the media, and the amount of media input is 60 to 90% of the polishing tank capacity. degree is suitable. Next, an abrasive in the form of paste, liquid, or powder made by mixing oil and fat with abrasive grains is added to the media 2, and the jig 1 of the spindles 13, 13' is
The polishing tank 1 is moved to the upper limit position with no workpiece attached to 4, 14', and the motor connected to the pulley 6 is driven to rotate the pulley 6, thereby rotating the spindles 13, 13' ( (revolution and rotation). As a result, the media 2 flows, the media 2 and the abrasive are uniformly mixed, and the abrasive is attached to the surface of the media 2.
In this case, the amount of abrasive added is approximately 40 to 80 g, especially approximately 50 to 70 g, per 1 kg of media at the beginning of the work.
After that, for each polishing operation, 1 kg of media is
The amount is preferably 0.2 to 1 g, and a mixing time of 3 to 5 minutes is usually sufficient for mixing the media and the abrasive. Next, after stopping the drive of the motor and moving the polishing tank 1 to the lower limit position, the spindles 13, 13'
The workpieces 15, 15' are attached to the jigs 14, 14', and the polishing tank 1 is moved to the upper limit position again (the state shown in FIG. 1). When the motor is driven in this state and the pulley 6 is rotated, the cylindrical shaft body 5 and the gearbox 4 are rotated together with this rotation. 13, 13' and the workpieces 15, 15' rotate (revolution) around the central axis of the gearbox 4 (the axis of the fixed shaft 16), and along with this rotation (revolution), the rotating shafts 11, 11' Planetary gears 21, 2 attached to
1' rotates along the fixed gear 19 while meshing with it, the rotating shaft bodies 11, 11' and the spindles 13, 13' rotate, and the spindle 1
The workpieces 15, 15' attached to the spindles 13, 13' rotate around the axes of their spindles 13, 13'. Further, the driving of the motor is switched between forward and reverse directions at predetermined time intervals, thereby switching the above-mentioned rotation between forward and reverse directions at predetermined time intervals. in this case,
The direction of flow near the inner circumferential wall of the polishing tank 1 of the dry media 2, which is stirred and flowed at high speed by the revolution of the spindles 13, 13' and the works 15, 15', is in the direction of the work 1.
5 and 15'. Therefore, the works 15, 15' rotate in forward and reverse directions around the central axis of the gearbox 4 (the axis of the fixed shaft 16) and the axes of the spindles 13, 13', and during these rotations, the workpieces 15, 15' rotate in the opposite direction. The media is brought into contact with a mixed state, and the surface of the media is polished by the action of the abrasive on the surface of the media. After polishing is completed, the drive of the motor is stopped, the polishing tank 1 is moved to the lower limit position, the polished workpiece is removed, new abrasive is added to the media, and the above-mentioned operations are repeated. In this case, in the polishing method of the present invention, the flow direction of the dry media near the inner peripheral wall of the polishing tank matches the rotation direction of the workpiece, so the flow of the media on the workpiece surface is smooth and the media can be moved at high speed. Even when flowing, the polishing surface provides a good finished surface with stripes, and the entire workpiece can be polished uniformly.The force required for rotation and revolution of the spindle can be reduced, which allows the equipment to be made smaller and saves labor. It is something that can be achieved. On the other hand, if the flow direction of the media on the inner peripheral wall of the polishing tank is opposite to the rotation direction of the workpiece and the media faces the workpiece, the flow of the media on the workpiece surface will not be smooth, especially when rotating at high speed. This method has the problem that the polished surface is not striped but tends to have small irregularities, making it difficult to obtain a clean polished surface. In addition, in the above-mentioned polishing operation, this polishing machine has a central part of the side of the polishing tank 1 that bulges outward, which causes the media 2 in the polishing tank 1 to )15,
