JPS623414B2 - - Google Patents

Info

Publication number
JPS623414B2
JPS623414B2 JP8205377A JP8205377A JPS623414B2 JP S623414 B2 JPS623414 B2 JP S623414B2 JP 8205377 A JP8205377 A JP 8205377A JP 8205377 A JP8205377 A JP 8205377A JP S623414 B2 JPS623414 B2 JP S623414B2
Authority
JP
Japan
Prior art keywords
film
light transmittance
microfilm
value
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8205377A
Other languages
Japanese (ja)
Other versions
JPS5417981A (en
Inventor
Takao Nakajo
Shigeru Shiozaki
Hideaki Kawakami
Yukio Mitsuishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8205377A priority Critical patent/JPS5417981A/en
Publication of JPS5417981A publication Critical patent/JPS5417981A/en
Publication of JPS623414B2 publication Critical patent/JPS623414B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は感光性記録体用配向ポリエステルフイ
ルムに関する。 更に詳しくは、優れた透明性を有し、且つ、作
業性にも優れた感光性記録体用、特に、マイクロ
フイルム用配向ポリエステルフイルムに関する。 ポリエステルフイルム、例えばポリエチレンテ
レフタレートフイルムは、その優れた機械的性
質、耐熱性、電気的性質のために、情報記録用
途、電気用途をはじめ種々の用途で広く用いられ
ている。 かかるポリエステルフイルムの用途の一つは感
光性記録体であるマイクロフイルム、EVR
(Electronic Video Recording)用フイルム、
OHP(オーバーヘツドプロジエクター)用フイ
ルム等のベースとしてである。マイクロフイルム
のベースとしては、情報の記録及び取出のため
に、基材フイルムの透明性の高いことと、光の散
乱や透過障害の原因となるフイルム表面の突起が
小さいことが重要である。透明性が低いと、マイ
クロフイルムとしたときの拡大画像やプリントさ
れた画像の地肌が曇つたり、着色したりして、画
像の鮮明さが低下する。 また、フイルム表面に高い突起が存在すると光
の散乱や光の透過障害となりその部分の記録や取
出しが出来ない場合がある。 マイクロフイルムは一般に銀塩フイルム、ジア
ゾフイルム、カルバーフイルムがあるが、特にジ
アゾフイルムが最も多く用いられている。 このジアゾフイルムは、乳剤がジアゾニウム塩
であり、分光感度が350〜400nmの波長域にあ
り、この波長域の光線、即ち紫外光線で露光する
が、オリジナルのマイクロフイルム(通常、銀塩
マイクロフイルム)をジアゾフイルムに焼付けて
プリントする場合、オリジナルのマイクロフイル
ムのベースフイルムの350〜400nmの光線透過率
が低いと、ジアゾフイルムへの露光量が不足する
ため、プリントされたジアゾマイクロフイルムの
線画と地肌のコントラストが低下し、更に画質も
低下する。 このような場合、露光量を増せば解決すること
もあるが、細かい線画が消えたり、強い紫外光に
よりマイクロフイルムの劣化が起こり易く、好ま
しい解決手段とならない。また、ジアゾマイクロ
フイルムを何世代もプリントを重ねてゆく場合、
各世代でオリジナルとなるジアゾマイクロフイル
ムのベースフイルムの350〜400nmの光線透過率
が低いと画質の低下が著しくなる。カルバーフイ
ルムも分光感度が340〜440nmの紫外域にあり、
オリジナルとなるマイクロフイルムのベースフイ
ルムのこの紫外域の光線透過率が低いと、プリン
トされたカルバーマイクロフイルムの画質の低下
が起こる。これらの理由からマイクロフイルムの
ベースフイルムの紫外域での光線透過率が高いこ
とが要求される。紫外域の光線透過率は350nm
の波長での透過性から評価できる。 又、ベースフイルムの表面に大きな突起が存在
したり、内部に大きな粒子が存在すると、紫外光
線の散乱が起こり、プリントされたジアゾマイク
ロフイルムの線画幅を広げ、線画をぼやけさせ、
画質の低下が起こる。さらに、マイクロフイルム
をプロジエクターやリーダー等の可視光源で写し
出す場合、像の明るさが重要な要素であり、線
画、あるいは、地肌の明るさはベースフイルムに
大きく依存していて、ベースフイルムの可視域の
光線透過率が問題となり、これが低いと像の明る
さが低下する。 従つてベースフイルム表面に大きな突起が存在
したり、内部に大きな粒子が存在すると、可視域
の光線透過率が低下し、像の明るさが低下する。 つまり、ベースフイルムの可視域の光線透過率
も高いことが要求され、可視域での光透過性は
550nmで評価できる。 一方、基材フイルム及び製品フイルムの取扱い
のためには、フイルムの滑り性が良好で作業性に
優れること、即ち、フイルムとフイルム、フイル
ムと金属ロール等の摩擦係数が小さいことが必要
である。 滑り性が悪いと、基材フイルム或いは製品フイ
ルムの製造時や取扱い中にしわが発生したり、摩
擦摩耗による傷が付いたりして、光学的記録材と
して欠陥の多い製品となり易い。また滑り性の悪
いフイルムはフイルム相互のはりつき現像(ブロ
ツキング)が起り、取扱いが困難となる。 フイルムの滑り性を良好にするには、フイルム
表面に凹凸を付与すればよく、そのためには、例
えばフイルム原料に用いる高分子中に不活性無機
化合物粒子を添加したり、不活性の触媒残渣を生
成させたり、或いは、平滑なフイルムの表面に機
械的、化学的な粗面化処理を行なう方法が知られ
ている。しかしながら、一方、滑り性が向上する
と、通常は透明性を悪化せしめることになる。 このように感光性記録体用ベースフイルムに要
求される光学的性質と作業性(表面滑り特性)と
は相反し両者を同時に満足することは難しい。 本発明者は、このような両特性を有するポリエ
ステルフイルムについて鋭意研究の結果、特定の
範囲の表面粗さ及び光線透過率を満足するフイル
ムが、光学的性質、及び作業性に同時に優れてい
ることを見出し、本発明に到達したものである。 すなわち、本発明は、少くとも片面が粗面化さ
れたポリエステルフイルムであつて、該粗面の表
面粗さを示すPV値〔y(単位・μ)〕とCLA値
〔x(単位・μ)〕とが 5x+0.03≦y≦5x+0.25、 0.003≦x≦0.0135 を同時に満足する範囲にあり、かつ、350nmの
光線透過率が68%以上、及び550nmの光線透過
率が83%以上であることを特徴とする感光性記録
体用配向ポリエステルフイルムである。 本発明にいう粗面とは、フイルム表裏のうち、
より粗れた面を粗面と定義する。従つて、より粗
れた面のみが特許請求の範囲で規定した表面粗さ
範囲を満足するものであつて、他面は特許請求の
範囲で規定した表面粗さ範囲を満足するものであ
つても、満足しないものであつても良く、いずれ
にしろ表面粗さは該粗面のそれと同等か、それよ
り平滑であれば良い。該平滑面の下限は特に限定
されないが通常はPVで0.03μ、CLAで0.0025μ
程度である。 本発明にいうポリエステルとは、テレフタール
酸、イソフタール酸、ナフタレン−2・6−ジカ
ルボン酸等の如き芳香族ジカルボン酸とエチレン
グリコール、ジエチレングリコール、テトラメチ
レングリコール、ネオペンチレングリコール等の
如きグリコールとを重縮合させて得ることのでき
るポリマーである。該ポリエステルは芳香族ジカ
ルボン酸とグリコールとを直接重縮合させて得る
ことのできるポリマーである。 該ポリエステルは芳香族ジカルボン酸とグリコ
ールとを直接重縮合させて得られるほか、芳香族
ジカルボン酸ジアルキルエステルとグリコールと
をエステル交換反応させた後重縮合せしめる、或
いは芳香族ジカルボン酸のジグリコールエステル
を重縮合せしめる等の方法によつても得られる。
該ポリマーの代表的なものとして、ポリエチレン
テレフタノートやポリエチレン−2・6−ナフタ
レンジカルボキシレート等が例示される。該ポリ
マーは、共重合されないホモ・ポリマーであつて
もよく、またジカルボン酸成分の15モル%以下が
非芳香族ジカルボン酸成分であり及び/又はジオ
ール成分の15モル%以下が脂肪族グリコール以外
のジオール成分であるような共重合ポリエステル
であつてもよい。又、前記ポリエステルと他の重
合体とのポリマーブレンドであつてもよい。更
に、前記ポリエステルは必要に応じて、安定性、
着色剤、酸化防止剤等の添加剤を含有するもので
あつてもよい。 PV値およびCLA値を本発明で規定する範囲に
入るよう原料特性、製膜条件等を適合させると紫
外域、および、可視域での光線透過率が高く、透
明性に優れ、しかも、作業性に優れたフイルムが
得られる。 マイクロフイルムの紫外域、可視域の光線透過
率の高低、および、作業性は、ベースフイルムの
表面状態(フイルム表面粗さ)に大きく依存す
る。 表面粗さを示すPV値(y)とCLA値(x)と
が、 y≦0.265 (x<0.003) y<5x+0.03 (0.003≦x≦0.0135) の範囲は透明性は高く良好であるが、滑り性が極
端に悪く、又、フイルムを互に重ねるとブロツキ
ングが起こり取扱い作業性が劣る。 y>0.265 (x<0.003) y>5x+0.03 (0.003≦x≦0.0135) y>0.3175 (x>0.0135) の範囲は取扱い作業性は良好であるが、感光性記
録体としての透明性に劣る。 y≦0.3175 (x>0.0135) の範囲のフイルムは取扱い作業性に劣り、かつ透
明性にも劣る。 従つて、本発明で規定する範囲の2式 5x+0.03≦y≦5x+0.25 0.003≦x≦0.0135 を同時に満足するものが透明性に優れ、滑り性が
良好で、フイルム同士のブロツキングが起ること
のなく、取扱い作業性に優れている。好ましく
は、 5x+0.06≦y≦5x+0.21 0.004≦x≦0.012 の2式を同時に満足する範囲のポリエステルフイ
ルムが良い。さらに好ましくは、 5x+0.07≦y≦5x+0.19 0.006≦x≦0.011 の2式を同時に満足するものが、透明性に優れ、
かつ、取扱い作業性に優れ最も好ましい。 このとき、上記の本発明で規定する範囲の表面
粗さをもつフイルムであつて、かつ350nmの波
長の光線透過率が68%以上、及び550nmの波長
の光線透過率が83%以上のものは、紫外域及び可
視域の光線透過率が高く、このフイルムをオリジ
ナルのマイクロフイルムとしてジアゾフイルムや
カルバーフイルムに紫外光線で焼付けてマイクロ
フイルムとしたときの画像は特に鮮明であり、
又、本発明のベースフイルムからなるジアゾフイ
ルムで何世代もプリントを繰返す際にも画質の低
下は極めて少なく、又、プロジエクター等の可視
光線で写し出された画像は非常に明るく、マイク
ロフイルム用ベースフイルムとして優れたものと
なる。 350nmの波長の光線透過率は好ましくは73%
以上のものが良く、さらに好ましくは75%以上の
ものがマイクロフイルム用として特に良い。一
方、550nmの波長の光線透過率は、好ましくは
85%以上のものであり、さらに好ましくは88%以
上のものが優れた透明性を有するフイルムであ
る。350nmの波長の光線透過率の上限は特に限
定されないが、通常85%以下である。又、550n
mの光線透過率の上限は特に限定されないが、通
常95%以下である。 以上の本発明で規定する範囲の表面粗さ、及
び、光線透過率をもつフイルムの厚さは特に限定
されないが、50〜250μのものがマイクロフイル
ム用として適切な機械的強度、腰の強さ、透明
性、取扱い易さ等を有している。フイルムの厚さ
は、60〜188μのものが特に望ましい。 本発明のポリエステルフイルムを製造する方法
は任意であるが、例えばCLA値は添加不活性無
機化合物の代表粒径の大小あるいは代表粒径の大
と小の組合せとその添加量の多少で調節し、PV
値はフイルム粗表面の最大と山と谷とを示すもの
であるから、添加不活性無機化合物の代表粒径で
調節することができる。本発明の添加不活性無機
化合物の代表粒径の範囲は0.1〜2.0μであり、好
ましくは0.15〜1.0μで、かつ添加量の範囲は
0.001〜0.150重量%で、好ましくは0.005〜0.080
重量%である。 ポリエステル配向フイルムについて具体的な製
造方法を説明する。例えば数種類の粒度分布の異
なる不活性無機化合物を添加してフイルム中に存
在せしめる方法;重合時にリン成分を加えて粒子
源を生成せしめるとともに分級された無機粒子を
添加してフイルム中に存在せしめる方法;更に
は、重合時にリン成分若しくは必要なその他の添
加物を加えて重合したものと、不活性化合物を加
えて重合を行つたものと両者をブレンドする方法
など好ましく用いられる。 本発明におけるフイルム素材のポリエステルに
不活性添加剤粒子を添加する場合の添加する時期
は、ポリエステル重合前でもよく、重合反応中で
もよく、また重合終了後ペレタイズする時に押出
機中で混練させてもよく、さらにシート状に溶融
押出しする際に添加し、押出機中で分散して押出
してもよいが、重合前に添加するのが分散性の点
から好ましい。 本発明の対象とするポリエステルフイルムは少
くとも一軸方向に配向されている(従つて一軸配
向でも二軸配向でもよい)フイルムである。延伸
倍率は特に限定されないが、その縦又は横方向の
少くとも一方向に於て延伸倍率2.5〜5.5倍に延伸
したものが好ましい。特に二軸方向に配向してい
るものが好ましい。二軸配向のフイルムは二軸方
向の延伸倍率が相等しくても、縦方向が横方向よ
り大きくても、または横方向が縦方向より大きく
てもよい。また、該フイルムは単一膜であつて
も、積層フイルムであつてもよい。 本発明のポリエステルフイルムは、例えば二軸
配向のものは通常の押出温度、即ち、融点(Tm
とあらわす)以上(Tm+70℃)以下の温度で溶
融押出された固有粘度(η〕が0.35〜1.0のポリ
エステル未延伸フイルムを、ポリエステルの二次
転移点(Tgとあらわす)以上(Tg+70℃)以下
の温度で縦或いは横方向に(2.5〜5.5)倍の延伸
倍率で延伸し、次いで前記延伸方向と直角方向に
