JPS6234103B2 - - Google Patents

Info

Publication number
JPS6234103B2
JPS6234103B2 JP5673280A JP5673280A JPS6234103B2 JP S6234103 B2 JPS6234103 B2 JP S6234103B2 JP 5673280 A JP5673280 A JP 5673280A JP 5673280 A JP5673280 A JP 5673280A JP S6234103 B2 JPS6234103 B2 JP S6234103B2
Authority
JP
Japan
Prior art keywords
section
carbon
supply section
carrier gas
oxidation furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5673280A
Other languages
Japanese (ja)
Other versions
JPS56153252A (en
Inventor
Makoto Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5673280A priority Critical patent/JPS56153252A/en
Publication of JPS56153252A publication Critical patent/JPS56153252A/en
Publication of JPS6234103B2 publication Critical patent/JPS6234103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 この発明は、大気中や水中の有機物質量を測定
する装置に関し、特に試料の酸化反応経路中に水
蒸気を供給する手段を設けることによつて、装置
内でのカーボンの残留を少なくし、測定精度を向
上させるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the amount of organic substances in the air or water, and in particular, by providing a means for supplying water vapor into the oxidation reaction path of a sample, the amount of carbon in the apparatus can be reduced. This reduces residual amount and improves measurement accuracy.

大気中や水中の有機物質量はその有機炭素量を
測定することによつて、知ることができる。この
有機炭素量を測定する具体的な方法として、一定
量の有機物試料を酸化炉に導き酸化反応させて発
生した炭酸ガス(CO2)の量を適当な検出器を用
いて測定するものがある。ところが、この酸化反
応の過程で有機物試料の一部は熱分解によつて炭
素(カーボン)に変ることがある。この炭素は容
易に酸化されないので装置内に残留し、測定精度
を低下させる原因の一つになつていた。
The amount of organic substances in the air and water can be determined by measuring the amount of organic carbon. A specific method for measuring the amount of organic carbon is to introduce a certain amount of organic material sample into an oxidation furnace, cause an oxidation reaction, and measure the amount of carbon dioxide (CO 2 ) generated using an appropriate detector. . However, during this oxidation reaction, a portion of the organic sample may be converted to carbon due to thermal decomposition. Since this carbon is not easily oxidized, it remains in the device and is one of the causes of reduced measurement accuracy.

この発明は、主としてこのような問題点を解決
するためになされたものであり、その具体的な構
成はキヤリアガス供給部、試料導入部、酸化炉及
び炭酸ガス又は一酸化炭素の検出部をこの順に備
えた検出経路と、検出器に接続された測定・記録
部とを有する有機炭素量測定装置において、キヤ
リアガス供給部として又はそれと酸化炉との間の
経路中に水蒸気供給部を設けたことを特徴とする
有機炭素量測定装置である。
This invention was made primarily to solve these problems, and its specific configuration includes a carrier gas supply section, sample introduction section, oxidation furnace, and carbon dioxide gas or carbon monoxide detection section in this order. An organic carbon amount measuring device having a detection path and a measurement/recording section connected to the detector, characterized in that a steam supply section is provided as a carrier gas supply section or in the path between it and an oxidation furnace. This is an organic carbon content measuring device.

すなわち、この発明の主要な特徴の一つは、試
料の酸化反応経路中に水蒸気を供給する手段を設
けたことにあり、これによつて、一部の有機物の
熱分解によつて生じた炭素を炭酸ガスに変え、測
定精度を向上させることができる。
That is, one of the main features of this invention is that a means for supplying water vapor into the oxidation reaction path of the sample is provided, and by this, carbon produced by thermal decomposition of some organic matter is removed. can be changed to carbon dioxide gas to improve measurement accuracy.