The contact pressure of 15' is increased, which makes deburring and polishing of simple workpieces (objects to be polished) with shapes that were previously difficult or impossible, such as gears and small precision parts, easier and easier. This is done reliably and evenly. To explain this point in more detail, the inventors of the present invention have studied various fluid polishing methods for relatively simple parts such as gears, and found that the purpose was to bulge the center of the polishing tank 1 outward. As mentioned above, the spindles 13 and 1
3', as the workpieces 15, 15' revolve and rotate, the media 2 is agitated and fluidized, thereby polishing the workpieces 15, 15'; in this case, the center of the polishing tank 1 By expanding the media 2 near the inner circumferential wall of the polishing tank 1,
The movement of the media 2 from rising toward the cylindrical box 3 is suppressed, and this acts as a pressure increase to ensure that the media 2 is brought into contact with the workpieces 15 and 15', thereby ensuring that even relatively simple-shaped parts can be polished. We have discovered what can be done. In fact, according to the results of experiments conducted by the present inventors, in the case of a conventional polishing machine using a simple cylindrical polishing tank 1 that does not bulge out at the center of the sides, the spindles 13, 13, as shown in FIG. When grinding is performed by directly attaching gears as works 15a and 15a' to (The polishing was carried out at a speed of 300 to 400 rpm.) In this way, the workpieces (objects to be polished) 15a and 15a' are gears with a simple shape,
Moreover, since these are directly attached to the spindles 13, 13', the spindles 13, 13'
The mixing and stirring ability of the media 2 (indicated by crossed diagonal lines in the figure) due to the revolution and rotation of the works 15a and 15a' was extremely poor, and a deep cone-shaped cavity 27 was formed near the center of the polishing tank 1. The workpiece (gear) 15 is mixed and stirred in the state.
It was confirmed that the workpieces 15a, 15a' could not be polished well because the media 2 did not contact them with sufficient pressure. On the other hand, FIG. 3 shows another embodiment of the present invention, showing another shape of the polishing tank 1a in which the central part of the side bulges outward. When using the polishing tank 1a with a bulged part, the media 2
As shown in FIG. 3, the upward movement of the spindles 13 and
3', even if the mixing and stirring ability of the works 15a, 15a' is small, the media 2 is attached to the works 15a, 15a'.
are in contact with each other with sufficient pressure, and the workpieces 15a and 1
It was confirmed that 5a' was actually polished well. Furthermore, in the conventional polishing machine shown in FIG. 2, as mentioned above, the contact pressure of the media against the work is extremely weak, and there is a difference in the finish of polishing between the work placed on the upper side and the work placed on the lower side.
Although variations in the finish of polishing tend to occur depending on the placement position of the workpiece in the polishing tank, this problem is resolved by bulging the center of the side of the polishing tank outward, resulting in almost uniform polishing overall. It was confirmed that it is possible to perform abrasive polishing. Moreover, by using a polishing tank with a bulging central part on the side, there is little difference in polishing results between upper and lower workpieces, so more workpieces can be attached to the spindle and polished without any problems. It has also become clear that production can be increased. To explain the above-mentioned effects in more detail,
A polishing tank with a capacity of 80 mm and the shape shown in Fig. 1 (this invention) and a conventional polishing tank with a simple cylindrical shape shown in Fig. 2 (comparative example) were used, and 60 cones were filled as media. To this, 3 kg of an abrasive consisting of oil and fat and abrasive grains was added and premixed to coat the surface of the media with this abrasive, and then the gear was polished. The gear used was an automobile transmission gear part with a diameter of 150 mm, a thickness of 30 mm, and 24 teeth. The polishing machine was equipped with three spindles, two gears were attached to the top and bottom of each spindle, a total of six gears, and the machine was operated at a spindle rotation speed of 300 rpm. In addition, the polishing time is 10 minutes in total, 5 minutes in forward rotation and 5 minutes in reverse.
It was set as 1 minute. The results of the drive motor load (10HP load) and polishing force are shown below. Note that the polishing force is based on the gear
We investigated how many of the 24 teeth had burrs removed and evaluated them based on the removal rate.