(前記延伸方向が縦方向であるならば次は横方
向)Tg〜(Tg+70℃)に(2.5〜5.5)倍の延伸
倍率で延伸する(延伸はこのような逐次二軸延伸
であつてもよく、また同時二軸延伸であつてもよ
く、その製造法は特に限定されない)ことにより
得られる。 このようにして得られた二軸配向フイルムは
(Tg+70℃)以上Tm以下で1〜100秒間熱固定す
るのが通例である。 本発明のフイルムは、紫外域及び可視域の光線
透過率が高く、透明性に優れ、かつ、滑り性が良
好で、取扱い作業性に優れており、感光性記録体
用フイルム、特にマイクロフイルム、VTR用フ
イルム、EVR用フイルム、OHP用フイルム等に
最も適したものである。 以下に本発明における主な特性の測定法、及び
評価法を示す。 (1) 表面粗さ 本発明で言う表面粗さを示すPV〔ピーク・
ツー・バレー(Peak−to−Valley)値及び
CLA〔センター・ライン・アベレエジ
(Center Line Average)〕値とはそれぞれ以下
の方法によつて測定されたものである。 PV値:フイルム表面を東京精密社製触針式表
面粗さ計(SURFOOM 3B)を使用して、針
の半径3μ、荷重0.1gの条件下にフイルム
基準長2.6mmについて、基準長方向を50倍、
表面粗さ方向を20000倍に拡大し、チヤート
をかかせ、断面曲線から基準長さだけ抜き取
つた部分の平均線に平行な直線のうち高い方
から1番目の山と深い方から1番目の谷底を
通るものを選び、この2直線の間隔を粗さ倍
率で割つた値をミクロン単位で表わし、この
PV値10個の平均値で表わす。 CLA値:フイルム表面粗さ曲線からその中心
線の方向に測定長さLの部分を抜き取り、こ
の抜き取り部分の中心線をX軸、縦倍率の方
向をY軸として、粗さ曲線をY=f(x)で
表わした時、次の式で与えられた値をμ単位
で表わす。 RCLA=1/L∫ |f(x)|dx この測定は基準長を0.25mmとして8個測定
し、値の大きい方から3個を除いた5個の平
均値で表わす。 (2) 光線透過率 島津製作所製マルチパーパス自記分光光度計
(MPS−5000)を用いて、フイルム試料の210
〜800nmの波長の分光透過率をチヤート上に
書かせ、350nm及び550nmの波長の分光透過
率をチヤートから読み取り、それぞれの波長の
光線透過率とし、百分率(%)で表わす。 (3) 代表粒径 島津自動沈降天秤を用いてストークス
(Stokes)の式 T=18ηh/G(ρ−ρ)×d 〔但し、式中 T:沈降時間(sec) η:媒質の粘度(g/cm・sec=poise) h:沈降距離(cm) G:重力の加速度(980cm/sec2) ρp:不活性物質の密度(g/cm3) ρp:媒質の密度(g/cm3) d:不活性物質の粒径(直径・cm)〕 を用いて夫々の粒径に相当する沈降時間を算出
し、夫々の粒径の範囲(例えば0.25μ以下、
0.5≧d>0.25、0.75≧d>0.5及び1.0≧d>
0.75………等)に相当する沈降時間範囲を求
め、その沈降時間範囲内での不活性物質の重量
を求めて全不活性物質重量に対する割合を%で
表わし構成比とし、この構成比を粒径の大きい
方から小さい方に順に積算(粒径Oμで100
%)した積算曲線を作製し、積算率50%で示す
粒径を代表粒径(μ)とする。 (4) 画質の評価 ベースフイルムに次の組成からなるジアゾ感
光液を塗布して温度90℃で1分間乾燥し、塗膜
厚さ10μのジアゾフイルムとした。 N・N−ジエチルアミノベンゼンジアゾニウム
四フツ化ホウ素塩 26.3g 2・2′・4・4′−テトラヒドロキシジフエニル
スルフイド 7.4g 2−ヒドロキシ−3−ナフトエ酸−2′−メチル
アニリド 19.6g クエン酸 23g 塩化亜鉛 1g チオ尿素 2g セルロースアセテートブチレート 100g メチルエチルケトン 650g 酢酸エチル 650g このジアゾフイルムをオリジナルの市販の銀
塩マイクロフイルムに密着し、高圧水銀灯で露
光させ、アンモニアガスで現像することにより
ジアゾマイクロフイルムを作りこれをプロジエ
クターにより300倍に拡大し、写し出された画
像を観察して、画質の良否を次の3段階に分け
て評価した。 1 線画が鮮明で、ベースフイルムによる微小
斑点は認められず、画像の極めて明るい、マ
イクロフイルム用に特に適したフイルム。 2 ベースフイルムによる薄黒い微小斑点が若
干認められたが線画のぼやけがなく、画像も
明るく、マイクロフイルム用として実用上問
題のないフイルム。 3 ベースフイルム表面の高い突起や内部の粒
子による暗い影状の斑点が多く現われ、画像
が暗く、線画もぼやけ、マイクロフイルム用
として実用上著しく問題になるフイルム。 (5) 静摩擦係数μS ASTMD−1894−63による方法によりフイル
ム表面とフイルム裏面を重ねて摩擦させた時の
値を測定した。 (6) 作業性 滑り性の良好なフイルムは取扱いも容易であ
り、従つて作業性に優れる。逆に滑り性の悪い
フイルムは取扱いが困難になり、従つて作業性
は劣る。このような基準のもとに、作業性の難
易を下記の1〜4のランクに分けて評価した。 1 作業性が良好:静摩擦係数μSが0.5未満
であり、滑り性が良好なため、フイルム作業
時の巻取性及びその後の取扱性も良好なフイ
ルム。 2 作業性に問題なし:静摩擦係数μSが05以
上1.0未満で、フイルム作業時の巻取工程で
何ら問題なく巻くことができ、その後の取扱
性も特に問題ないフイルム。 3 作業性が悪い:静摩擦係数μSは1.0以上
であり、フイルム作業時の巻取工程では巻姿
は良好に巻けるが、表面にスクラツチが入り
易く、またその後の取扱いもかなり困難なフ
イルム。 4 作業性が非常に悪い:フイルム作製時の巻
取工程でフイルム−フイルム間でブロツキン
グを起こし、しわが入つたり、多角形状にな
つたりして、正常な巻取りが不可能なフイル
ム。 (7) 総合評価 紫外域及び可視域の光線透過率が高く、透明
性が良好で、かつ、作業性も良好なフイルムを
◎、実用上問題のないフイルムを○、紫外域及
び可視域の光線透過率が低く透明性が劣るか、
或いは作業性が著しく劣つて使用に耐えないフ
イルムを×、としてそれぞれ評価した。 実施例1〜4、比較例1〜3 ジメチルテレフタレートに対し、触媒として酢
酸マンガン40ミリモル%、三酸化アンチモン20ミ
リモル%、亜リン酸40ミリモル%を加えてエステ
ル交換反応させ、次いで本発明で規定する範囲に
入るように所定の不活性添加剤粒子を所定量(表
1参照)添加して重縮合反応させ、〔η〕が0.65
(O−クロロフエノールを溶媒として用い25℃で
測定した値)のポリエチレンテレフタレートを得
た。 このポリエチレンテレフタレートを160℃で乾
燥し、280℃で溶融押出し、40℃に保持したキヤ
ステイングドラム上に急冷固化せしめて、厚さ
1250μの未延伸フイルムを得た。 該未延伸フイルムを縦延伸温度95℃、縦延伸倍
率3.05倍、横延伸温度120℃、横延伸倍率3.3倍で
逐次二軸延伸し、210℃で20秒間熱固定し、厚さ
125μのフイルムを得た。 比較のため同様の方法で、本発明で規定する範
囲から外れた表面粗さを有するフイルムを作製
し、その結果を併せて表1に示した。
The present invention relates to an oriented polyester film for photosensitive recording media. More specifically, the present invention relates to an oriented polyester film for photosensitive recording materials, particularly microfilms, which has excellent transparency and excellent workability. Polyester films, such as polyethylene terephthalate films, are widely used in various applications including information recording and electrical applications due to their excellent mechanical properties, heat resistance, and electrical properties. One of the uses of such polyester film is microfilm, which is a photosensitive recording material, and EVR.
(Electronic Video Recording) film,
It is used as a base for OHP (overhead projector) films, etc. As a base for a microfilm, in order to record and retrieve information, it is important that the base film has high transparency and that protrusions on the film surface that cause light scattering and transmission obstruction are small. If the transparency is low, the background of an enlarged image or printed image when used as a microfilm becomes cloudy or colored, and the sharpness of the image decreases. Furthermore, if there are tall protrusions on the film surface, this may cause scattering of light or obstruction of light transmission, making it impossible to record or take out that portion. Microfilms generally include silver salt films, diazo films, and carver films, with diazo films being the most commonly used. This diazo film has a diazonium salt emulsion, has a spectral sensitivity in the wavelength range of 350 to 400 nm, and is exposed to light in this wavelength range, that is, ultraviolet light, but it is different from the original microfilm (usually silver salt microfilm). When printing by printing on diazo film, if the light transmittance of the base film of the original microfilm is low in the 350 to 400 nm range, the amount of exposure to the diazo film will be insufficient, so the line drawing and background of the printed diazo microfilm will be The contrast of the image will be reduced, and the image quality will also be reduced. In such cases, the problem may be solved by increasing the exposure amount, but this is not a preferable solution because fine line drawings tend to disappear and the microfilm tends to deteriorate due to strong ultraviolet light. Also, when printing diazo microfilm over many generations,
If the base film of the diazo microfilm, which is the original for each generation, has low light transmittance in the 350 to 400 nm range, the image quality will deteriorate significantly. Culver film also has a spectral sensitivity in the ultraviolet region of 340 to 440 nm.
If the base film of the original microfilm has low light transmittance in the ultraviolet region, the image quality of the printed Culver microfilm will deteriorate. For these reasons, the base film of the microfilm is required to have high light transmittance in the ultraviolet region. Light transmittance in the ultraviolet region is 350nm
It can be evaluated from the transmittance at the wavelength of In addition, if there are large protrusions on the surface of the base film or large particles inside, the ultraviolet rays will be scattered, which will widen the line drawing width of the printed diazo microfilm and make the line drawing blurry.
