JPS623406Y2 - - Google Patents

Info

Publication number
JPS623406Y2
JPS623406Y2 JP1982034219U JP3421982U JPS623406Y2 JP S623406 Y2 JPS623406 Y2 JP S623406Y2 JP 1982034219 U JP1982034219 U JP 1982034219U JP 3421982 U JP3421982 U JP 3421982U JP S623406 Y2 JPS623406 Y2 JP S623406Y2
Authority
JP
Japan
Prior art keywords
crucible
furnace
holder
temperature distribution
core tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982034219U
Other languages
Japanese (ja)
Other versions
JPS58140177U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3421982U priority Critical patent/JPS58140177U/en
Publication of JPS58140177U publication Critical patent/JPS58140177U/en
Application granted granted Critical
Publication of JPS623406Y2 publication Critical patent/JPS623406Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【考案の詳細な説明】 本考案は結晶育成のため電気炉内で使用される
坩堝を支持する坩堝受け具に関するものである。
[Detailed Description of the Invention] The present invention relates to a crucible holder for supporting a crucible used in an electric furnace for crystal growth.

VTR用等の磁気ヘツドに使用するマンガン亜
鉛フエライト単結晶は普通ブリツジマン法で製造
されることが多い。このブリツジマン法は所定の
温度分布を有する炉内で原料を仕込んだ坩堝を所
定のスピードで移送させ、坩堝内の種子結晶を育
成させるものであるが、炉内の温度分布に滑らか
さがないと希望する結晶方位を有する単結晶を成
功裡に製造することが難しいとされている。一方
炉内で坩堝を移送させるための坩堝の支持方法
は、炉の下部から耐熱性の再結晶アルミナ管(坩
堝受け具)を炉内に挿入しその上に白金又は白金
ロジウムの坩堝を置いて支持する方法と、炉の上
部から坩堝に白金ロジウムの吊線をつけて上部か
ら炉内に吊す方法が用いられているが、大きな単
結晶を作製する場合には安定度の高い前者の方法
を用いることが多い。
Manganese-zinc ferrite single crystals used in magnetic heads for VTRs and the like are usually produced by the Bridgeman method. In this Bridgeman method, a crucible filled with raw materials is transferred at a predetermined speed in a furnace with a predetermined temperature distribution to grow seed crystals in the crucible, but if the temperature distribution in the furnace is not smooth, It has been said that it is difficult to successfully produce single crystals with a desired crystal orientation. On the other hand, the crucible support method for transferring the crucible in the furnace is to insert a heat-resistant recrystallized alumina tube (crucible holder) into the furnace from the bottom of the furnace, and place a platinum or platinum rhodium crucible on top of it. Two methods are used: the method of supporting the crucible, and the method of attaching a platinum-rhodium suspension wire to the crucible from the top of the furnace and suspending it from the top, but when producing large single crystals, the former method is used because it is more stable. There are many things.

第1図は従来の坩堝受け具を用いる電気炉の模
型図を、坩堝表面の温度分布を併記して示すもの
である。図において、1はアルミナ製の炉芯管、
2はこの炉芯管内で上下する白金製の坩堝、3は
坩堝受け具である。また特性4,5は温度スケー
ル6で表現される坩堝表面の温度分布を示すもの
である。坩堝2は下部が円錘(漏斗)状に形成さ
れている円筒状に構成されており、下端にさらに
種子結晶を入れるチユーブ7を備えている。この
チユーブ7の下端は種子結晶の落下を防ぐため封
止(例えば押しつぶしによる)されている。坩堝
受け具3はアルミナ製の筒体であり、頭部の内径
8を坩堝2の外径9に比べて小さく構成されてい
て、坩堝の下部2Aを図示の如く筒体内に収容す
るようにしている。この坩堝受け具3の下部は基
台10に支持され、この基台10は駆動機構11
によつて坩堝受け具3ひいては坩堝2を炉芯管1
内で上下動させるようにしている。
FIG. 1 shows a model diagram of an electric furnace using a conventional crucible holder, together with the temperature distribution on the crucible surface. In the figure, 1 is an alumina furnace core tube;
2 is a platinum crucible that moves up and down within this furnace core tube, and 3 is a crucible holder. Further, characteristics 4 and 5 indicate the temperature distribution on the crucible surface expressed by the temperature scale 6. The crucible 2 has a cylindrical shape with a conical (funnel) lower part, and is further provided with a tube 7 at the lower end into which a seed crystal is placed. The lower end of the tube 7 is sealed (for example, by crushing) to prevent the seed crystal from falling. The crucible receiver 3 is a cylindrical body made of alumina, and the inner diameter 8 of the head is smaller than the outer diameter 9 of the crucible 2, so that the lower part 2A of the crucible is accommodated in the cylindrical body as shown in the figure. There is. The lower part of this crucible holder 3 is supported by a base 10, and this base 10 is connected to a drive mechanism 11.
Accordingly, the crucible holder 3 and the crucible 2 are connected to the furnace core tube 1.
I'm trying to move it up and down inside.