【表】 上記の結果より、側部中央部を膨出させた研摩
槽を用いた場合(本考案)はモータ負荷が45Aで
従来の研摩槽を用いた場合よりも16A大きく、ワ
ーク(ギア)とメデイアとの接触抵抗が大きく生
じていることが認められた。また、研摩力(ギア
歯のバリ除去率)は、従来の研摩槽を用いた場合
は不十分であり、確実にバリが除去されないもの
である上、上段のギアと下段のギアとで明らかに
研摩力の差が生じており、ワーク配置位置により
研摩上りにバラツキが生じるものであつたが、本
考案に係る側部中央部が膨出した研摩槽を用いた
場合には、ワーク配置位置にかかわりなく確実に
バリが除去されることが知見された。 なお、本考案において、研摩槽1の側部断面形
状は必ずしも図示のものに限定されるものではな
く、側部中央部が側部上下部より外方に膨出して
いるものであれば、種々の断面形状を取り得る
が、特に第1,3図に示す如き略円弧状であるこ
とが好適である。 なおまた、本考案においては、第1図中一点鎖
線で示したように、水平部24と垂直部25を有
する断面三角型のリング状カバー体26を筒状ボ
ツクス3の内周壁下端部にボルト等により着脱可
能に突設することもでき、これにより更にメデイ
ア2のワーク15,15′に対する接触圧力を増
加させることができる。この場合傾斜部25を設
けることにより、飛散されたメデイアが容易に自
然落下するものであるが、カバー体26の形状は
これに限定されることなく種々変更可能であり、
研摩槽1周辺部のメデイアの上昇を抑圧し得るも
のであればよい。また、カバー体26を研摩槽内
周壁上部に設けるようにしてもよいが、研摩槽を
上下に移動させる場合などに、スピンドルに取り
付けたワークがカバー体26に当つてワークの出
し入れが邪魔されることは避けるべきである。な
お、カバー体26の幅(水平部24の突出長さ)
は必ずしも制限されないが、メデイアの破損物や
研摩くずなどをエア吹出し管22から導入させた
エアにより飛散させ、収塵管23から排出させる
際に、エアの流通を保障するクリアランスが形成
されるようにすることが好ましい。 また、上述した研摩機において、固定ギア19
よりも遊星ギア21,21′のギア数を多く形成
し、スピンドル13,13′の公転速度を自転速
度よりも大きくし、従つてワーク15,15′の
ギアボツクス4中心軸線に対する回転速度をスピ
ンドル13,13′軸線に対する回転速度よりも
大きくした場合には、比較的深い凹面、例えば深
さが5〜100mmの凹面を有するようなワークに対
し、その凹面に研摩残しを生じるというような不
都合もなく、凹面を含めた全面を良好に研摩し得
るものである。この場合、このような作用効果を
有効に達成させるためには、固定ギア19と遊星
ギア21,21′とのギア比を好適には1:1.2〜
1:3、特に1:1.5〜1:2.5とすることが好ま
しい。 即ち、本考案者らの検討の結果では固定ギアよ
りも遊星ギアのギア数を多くし、特にギア比1:
1.2〜1:3、特に1:1.5〜1:2.5とし、スピン
ドルの自転速度を公転速度より遅くしてむしろワ
ークの姿勢変化を制限すると、意外にも比較的深
い凹面を有するワークを凹面を含めて全面均一に
研摩し得ることを確認したものである。 更に、上述した研摩方法においては、生地のメ
デイアに油脂と砥粒を混合してなる研摩剤を加
え、予備混合してメデイア表面を該研摩剤で被覆
した後、研摩操作を行なつており、これにより操
作が簡単となり、しかもランニングコストを激減
させることができるものであるが、勿論従来法の
ように予め油脂と砥粒を被覆したメデイアを用い
るようにしてもよい。 なお、最初に投入するメデイアとしては予め油
脂と砥粒を被覆したものを用い、以後研摩剤を投
入する方式でもよい。また、研摩剤を構成する油
脂としては動植鉱物油、各種脂肪酸、ワツクス、
金属石けん等が用いられ、また砥粒としてはアル
ミナ、珪石、酸化鉄、酸化クロム、アランダム、
WA、炭酸カルシウム等が使用し得る。この場
合、油脂と砥粒とは重量比で30:70〜70:30であ
ることが好ましい。 なおまた、本考案は形状が単純なもの、例えば
ギアやこれに類似の円板状部品の研摩に適してい
ると共に、特に遊星ギアのギア数を固定ギアのギ
ア数よりも多くした場合には比較的深い凹部、例
えば5〜100mmの深さの凹面を有するような複雑
な形状の部品の研摩にも好適に採用でき、更に遊
星ギア、スピンドル数や筒状ボツクスの形状など
についても上記実施例に限定されるものではな
く、上述した実施例の構成は本考案の要旨を逸脱
しない範囲で種々変更して差支えない。 以上説明したように、本考案の研摩機によれ
ば、ワーク(被研摩物)に対するメデイアの接触
圧が高まり、ギア等の比較的単純な形状のワーク
に対しても確実に研摩することができ、またワー
ク配置位置による研摩上りのバラツキを少なくす
ることができ、きれいで良好な仕上り面を与える
ことができるものである。
[Table] From the above results, when using a polishing tank with a bulging center part of the side (this invention), the motor load is 45A, which is 16A larger than when using a conventional polishing tank, and the workpiece (gear) It was observed that a large amount of contact resistance occurred between the media and the media. In addition, the polishing power (burr removal rate of gear teeth) is insufficient when using a conventional polishing tank, and burrs cannot be reliably removed. Differences in polishing force have occurred, and variations in polishing results have occurred depending on the position of the workpiece.However, when using the polishing tank with a bulge in the center of the side according to the present invention, the position of the workpiece can be adjusted. It was found that burrs were reliably removed regardless of the conditions. In the present invention, the cross-sectional shape of the side of the polishing tank 1 is not necessarily limited to the one shown in the drawings, but may be of various shapes as long as the central part of the side bulges outward from the upper and lower parts of the side. Although the cross-sectional shape can be of any shape, a substantially arcuate shape as shown in FIGS. 1 and 3 is particularly preferable. Furthermore, in the present invention, as shown by the dashed line in FIG. The contact pressure of the media 2 against the workpieces 15, 15' can be further increased. In this case, by providing the inclined portion 25, the scattered media can easily fall naturally, but the shape of the cover body 26 is not limited to this and can be changed in various ways.
Any material that can suppress the rise of the media around the polishing tank 1 may be used. Further, the cover body 26 may be provided at the upper part of the inner circumferential wall of the polishing tank, but when the polishing tank is moved up and down, the workpiece attached to the spindle hits the cover body 26, which obstructs the loading and unloading of the workpiece. This should be avoided. In addition, the width of the cover body 26 (the protruding length of the horizontal part 24)
Although not necessarily limited, a clearance is formed to ensure air circulation when damaged media, abrasive debris, etc. are scattered by the air introduced from the air blowing pipe 22 and discharged from the dust collection pipe 23. It is preferable to Further, in the above-mentioned polishing machine, the fixed gear 19