Deterioration of image quality occurs. Furthermore, when projecting microfilm using a visible light source such as a projector or reader, the brightness of the image is an important factor. The problem is the light transmittance of the area, and if it is low, the brightness of the image will be reduced. Therefore, if there are large protrusions on the surface of the base film or large particles inside, the light transmittance in the visible range will decrease and the brightness of the image will decrease. In other words, the base film is required to have high light transmittance in the visible range;
Can be evaluated at 550nm. On the other hand, in order to handle the base film and the product film, it is necessary that the film has good slipperiness and excellent workability, that is, the coefficient of friction between films, films and metal rolls, etc. is small. If the slipperiness is poor, wrinkles may occur during manufacturing or handling of the base film or product film, and scratches may occur due to frictional wear, resulting in a product with many defects as an optical recording material. In addition, films with poor slip properties tend to stick to each other and develop (blocking), making them difficult to handle. In order to improve the slipperiness of a film, it is sufficient to provide unevenness to the film surface. For this purpose, for example, inert inorganic compound particles may be added to the polymer used as the film raw material, or inert catalyst residue may be added to the film surface. There are known methods in which the surface of a smooth film is roughened mechanically or chemically. However, on the other hand, an improvement in slipperiness usually results in a deterioration in transparency. As described above, the optical properties and workability (surface sliding properties) required of a base film for photosensitive recording media are contradictory, and it is difficult to satisfy both at the same time. As a result of intensive research into polyester films having both of these characteristics, the present inventors have discovered that a film that satisfies a specific range of surface roughness and light transmittance has excellent optical properties and workability at the same time. This is what led to the discovery of the present invention. That is, the present invention provides a polyester film having at least one surface roughened, and a PV value [y (unit/μ)] indicating the surface roughness of the rough surface and a CLA value [x (unit/μ)]. ] is in a range that simultaneously satisfies 5x+0.03≦y≦5x+0.25 and 0.003≦x≦0.0135, and the light transmittance at 350 nm is 68% or more and the light transmittance at 550 nm is 83% or more. This is an oriented polyester film for photosensitive recording material characterized by the following. The rough surface referred to in the present invention refers to the front and back surfaces of the film.
A rougher surface is defined as a rough surface. Therefore, only the rougher surface satisfies the surface roughness range specified in the claims, and the other surfaces satisfy the surface roughness range specified in the claims. In any case, the surface roughness may be equal to or smoother than that of the rough surface. The lower limit of the smooth surface is not particularly limited, but is usually 0.03μ for PV and 0.0025μ for CLA.
That's about it. The polyester referred to in the present invention refers to a polymer composed of an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, etc. and a glycol such as ethylene glycol, diethylene glycol, tetramethylene glycol, neopentylene glycol, etc. It is a polymer that can be obtained by condensation. The polyester is a polymer that can be obtained by directly polycondensing an aromatic dicarboxylic acid and a glycol. The polyester can be obtained by direct polycondensation of aromatic dicarboxylic acid and glycol, or by polycondensation after transesterification of aromatic dicarboxylic acid dialkyl ester and glycol, or by polycondensation of aromatic dicarboxylic acid dialkyl ester and glycol. It can also be obtained by methods such as polycondensation.
Typical examples of such polymers include polyethylene terephthanate and polyethylene-2,6-naphthalene dicarboxylate. The polymer may be a non-copolymerized homopolymer, and up to 15 mol% of the dicarboxylic acid component is a non-aromatic dicarboxylic acid component and/or up to 15 mol% of the diol component is a non-aliphatic glycol. It may also be a copolymerized polyester that is a diol component. Alternatively, it may be a polymer blend of the polyester and another polymer. Furthermore, the polyester may optionally have stability,
It may also contain additives such as colorants and antioxidants. By adapting raw material characteristics, film forming conditions, etc. so that the PV value and CLA value fall within the range specified by the present invention, light transmittance in the ultraviolet and visible regions is high, transparency is excellent, and workability is achieved. An excellent film can be obtained. The level of light transmittance of the microfilm in the ultraviolet region and the visible region, and the workability largely depend on the surface condition of the base film (film surface roughness). Transparency is high and good when the PV value (y) and CLA value (x), which indicate surface roughness, are in the range y≦0.265 (x<0.003) y<5x+0.03 (0.003≦x≦0.0135). The slipperiness is extremely poor, and blocking occurs when the films are stacked on top of each other, resulting in poor handling and workability. The range of y>0.265 (x<0.003) y>5x+0.03 (0.003≦x≦0.0135) y>0.3175 (x>0.0135) has good handling workability, but the transparency as a photosensitive recording medium is poor. . Films in the range of y≦0.3175 (x>0.0135) are inferior in handling workability and transparency. Therefore, a film that simultaneously satisfies the following two equations within the range defined by the present invention: 5x+0.03≦y≦5x+0.25 0.003≦x≦0.0135 has excellent transparency, good slipperiness, and blocking between films. It has excellent handling and workability. Preferably, the polyester film satisfies the following two equations: 5x+0.06≦y≦5x+0.21 0.004≦x≦0.012. More preferably, a material that simultaneously satisfies the following two equations: 5x+0.07≦y≦5x+0.19 0.006≦x≦0.011 has excellent transparency.