つまり、炭素と水蒸気とを反応させて一酸化炭
素にし、更に酸化させて炭酸ガスに変え検出可能
にすることによつて、有機炭素試料の炭酸ガスへ
の変換効率を上昇させ、それによつて測定精度を
向上させるわけである。
In other words, by reacting carbon and water vapor to form carbon monoxide, which is further oxidized into carbon dioxide gas, which can be detected, the efficiency of conversion of an organic carbon sample to carbon dioxide gas is increased, thereby making it possible to measure This improves accuracy.

酸化反応経路中における水蒸気供給手段を設け
る具体的な位置としては、実施例に示すごとく試
料導入部の手前が好ましいものとして挙げられる
が、その他酸化炉の直前〔第1図で説明すれば、
カラム5と酸化炉6との間の点線部分〕も挙げら
れ、更にキヤリアガス供給部として水蒸気供給手
段を設ける、つまり水蒸気をキヤリアガスとして
用いることもできる。
As a specific location in the oxidation reaction path, the steam supply means is preferably provided in front of the sample introduction part as shown in the example, but it is also preferable to place the steam supply means in front of the oxidation furnace [as explained in FIG. 1].
The dotted line section between the column 5 and the oxidation furnace 6] can also be mentioned, and a steam supply means can also be provided as a carrier gas supply section, that is, steam can be used as the carrier gas.

以下図に示す実施例に基づいてこの発明を詳述
する。
The present invention will be described in detail below based on embodiments shown in the figures.

まず第1図において、自動有機炭素量測定装置
1は、キヤリアガス(窒素ガス)供給部2、水蒸
気供給部3、試料導入部4、カラム5、酸化炉6
及びメタン変換器と水素炎イオン化検出器を組み
合せた炭酸ガスの検出部7をこの順に備えた検出
経路8と、前記検出部7に接続された測定・記録
部9を備えた測定経路とを備えている。
First, in FIG. 1, an automatic organic carbon amount measuring device 1 includes a carrier gas (nitrogen gas) supply section 2, a water vapor supply section 3, a sample introduction section 4, a column 5, an oxidation furnace 6
and a detection path 8 comprising a carbon dioxide gas detection section 7 which is a combination of a methane converter and a hydrogen flame ionization detector in this order, and a measurement path comprising a measurement/recording section 9 connected to the detection section 7. ing.

前記水蒸気供給部3は水蒸気発生器(ボイラ)
を接続して構成され、酸化炉6はヒータ10によ
つて800℃程度に保たれた酸化銅11を充填して
いる。
The steam supply section 3 is a steam generator (boiler).
The oxidation furnace 6 is filled with copper oxide 11 maintained at about 800° C. by a heater 10.

前記測定・記録部9は、前記水素炎イオン化検
出器7による検出信号に基づいて炭酸ガスの濃度
を測定する測定部12と、その測定値を記録する
記録部13とから構成されている。
The measuring/recording section 9 includes a measuring section 12 that measures the concentration of carbon dioxide gas based on the detection signal from the hydrogen flame ionization detector 7, and a recording section 13 that records the measured value.

そこで試料導入部4から導入された試料は、キ
ヤリアガス供給部2からの窒素ガスと水蒸気供給
部3からの水蒸気との混合ガスによつてカラム5
に運ばれ適当に分離され(例えばメタン系と非メ
タン系の炭化水素に分ける)、酸化炉6で酸化さ
れ炭酸ガス又は一酸化炭素となる。そして検出部
7のメタン変換器によつて炭酸ガス又は一酸化炭
素がメタンに変換され更にそれが水素炎イオン化
検出器で検出され、次いで測定・記録部9によつ
て炭酸ガス濃度、つまり有機物質量が測定・記録
される。
Therefore, the sample introduced from the sample introduction section 4 is transferred to the column 5 by a mixed gas of nitrogen gas from the carrier gas supply section 2 and water vapor from the water vapor supply section 3.
The hydrocarbons are transported to and separated appropriately (for example, into methane-based and non-methane-based hydrocarbons), and oxidized in an oxidation furnace 6 to become carbon dioxide gas or carbon monoxide. Carbon dioxide or carbon monoxide is then converted into methane by the methane converter in the detection unit 7, which is further detected by the hydrogen flame ionization detector, and then measured by the measurement/recording unit 9 to determine the carbon dioxide concentration, that is, the amount of organic substances. is measured and recorded.