The number of gears of the planetary gears 21, 21' is larger than that of the spindles 13, 13', and the revolution speed of the spindles 13, 13' is made larger than the rotation speed of the spindles 13, 13'. , 13' When the rotational speed is set higher than the rotational speed relative to the axis, there is no problem such as leaving unpolished surfaces on the workpiece that has a relatively deep concave surface, for example, a concave surface with a depth of 5 to 100 mm. , the entire surface including concave surfaces can be polished well. In this case, in order to effectively achieve such effects, the gear ratio between the fixed gear 19 and the planetary gears 21, 21' is preferably 1:1.2 to 1.2.
The ratio is preferably 1:3, particularly 1:1.5 to 1:2.5. That is, as a result of the inventors' study, the number of gears of the planetary gear is larger than that of the fixed gear, and in particular, the gear ratio of 1:
If the setting is 1.2 to 1:3, especially 1:1.5 to 1:2.5, and the rotation speed of the spindle is slower than the revolution speed, rather than restricting changes in the posture of the workpiece, it is surprisingly possible to handle a workpiece with a relatively deep concave surface, including the concave surface. It was confirmed that the entire surface could be polished uniformly. Furthermore, in the above-mentioned polishing method, an abrasive agent made of a mixture of oil and abrasive grains is added to the fabric medium, and the polishing operation is performed after premixing and coating the surface of the media with the abrasive agent. This simplifies the operation and can drastically reduce running costs, but of course it is also possible to use media coated with oil and abrasive grains in advance as in the conventional method. Note that it is also possible to use a method in which the media that is initially introduced is coated with oil and abrasive grains, and then the abrasive is introduced. In addition, the oils and fats that make up the abrasive include animal and vegetable mineral oils, various fatty acids, wax,
Metal soap etc. are used, and alumina, silica stone, iron oxide, chromium oxide, alundum, etc. are used as abrasive grains.
WA, calcium carbonate, etc. can be used. In this case, the weight ratio of oil and fat to abrasive grains is preferably 30:70 to 70:30. Additionally, the present invention is suitable for polishing objects with a simple shape, such as gears and similar disk-shaped parts, and is particularly suitable for polishing objects with a simple shape, such as gears and similar disc-shaped parts, and especially when the number of planetary gears is greater than the number of fixed gears. It can be suitably used for polishing parts with complex shapes, such as those with relatively deep recesses, for example, concave surfaces with a depth of 5 to 100 mm. Furthermore, the above embodiments can also be used for polishing parts with complex shapes, such as those with relatively deep recesses, for example, concave surfaces with a depth of 5 to 100 mm. The present invention is not limited to the above, and the configuration of the embodiment described above may be modified in various ways without departing from the gist of the present invention. As explained above, according to the polishing machine of the present invention, the contact pressure of the media against the workpiece (object to be polished) is increased, and even relatively simple-shaped workpieces such as gears can be reliably polished. In addition, it is possible to reduce variations in polishing results depending on the placement position of the workpiece, and it is possible to provide a clean and well-finished surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す縦断面図、第
2図は従来の研摩機を用いた場合のメデイアの流
動状態を説明する研摩槽部分の一部を断面とした
側面図、第3図は本考案の他の実施例に係る研摩
機を用いた場合のメデイアの流動状態を説明する
研摩槽部分の一部を断面とした側面図である。 1……研摩槽、2……メデイア、3……筒状ボ
ツクス、13,13′……スピンドル、15,1
5′,15a,15a′……ワーク、19……固定
ギア、21,21′……遊星ギア、24……水平
部、25……傾斜部、26……増圧カバー体。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, FIG. 2 is a side view with a part of the polishing tank sectioned, explaining the flow state of media when a conventional polishing machine is used, and FIG. FIG. 3 is a partially sectional side view of the polishing tank, illustrating the flow state of media when a polishing machine according to another embodiment of the present invention is used. 1... Polishing tank, 2... Media, 3... Cylindrical box, 13, 13'... Spindle, 15, 1
5', 15a, 15a'...workpiece, 19...fixed gear, 21, 21'...planetary gear, 24...horizontal part, 25...inclined part, 26...pressure increase cover body.