Moreover, it is most preferable because of its excellent handling and workability. At this time, a film that has a surface roughness within the range specified by the present invention and has a light transmittance of 68% or more at a wavelength of 350 nm and a light transmittance of 83% or more at a wavelength of 550 nm is , has high light transmittance in the ultraviolet and visible regions, and when this film is used as an original microfilm and is printed on diazo film or Culver film with ultraviolet light, the image is particularly clear.
Furthermore, there is very little deterioration in image quality even when printing is repeated for many generations with the diazo film made of the base film of the present invention, and the image projected with visible light from a projector is very bright, making it a perfect base for microfilm. It becomes an excellent film. Light transmittance for wavelength of 350nm is preferably 73%
The above is preferable, and more preferably 75% or more is particularly good for microfilm. On the other hand, the light transmittance at a wavelength of 550 nm is preferably
The film has excellent transparency of 85% or more, more preferably 88% or more. The upper limit of the light transmittance at a wavelength of 350 nm is not particularly limited, but is usually 85% or less. Also, 550n
The upper limit of the light transmittance of m is not particularly limited, but is usually 95% or less. The thickness of the film having surface roughness and light transmittance within the range specified by the present invention is not particularly limited, but a film of 50 to 250μ has mechanical strength and stiffness suitable for use as a microfilm. , transparency, and ease of handling. It is particularly desirable that the film has a thickness of 60 to 188μ. Although the method for producing the polyester film of the present invention is arbitrary, for example, the CLA value can be adjusted by adjusting the representative particle size of the added inert inorganic compound or a combination of large and small representative particle sizes and the amount added. PV
Since the value indicates the maximum, peaks, and valleys of the film's rough surface, it can be adjusted by the representative particle size of the added inert inorganic compound. The representative particle size range of the added inert inorganic compound of the present invention is 0.1 to 2.0μ, preferably 0.15 to 1.0μ, and the range of the amount added is
0.001-0.150% by weight, preferably 0.005-0.080
Weight%. A specific manufacturing method for the polyester oriented film will be explained. For example, a method in which several types of inert inorganic compounds with different particle size distributions are added to make them exist in the film; a method in which a phosphorus component is added during polymerization to generate a particle source, and at the same time, classified inorganic particles are added to make them exist in the film. Furthermore, a method in which a phosphorus component or other necessary additives are added during polymerization, a method in which an inactive compound is added, and a method in which the two are blended is preferably used. When inert additive particles are added to the polyester of the film material in the present invention, they may be added before polyester polymerization, during the polymerization reaction, or they may be kneaded in an extruder when pelletizing after polymerization. Further, it may be added during melt extrusion into a sheet form, dispersed in an extruder, and extruded, but it is preferable to add it before polymerization from the viewpoint of dispersibility. The polyester film that is the object of the present invention is a film that is oriented in at least one axis (therefore, it may be uniaxially oriented or biaxially oriented). Although the stretching ratio is not particularly limited, it is preferable that the film be stretched at a stretching ratio of 2.5 to 5.5 times in at least one direction, either vertically or horizontally. Particularly preferred are those oriented in biaxial directions. In a biaxially oriented film, the stretching ratios in the two axial directions may be equal, the longitudinal direction may be greater than the transverse direction, or the transverse direction may be greater than the longitudinal direction. Further, the film may be a single film or a laminated film. For example, the biaxially oriented polyester film of the present invention can be used at a normal extrusion temperature, that is, the melting point (Tm
An unstretched polyester film with an intrinsic viscosity (η) of 0.35 to 1.0 melt-extruded at a temperature of 0.35 to 1.0 (expressed as Tg) or higher (expressed as Tg) or lower (Tg + 70℃) or lower Stretch at a stretching ratio of (2.5 to 5.5) times in the longitudinal or transverse direction at temperature, and then in a direction perpendicular to the stretching direction (if the stretching direction is the longitudinal direction, then in the lateral direction) Tg ~ (Tg + 70°C) By stretching at a stretching ratio of (2.5 to 5.5) times (stretching may be such sequential biaxial stretching or simultaneous biaxial stretching; the manufacturing method is not particularly limited). The biaxially oriented film thus obtained is usually heat-set for 1 to 100 seconds at a temperature above (Tg + 70°C) and below Tm. It has high transparency, good slip properties, and excellent handling workability, making it the most suitable for photosensitive recording films, especially micro films, VTR films, EVR films, OHP films, etc. The method of measuring and evaluating the main characteristics in the present invention is shown below. (1) Surface roughness
Peak-to-Valley value and
CLA (Center Line Average) values are measured by the following methods. PV value: Using a stylus type surface roughness tester (SURFOOM 3B) manufactured by Tokyo Seimitsu Co., Ltd., measure the film surface with a needle radius of 3 μ and a load of 0.1 g. times,
Magnify the surface roughness direction by 20,000 times, apply a chart, and extract the reference length from the cross-sectional curve. Among the straight lines parallel to the average line, select the first peak from the highest and the first peak from the deepest. Select the line that passes through the valley bottom, divide the distance between these two lines by the roughness magnification, express the value in microns, and calculate this value.