ところで酸化炉6では一部の有機物試料が熱分
解によつて炭素に変る場合がある。しかし、キヤ
リアガスの窒素ガスに水蒸気が混入しているの
で、その水蒸気と炭素とが反応して一酸化炭素と
なり(H2O+C→H2+CO)、更に酸化剤により
その大部分は酸化されて炭酸ガス(CO+1/
2O2→CO2)となり、酸化されなかつた一酸化炭素
と共に検出部で検出させる。
By the way, in the oxidation furnace 6, some organic samples may be converted into carbon by thermal decomposition. However, since water vapor is mixed in the nitrogen gas of the carrier gas, the water vapor and carbon react to form carbon monoxide (H 2 O + C → H 2 + CO), and most of it is further oxidized by an oxidizing agent and becomes carbon dioxide. Gas (CO+1/
2O 2 →CO 2 ), which is detected by the detection unit along with unoxidized carbon monoxide.

従つて酸化炉6内に炭素が残留(又は堆積)す
ることがなく、また有機物試料の炭酸ガスへの変
換効率が上昇して測定精度が向上する。また酸化
炉6内に炭素が堆積しているときに水分を多量に
含んだ試料を分析すると多量の炭酸ガスが発生し
それによつて大きな誤差が生じる。しかしこの装
置ではそのような誤差の発生を防止できる。
Therefore, no carbon remains (or accumulates) in the oxidation furnace 6, and the conversion efficiency of the organic sample to carbon dioxide gas increases, resulting in improved measurement accuracy. Furthermore, when a sample containing a large amount of water is analyzed when carbon is deposited in the oxidation furnace 6, a large amount of carbon dioxide gas is generated, which causes a large error. However, this device can prevent such errors from occurring.

なお、以上の実施例とは異なり、キヤリアガス
供給部と水蒸気供給部とを第2図のごとく構成し
てもよい。つまりキヤリアガス(窒素ガス)供給
部14aを水中Waで開放させることによつて、
キヤリアガスに水蒸気を(水温での水蒸気圧分だ
け)混入させることもできる。なお15aは混合
ガス発生容器、16aは混合ガス移送管である。
Note that, unlike the above embodiments, the carrier gas supply section and the water vapor supply section may be configured as shown in FIG. 2. In other words, by opening the carrier gas (nitrogen gas) supply section 14a with underwater Wa,
It is also possible to mix water vapor (as much as the water vapor pressure at water temperature) into the carrier gas. Note that 15a is a mixed gas generation container, and 16a is a mixed gas transfer pipe.

また第1図の酸化炉6内の酸化銅に代えて酸化
コバルト又はその他重金属の酸化物を、同様検出
部7に代えて赤外線式又は熱伝導式濃度計をそれ
ぞれ用いることができる。
Moreover, cobalt oxide or other heavy metal oxides may be used in place of the copper oxide in the oxidation furnace 6 in FIG.

更に全有機炭素量を測定する場合は、第1図の
カラム5が不要である。
Furthermore, when measuring the total organic carbon content, column 5 in FIG. 1 is unnecessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る有機炭素量測定装置の
一実施例を示す機能説明図、第2図は他の実施例
を示す部分機能説明図である。 1…自動有機炭素量測定装置、2…キヤリアガ
ス供給部、3…水蒸気供給部、4…試料導入部、
5…カラム、6…酸化炉、7…検出部、9…測
定・記録部。
FIG. 1 is a functional explanatory diagram showing one embodiment of the organic carbon amount measuring device according to the present invention, and FIG. 2 is a partial functional explanatory diagram showing another embodiment. 1...Automatic organic carbon amount measuring device, 2...Carrier gas supply section, 3...Steam supply section, 4...Sample introduction section,
5... Column, 6... Oxidation furnace, 7... Detection section, 9... Measurement/recording section.