Claims (1)

【実用新案登録請求の範囲】 1 固定ギア19とこれに噛合する遊星ギア2
1,21′とを備え、遊星ギア21,21′を固
定ギア19に沿つて150〜450rpmの速度で公転
させつつ自転させることにより前記遊星ギア2
1,21′と連結したスピンドル13,13′を
公転かつ自転させ、前記スピンドル13,1
3′に取り付けられたワーク15,15′を回転
せしめて、研摩槽1内に充填した乾式メデイア
2を前記スピンドル13,13′及びワーク1
5,15′の回転によつて撹拌することにより
乾式メデイア2を前記研摩槽1の内周壁付近の
流動方向が前記スピンドル13,13′及びワ
ーク15,15′の自転方向と一致するように
高速流動させると共に、この高速流動する乾式
メデイアに付着した研摩剤によりワーク15,
15′を研摩するようにした乾式高速流動研摩
機であつて、前記研摩槽1の側部中央部を側部
上下部よりも外方に膨出させたことを特徴とす
る乾式高速流動研摩機。 2 研摩槽1の側部の断面形状が略円弧状である
実用新案登録請求の範囲第1項記載の研摩機。 3 遊星ギア21,21′のギア数を固定ギア1
9のギア数より多くして、前記公転速度を自転
速度よりも早めるようにした実用新案登録請求
の範囲第1項又は第2項記載の研摩機。 4 固定ギア19と遊星ギア21,21′のギア
比が1:1.2〜1:3である実用新案登録請求
の範囲第3項記載の研摩機。
[Claims for Utility Model Registration] 1. Fixed gear 19 and planetary gear 2 meshing with it
1 and 21', and by rotating the planetary gears 21 and 21' along the fixed gear 19 at a speed of 150 to 450 rpm, the planetary gear 2
The spindles 13, 13' connected to the spindles 13, 121' are made to revolve and rotate, and the spindles 13, 13'
The workpieces 15, 15' attached to the spindles 13, 13' and the workpiece 1 are rotated, and the dry media 2 filled in the polishing tank 1 is transferred to the spindles 13, 13' and the workpiece 1.
5 and 15', the dry media 2 is stirred at high speed so that the flow direction near the inner peripheral wall of the polishing tank 1 coincides with the direction of rotation of the spindles 13 and 13' and the workpieces 15 and 15'. At the same time, the work 15,
15', the dry type high-speed fluid polishing machine is characterized in that the central part of the side of the polishing tank 1 is bulged outward from the upper and lower parts of the side. . 2. The polishing machine according to claim 1, wherein the cross-sectional shape of the side portion of the polishing tank 1 is approximately arcuate. 3 Change the number of gears of planetary gears 21, 21' to fixed gear 1
The polishing machine according to claim 1 or 2, wherein the number of gears is greater than 9 to make the revolution speed faster than the rotation speed. 4. The polishing machine according to claim 3, wherein the gear ratio between the fixed gear 19 and the planetary gears 21, 21' is 1:1.2 to 1:3.
JP10602582U 1982-07-13 1982-07-13 Dry high speed fluidized sander Granted JPS5912555U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10602582U JPS5912555U (en) 1982-07-13 1982-07-13 Dry high speed fluidized sander