Expressed as the average value of 10 PV values. CLA value: Pick out a part of measurement length L from the film surface roughness curve in the direction of its center line, set the center line of this cut out part as the X axis, and the vertical magnification direction as the Y axis, and calculate the roughness curve Y = f When expressed as (x), the value given by the following formula is expressed in μ units. R CLA = 1/L∫ L O |f(x)|dx In this measurement, eight measurements were made with a reference length of 0.25 mm, and the average value of the five measurements excluding the three with the largest value is expressed. (2) Light transmittance Using a multi-purpose self-recording spectrophotometer (MPS-5000) manufactured by Shimadzu Corporation, 210
The spectral transmittance for wavelengths of ~800 nm is written on a chart, and the spectral transmittances for wavelengths of 350 nm and 550 nm are read from the chart, and the light transmittance for each wavelength is expressed as a percentage (%). (3) Representative particle size Using the Shimadzu automatic sedimentation balance, use the Stokes equation T = 18ηh/G (ρ p −ρ p )×d 2 [where, T: sedimentation time (sec), η: medium Viscosity (g/cm・sec=poise) h: Sedimentation distance (cm) G: Acceleration of gravity (980cm/sec 2 ) ρ p : Density of inert substance (g/cm 3 ) ρ p : Density of medium (g / cm3 ) d: Particle size of inert substance (diameter/cm)] Calculate the sedimentation time corresponding to each particle size, and calculate the settling time for each particle size range (for example, 0.25μ or less,
0.5≧d>0.25, 0.75≧d>0.5 and 1.0≧d>
0.75, etc.), find the weight of the inert substance within that sedimentation time range, express the proportion to the total weight of the inert substance as a percentage, and use this composition ratio as the grain size. Accumulated in order from the largest diameter to the smallest diameter (100 for particle size Oμ)
%) is prepared, and the particle size shown at an integration rate of 50% is defined as the representative particle size (μ). (4) Evaluation of image quality A diazo photosensitive solution having the following composition was applied to the base film and dried at a temperature of 90°C for 1 minute to obtain a diazo film with a coating thickness of 10 μm. N・N-diethylaminobenzenediazonium boron tetrafluoride salt 26.3g 2・2′・4・4′-tetrahydroxydiphenyl sulfide 7.4g 2-hydroxy-3-naphthoic acid-2′-methylanilide 19.6g citric acid Acid 23g Zinc chloride 1g Thiourea 2g Cellulose acetate butyrate 100g Methyl ethyl ketone 650g Ethyl acetate 650g This diazo film was adhered to the original commercially available silver salt microfilm, exposed with a high-pressure mercury lamp, and developed with ammonia gas to create a diazo microfilm. This was enlarged 300 times using a projector, the projected image was observed, and the quality of the image was evaluated using the following three levels. 1. A film particularly suitable for use with microfilms, with clear line drawings, no microscopic spots caused by the base film, and extremely bright images. 2. Although some small dark spots due to the base film were observed, the line drawing was not blurred, the image was bright, and there was no problem in practical use as a micro film. 3 A film with many dark shadow-like spots due to high protrusions on the surface of the base film or internal particles, resulting in dark images and blurred line drawings, which is a serious problem in practical use as a microfilm. (5) Static friction coefficient μS The value was measured when the front surface of the film and the back surface of the film were overlapped and rubbed by the method according to ASTMD-1894-63. (6) Workability A film with good slipperiness is easy to handle and therefore has excellent workability. On the other hand, a film with poor slip properties is difficult to handle and therefore has poor workability. Based on such criteria, the difficulty of workability was divided into ranks 1 to 4 below and evaluated. 1. Good workability: A film with a static friction coefficient μS of less than 0.5 and good slipperiness, so that it has good winding properties during film work and good handling properties afterwards. 2. No problems with workability: A film with a static friction coefficient μS of 05 or more and less than 1.0, which can be wound without any problems during the winding process during film work, and with no particular problems in subsequent handling. 3. Poor workability: The static friction coefficient μS is 1.0 or more, and the film can be wound well during the winding process, but scratches easily appear on the surface and the film is difficult to handle afterwards. 4. Very poor workability: During the winding process during film production, blocking occurs between the films, resulting in wrinkles or polygonal shapes, making it impossible to wind the film normally. (7) Overall evaluation: ◎: A film with high light transmittance in the ultraviolet and visible regions, good transparency, and good workability; ○: a film with no practical problems; ○: a film with high light transmittance in the ultraviolet and visible regions, good transparency, and good workability The transmittance is low and the transparency is poor.
Alternatively, a film with extremely poor workability and unusable was evaluated as "x". Examples 1 to 4, Comparative Examples 1 to 3 To dimethyl terephthalate, 40 mmol % of manganese acetate, 20 mmol % of antimony trioxide, and 40 mmol % of phosphorous acid were added as catalysts to carry out a transesterification reaction, and then transesterification was carried out as specified in the present invention. A predetermined amount of inert additive particles (see Table 1) is added to cause a polycondensation reaction so that [η] is within the range of 0.65.
Polyethylene terephthalate (value measured at 25°C using O-chlorophenol as a solvent) was obtained. This polyethylene terephthalate was dried at 160°C, melt-extruded at 280°C, and rapidly solidified on a casting drum kept at 40°C.
An unstretched film of 1250μ was obtained. The unstretched film was sequentially biaxially stretched at a longitudinal stretching temperature of 95°C, a longitudinal stretching ratio of 3.05 times, a transverse stretching temperature of 120°C, and a transverse stretching ratio of 3.3 times, and was heat-set at 210°C for 20 seconds to determine the thickness.
A 125μ film was obtained. For comparison, a film having a surface roughness outside the range defined by the present invention was prepared using the same method, and the results are also shown in Table 1.