ブリツジマン法において、炉芯管1内に外部気
流を付与しない場合には破線特性5の如く坩堝表
面の温度分布が滑らかになるので、育成される単
結晶の結晶方向を変える確率は小さく望ましいの
であるが、Mn−Znフエライト単結晶を育成させ
る場合には酸素分圧が低下するので一定の組成比
のものを安定に製造することが難しい欠点があ
る。そこで、従来例では炉芯管1の下方から矢印
12で示す如く酸素ガスを付与して組成比の安定
なフエライトを得るようにしている。ところでこ
の酸素ガスが坩堝2の下部に当たるとその部分が
部分的に冷やされ図中の実線特性4で示すような
温度分布を呈するようになる。すなわち、図中の
A点とB点の間が冷たい酸素ガスによつて熱を奪
われ又B点とC点の間は坩堝受け具3で保温され
るので、B点付近で屈折点を有する滑らかでない
温度分布となる。従つて結晶育成過程で、B点の
部分が部分的に過冷却となり、種の結晶方向とは
違つた別の結晶が発生しやすくなる。
In the Bridgeman method, when no external airflow is applied to the furnace core tube 1, the temperature distribution on the crucible surface becomes smooth as shown by the broken line characteristic 5, so the probability of changing the crystal direction of the single crystal to be grown is small and desirable. However, when growing Mn--Zn ferrite single crystals, the oxygen partial pressure decreases, so there is a drawback that it is difficult to stably produce crystals with a constant composition ratio. Therefore, in the conventional example, oxygen gas is applied from below the furnace core tube 1 as shown by the arrow 12 to obtain ferrite with a stable composition ratio. By the way, when this oxygen gas hits the lower part of the crucible 2, that part is partially cooled and comes to exhibit a temperature distribution as shown by the solid line characteristic 4 in the figure. In other words, since heat is removed between points A and B in the figure by the cold oxygen gas, and heat is retained between points B and C by the crucible holder 3, there is an inflection point near point B. This results in an uneven temperature distribution. Therefore, during the crystal growth process, the portion at point B becomes partially supercooled, and another crystal that is different from the crystal direction of the seed is likely to be generated.

本考案はこの欠点に留意してなされたもので、
組成比の安定な結晶を育成すべく外部から気流を
付与してもそれによつて坩堝表面の温度分布の滑
らかさが擾乱され難い坩堝受け具を提供しようと
するものである。すなわち、本考案は下部が円錘
状に形成されている筒状の坩堝を支持するためこ
の円錘状下部を内接させる頭部を有する筒状の坩
堝受け具において、この頭部の下方域に配される
坩堝部分に対して気流を付与するためこの頭部の
近傍に透孔を設けていることを特長とする坩堝受
け具を提供しようとするものである。
The present invention was made with this drawback in mind.
It is an object of the present invention to provide a crucible holder in which the smoothness of the temperature distribution on the crucible surface is not easily disturbed even when airflow is applied from the outside in order to grow crystals with a stable composition ratio. That is, the present invention provides a cylindrical crucible holder having a head in which the conical lower part is inscribed in order to support a cylindrical crucible whose lower part is formed into a conical shape. It is an object of the present invention to provide a crucible holder characterized by having a through hole provided near the head of the crucible in order to provide airflow to the crucible portion placed in the crucible.

第2図は本考案の坩堝受け具を備える電気炉の
模型図を、坩堝表面の温度分布を併記して示すも
のである。図中坩堝受け具を除く他の構成要素は
第1図に示す対応図番の各構成と実質的に同じで
あるのでその説明を省略する。
FIG. 2 is a schematic diagram of an electric furnace equipped with the crucible holder of the present invention, together with the temperature distribution on the crucible surface. In the figure, the other components except for the crucible holder are substantially the same as those of the corresponding figures shown in FIG. 1, and therefore the explanation thereof will be omitted.