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10602582U JPS5912555U (en) 1982-07-13 1982-07-13 Dry high speed fluidized sander

Publications (2)

Publication Number Publication Date
JPS5912555U JPS5912555U (en) 1984-01-26
JPS6234687Y2 true JPS6234687Y2 (en) 1987-09-03

Family

ID=30248282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10602582U Granted JPS5912555U (en) 1982-07-13 1982-07-13 Dry high speed fluidized sander

Country Status (1)

Country Link
JP (1) JPS5912555U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200455717Y1 (en) * 2008-11-20 2011-09-21 김점숙 Punch polishing machine
JP5312198B2 (en) * 2009-05-25 2013-10-09 宇治電化学工業株式会社 How to clean the marking surface of the tablet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633266A (en) * 1979-08-28 1981-04-03 Katao Nishio Grinding machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633266A (en) * 1979-08-28 1981-04-03 Katao Nishio Grinding machine

Also Published As

Publication number Publication date
JPS5912555U (en) 1984-01-26

Similar Documents

Publication Publication Date Title
CA2761874C (en) High throughput finishing of metal components
JPH0343027B2 (en)
JPS6234687Y2 (en)
JPH0229472B2 (en) KANSHIKIKOSOKURYUDOKENMAHOHO
JPH05177B2 (en)
JPH0260466B2 (en)
JP2006247835A (en) Super-abrasive grain working tool and its method of use
CN2157850Y (en) Lapping machine
JP3317255B2 (en) Dry flow polishing equipment
JPS649142B2 (en)
CN2241040Y (en) Lapping head
JPH0525632B2 (en)
JP2008137097A (en) Barrel grinding method
CN108000272A (en) Auto parts machinery polishing cleaning equipment
CN208528746U (en) A kind of novel outer arc grinding machine of brake shoes
JP2003103450A (en) Sealing method for slidably contacting part between fixed tank and turntable in dry fluid barrel polishing device and dry fluid barrel polishing device
JP2001025965A (en) Grinding machine
CN217619488U (en) Centerless grinding machine for steel bar
CN108789130A (en) A kind of grinding device
CN211540837U (en) Clamp of full-automatic polishing equipment
CN220839388U (en) Aluminum veneer corner burr grinding device
CN216991370U (en) Rotatory burnishing device of model wax 3D model
CN213999022U (en) Burnishing device is used in numerical control processing of TV set backplate accessory
JPH0248219Y2 (en)
JP2001179597A (en) Barrel polishing method of plate-like work