【表】 比較例1はフイルムの滑り性が悪いため作製時
の巻取が非常に困難であつた。即ち、巻取時にフ
イルム−フイルム間でブロツキングを起して、端
面がずれ始めた。このずれは、やがて元の位置に
戻つたが、この時に大きなしわが発生した。巻上
つたフイルムロールの巻姿は多角形状になつてお
り、商品価値の無い状態であつた。このフイルム
の紫外域及び可視域の光線透過率は非常に高く透
明性が良好であつたが、静摩擦係数μSは4.0以
上であり、測定できなかつた。なお、このフイル
ムをロールから剥がしてみたところ、巻込んだし
わの影響を受けて平面性の悪い(凹凸が発生)フ
イルムとなつており、到底マイクロフイルム用ベ
ースフイルムとして用いられない状態であつた。 比較例2は巻取工程での巻姿は良好であるが、
表面にスクラツチが入り、マイクロフイルム用と
して画質の劣るフイルムであつた。これに対し実
施例1〜4及び比較例3のフイルムでは、何のト
ラブルもなく正常なフイルムロールに巻取れた。 画質の評価では、実施例1〜4及び比較例1〜
3のフイルムにジアゾ乳剤を塗布し、オリジナル
のマイクロフイルムから密着焼付してジアゾマイ
クロフイルムとする。実施例1〜4よりなるマイ
クロフイルムは線画と地肌のコントラストが高
く、優れた画質のものが得られ、プロジエクター
による拡大画像は明るく鮮明であつた。又、ジア
ゾプリントを5世代重ねたジアゾマイクロフイル
ムの画像の鮮明度の低下は極めて少なかつた。比
較例2、3よりなるマイクロフイルムは線画がぼ
やけ、地肌とのコントラストが低く、画質がオリ
ジナルに比べてかなり劣り、プロジエクターによ
る拡大画像は暗く、特に比較例3のものは微小斑
点に由来する暗い影が点々と画面に現われ、実用
性に欠ける。 以上の結果から、本発明のフイルムは、特にマ
イクロフイルム用として透明性に優れ、しかも作
業性にも同時に優れていることが判明した。
[Table] In Comparative Example 1, it was very difficult to wind up the film during production because of its poor slipperiness. That is, blocking occurred between the films during winding, and the end faces began to shift. This shift eventually returned to its original position, but at this time a large wrinkle appeared. The rolled film roll had a polygonal shape and had no commercial value. Although this film had very high light transmittance in the ultraviolet and visible regions and good transparency, the static friction coefficient μS was 4.0 or more and could not be measured. When this film was peeled off from the roll, it was found to have poor flatness (unevenness occurred) due to the wrinkles that had been rolled in, and it was in a state that it could not be used as a base film for microfilm. . Comparative Example 2 has a good winding appearance in the winding process, but
The film had scratches on the surface and had poor image quality for use with microfilm. On the other hand, the films of Examples 1 to 4 and Comparative Example 3 were wound into normal film rolls without any trouble. In the evaluation of image quality, Examples 1 to 4 and Comparative Examples 1 to
A diazo emulsion is applied to the film of step 3, and the original microfilm is closely printed to form a diazo microfilm. The microfilms of Examples 1 to 4 had high contrast between the line drawing and the background, and excellent image quality was obtained, and the enlarged image by the projector was bright and clear. Furthermore, there was very little deterioration in the sharpness of the image of the diazo microfilm with five generations of diazo prints. The microfilms of Comparative Examples 2 and 3 have blurred line drawings, low contrast with the background, image quality is considerably inferior to the original, and images enlarged by a projector are dark.Especially, the microfilms of Comparative Example 3 are caused by minute spots. Dark shadows appear on the screen in spots, making it impractical. From the above results, it has been found that the film of the present invention has excellent transparency, especially for use as a microfilm, and is also excellent in workability.