Claims (1)

【特許請求の範囲】[Claims] 1 キヤリアガス供給部、試料導入部、酸化炉及
び炭酸ガス又は一酸化炭素の検出部をこの順に備
えた検出経路と、検出器に接続された測定・記録
部とを有する有機炭素量測定装置において、キヤ
リアガス供給部として又はそれと酸化炉との間の
経路中に水蒸気供給部を設けたことを特徴とする
有機炭素量測定装置。
1. An organic carbon amount measuring device having a detection path including a carrier gas supply section, a sample introduction section, an oxidation furnace, and a carbon dioxide gas or carbon monoxide detection section in this order, and a measurement/recording section connected to the detector, An organic carbon amount measuring device characterized in that a steam supply section is provided as a carrier gas supply section or in a path between the carrier gas supply section and an oxidation furnace.
JP5673280A 1980-04-28 1980-04-28 Measuring device for quantity of organic carbon Granted JPS56153252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5673280A JPS56153252A (en) 1980-04-28 1980-04-28 Measuring device for quantity of organic carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5673280A JPS56153252A (en) 1980-04-28 1980-04-28 Measuring device for quantity of organic carbon

Publications (2)

Publication Number Publication Date
JPS56153252A JPS56153252A (en) 1981-11-27
JPS6234103B2 true JPS6234103B2 (en) 1987-07-24

Family

ID=13035675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5673280A Granted JPS56153252A (en) 1980-04-28 1980-04-28 Measuring device for quantity of organic carbon

Country Status (1)

Country Link
JP (1) JPS56153252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650106A (en) * 1992-07-28 1994-02-22 Toshiba Corp Cooling/heating device for steam turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059157U (en) * 1983-09-28 1985-04-24 株式会社堀場製作所 Aqueous sample analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650106A (en) * 1992-07-28 1994-02-22 Toshiba Corp Cooling/heating device for steam turbine

Also Published As

Publication number Publication date
JPS56153252A (en) 1981-11-27

Similar Documents

Publication Publication Date Title
US4234315A (en) Gas chromatographic analysis method and apparatus
JPS6325066B2 (en)
US3854877A (en) Combination tod-tc analysis method
JPS55155249A (en) Method and apparatus of analysis of total nitrogen
US3560156A (en) Determining the oxygen demand of combustible materials in aqueous dispersions
JP3656231B2 (en) Analytical system for high-precision nitrogen measurement
JPS6234103B2 (en)
JPS5487612A (en) Method of recovering thermal energy of exhaust gas from converter
GB952155A (en) Improvements relating to the quantitative analysis of gaseous mixtures
US3451256A (en) Apparatus for the determination of carbon in a fluid
US3681032A (en) Carbon content analysis
Burkinshaw et al. Analysis of sulfur and nitrogen pollutants in three-phase coal combustion effluent samples
US3801282A (en) Method and apparatus for generating gases for atomic absorption spectrophotometers
US3746510A (en) Method of separating carbon from alkali and alkali earth metals
JPS564052A (en) Concentration measuring device for nonmethane organic compound
JP3211462B2 (en) Carbon measuring device
JPS6182162A (en) Method and instrument for measuring volatile organic carbon
US4244696A (en) Method and apparatus for determining the chemical oxygen demand of organic materials dissolved in water
JPS56112647A (en) Measuring method for amount of carbon and measuring device therefor
JPH0245825B2 (en) KIHATSUSEIJUKITANSONOSOKUTEIHOOYOBISOKUTEISOCHI
Boos A rapid thermal conductivity microanalytical method for combined oxygen determination
Brown et al. Determination of Argon in Ammonia-Synthesis Gases
GB1362003A (en) Process and apparatus for measuring radioactivity
Gordon Uncatalyzed Reaction of Natural Gas and Steam.
Nash Jr et al. Continuous Determination of Small Percentages of Methane in Gases