Claims (1)

【特許請求の範囲】 1 少くとも片面が粗面化されたポリエステルフ
イルムであつて、該粗面の表面粗さを示すPV値
[y(単位・μ)]とCLA値[x(単位・μ)]と
が、以下の二式 5x+0.03≦y≦5x+0.25 0.003≦x≦0.0135 を同時に満足する範囲にあり、かつ350nmの光
線透過率が68%以上、550nmの光線透過率が83
%以上であることを特徴とする感光性記録体用配
向ポリエステルフイルム。 2 PV値[y(単位・μ)]とCLA値[x(単
位・μ)]とが、以下の二式 5x+0.06≦y≦5x+0.21 0.004≦x≦0.012 を同時に満足する範囲にある特許請求の範囲第1
項記載の配向ポリエステルフイルム。 3 PV値[y(単位・μ)]とCLA値[x(単
位・μ)]とが、以下の二式 5x+0.07≦y≦5x+0.19 0.006≦x≦0.011 を同時に満足する範囲にある特許請求の範囲第1
項記載の配向ポリエステルフイルム。 4 350nmの光線透過率が73%以上である特許
請求の範囲第1〜3項のいずれかに記載された配
向ポリエステルフイルム。 5 350nmの光線透過率が75%以上である特許
請求の範囲第1〜3頁のいずれかに記載された配
向ポリエステルフイルム。 6 550nmの光線透過率が85%以上である特許
請求の範囲第1〜5項のいずれかに記載された配
向ポリエステルフイルム。 7 550nmの光線透過率が88%以上である特許
請求の範囲第1〜5項のいずれかに記載された配
向ポリエステルフイルム。 8 厚さが50〜250μである特許請求の範囲第1
〜7項のいずれかに記載された配向ポリエステル
フイルム。
[Scope of Claims] 1 A polyester film having a roughened surface on at least one side, which has a PV value [y (unit/μ)] and a CLA value [x (unit/μ)] indicating the surface roughness of the roughened surface. )] is in a range that simultaneously satisfies the following two equations: 5x+0.03≦y≦5x+0.25 0.003≦x≦0.0135, and the light transmittance at 350 nm is 68% or more, and the light transmittance at 550 nm is 83
% or more. 2 PV value [y (unit/μ)] and CLA value [x (unit/μ)] are in a range that simultaneously satisfies the following two equations: 5x+0.06≦y≦5x+0.21 0.004≦x≦0.012 Claim 1
The oriented polyester film described in Section 1. 3 PV value [y (unit/μ)] and CLA value [x (unit/μ)] are in a range that simultaneously satisfies the following two equations: 5x+0.07≦y≦5x+0.19 0.006≦x≦0.011 Claim 1
The oriented polyester film described in Section 1. 4. The oriented polyester film according to claim 1, which has a light transmittance of 73% or more at 350 nm. 5. The oriented polyester film according to any one of pages 1 to 3 of the claims, which has a light transmittance of 75% or more at 350 nm. 6. The oriented polyester film according to claim 1, which has a light transmittance of 85% or more at 550 nm. 7. The oriented polyester film according to claim 1, which has a light transmittance of 88% or more at 550 nm. 8 Claim 1 whose thickness is 50 to 250μ
The oriented polyester film described in any one of items 1 to 7.
JP8205377A 1977-07-11 1977-07-11 Oriented polyester film for photosensive recorder Granted JPS5417981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8205377A JPS5417981A (en) 1977-07-11 1977-07-11 Oriented polyester film for photosensive recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8205377A JPS5417981A (en) 1977-07-11 1977-07-11 Oriented polyester film for photosensive recorder

Publications (2)

Publication Number Publication Date
JPS5417981A JPS5417981A (en) 1979-02-09
JPS623414B2 true JPS623414B2 (en) 1987-01-24

Family

ID=13763760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8205377A Granted JPS5417981A (en) 1977-07-11 1977-07-11 Oriented polyester film for photosensive recorder

Country Status (1)

Country Link
JP (1) JPS5417981A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197812U (en) * 1987-06-08 1988-12-20
WO1994019722A1 (en) * 1993-02-16 1994-09-01 Teijin Limited Base film for photographic film
WO1995016223A1 (en) * 1993-12-07 1995-06-15 Teijin Limited Laminated base film for photographic film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113418A (en) * 1981-01-05 1982-07-14 Teijin Ltd Magnetic recording medium
JPS57195321A (en) * 1981-05-08 1982-12-01 Teijin Ltd Metallic thin film magnetic recording medium
JPS57162123A (en) * 1981-03-30 1982-10-05 Teijin Ltd Magnetic recording medium
JPS5814319A (en) * 1981-07-20 1983-01-27 Teijin Ltd Vertically magnetized recording medium
JPS59171623A (en) * 1983-03-18 1984-09-28 Teijin Ltd Biaxially stretched polyester film
JPS5982629A (en) * 1983-08-31 1984-05-12 Toray Ind Inc Base film for magnetic recording
JPH01193327A (en) * 1988-01-28 1989-08-03 Toray Ind Inc Polyester film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197812U (en) * 1987-06-08 1988-12-20
WO1994019722A1 (en) * 1993-02-16 1994-09-01 Teijin Limited Base film for photographic film
WO1995016223A1 (en) * 1993-12-07 1995-06-15 Teijin Limited Laminated base film for photographic film

Also Published As

Publication number Publication date
JPS5417981A (en) 1979-02-09

Similar Documents

Publication Publication Date Title
EP1666521B1 (en) Polyester film
US20090034235A1 (en) Laminated film
JP7172045B2 (en) Biaxially oriented polyester film roll for transfer material
JPS623414B2 (en)
JP7543808B2 (en) Polyester Film
JP4734237B2 (en) Method for producing laminated film for reflector
JP2004330727A (en) Laminated polyester film
JP2621461B2 (en) Biaxially oriented polyester film
KR20150075471A (en) Polyester resin composition and polyester film using thereof
JPS6025255B2 (en) polyester film
EP0619516B1 (en) Base film for photographic film
JPS632982B2 (en)
JP2875155B2 (en) Base film for photo film
JPH0228131B2 (en)
JP3246629B2 (en) Polyester film for photo
JP2527246B2 (en) Biaxially oriented thermoplastic resin film
JPH10204266A (en) Polyester film
JPH1010681A (en) Base film for photographic film
JP2875154B2 (en) Base film for photo film
EP0523596A1 (en) Polyester film for high-density magnetic tape
JP5702482B2 (en) White reflective film
WO2024162016A1 (en) Biaxially oriented multilayer polyester film
JP2015069020A (en) White reflection film
JP2803773B2 (en) Biaxially oriented laminated film
JP2944071B2 (en) Manufacturing method of composite film