坩堝受け具20はアルミナ製の筒体であり、坩
堝2の円錘状部2Aを受ける頭部21と、この頭
部の近傍に配されこの坩堝受け具の内側の円錘状
部2Aにこの坩堝受け具の外側、下方から付与さ
れる気流を付与するための複数の透孔22とを備
え、下端部23は第1図のものと同様、基台10
を介して駆動機構11に連結されている。頭部2
1の内径24は坩堝2の外径9に比べて少しく小
さくなされており、また複数の透孔22に隣接す
るリブ25はある程度大きくされており何れも原
料を仕込んだ坩堝2を全重量を十分に支持しうる
ように設計されている。
The crucible holder 20 is a cylindrical body made of alumina, and includes a head 21 that receives the conical part 2A of the crucible 2, and a head 21 that is arranged near the head and that connects the conical part 2A inside the crucible holder. The crucible holder is provided with a plurality of through holes 22 for applying airflow from below on the outside, and the lower end 23 is connected to the base 10 as in FIG.
It is connected to the drive mechanism 11 via. head 2
The inner diameter 24 of the crucible 2 is made slightly smaller than the outer diameter 9 of the crucible 2, and the ribs 25 adjacent to the plurality of through holes 22 are enlarged to some extent, so that the entire weight of the crucible 2 filled with raw materials is sufficiently It is designed to be supported.

この坩堝受け具20に支持された坩堝2に原料
30を仕込んで、駆動機構11により坩堝2を炉
芯管1の下方から上昇させる。炉は図示位置にお
いて坩堝表面の温度分布が併記したようになるよ
うに発熱体(図示省略)をコントロールしてい
る。この位置は坩堝2の下端(パイプの上端)付
近に配置した熱電対(図示省略)がC点の温度
(原料の結晶化温度、例えば1620゜C)を検出し
て知ることができる。この位置において坩堝2内
の原料は全て溶融しており、駆動装置11によつ
て坩堝受け具20を所定のスピードで降下させる
ことによりパイプ7内の種の結晶の結晶方位に従
う結晶が育成される。この育成過程で、下方から
酸素ガスを流入させるがこの酸素ガスは坩堝受け
具20の内外の円錘状部2A,2Bにほゞ一様に
付与されるので第1図に示す如く坩堝表面の温度
分布の屈折点は生じないから上述の様なこの屈折
現象に基づく弊害が現われない(併記の温度分布
特性26参照)。
A raw material 30 is charged into the crucible 2 supported by the crucible holder 20, and the crucible 2 is raised from below the furnace core tube 1 by the drive mechanism 11. The furnace controls a heating element (not shown) so that the temperature distribution on the crucible surface becomes as shown in the figure. This position can be determined by detecting the temperature at point C (crystallization temperature of the raw material, for example 1620° C.) with a thermocouple (not shown) placed near the lower end of the crucible 2 (upper end of the pipe). At this position, all the raw materials in the crucible 2 are melted, and by lowering the crucible receiver 20 at a predetermined speed by the driving device 11, crystals that follow the crystal orientation of the seed crystal in the pipe 7 are grown. . During this growth process, oxygen gas is introduced from below, and this oxygen gas is applied almost uniformly to the inner and outer conical portions 2A and 2B of the crucible holder 20, so that the surface of the crucible is coated as shown in FIG. Since no refraction point of the temperature distribution occurs, the above-mentioned adverse effects due to this refraction phenomenon do not occur (see Temperature Distribution Characteristics 26 also included).

上述の様に本考案の坩堝受け具は形状の大きい
単結晶を育成するための坩堝をその下側から安定
に受ける一方、組成比の安定な単結晶を得るため
炉内に炉内温度に比べて低温の気体(フエライト
の場合酸素ガス)を流入させてもこの流体によつ
て坩堝表面の温度分布の急激な変化を生じさせな
いようにしたので、歩留りの良い単結晶を安定に
製造することができ実用的である。
As mentioned above, the crucible holder of the present invention stably receives the crucible from the bottom for growing large-sized single crystals, and at the same time, the temperature inside the furnace is higher than that in the furnace in order to obtain single crystals with a stable composition ratio. Even if low-temperature gas (oxygen gas in the case of ferrite) is introduced into the crucible, this fluid will not cause sudden changes in the temperature distribution on the crucible surface, making it possible to stably produce single crystals with a high yield. It is possible and practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の坩堝受け具を備える電気炉の模
型図を示し、第2図は本考案の坩堝受け具を備え
る電気炉の概略構成図を示す。 主な図番の説明2……坩堝、20……坩堝受け
具、21……頭部、22……透孔。
FIG. 1 shows a model diagram of an electric furnace equipped with a conventional crucible holder, and FIG. 2 shows a schematic configuration diagram of an electric furnace equipped with a crucible holder according to the present invention. Explanation of main drawing numbers 2... Crucible, 20... Crucible holder, 21... Head, 22... Through hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 炉芯管内で上下移動可能に配されると共に前記
炉芯管内で下方から上方に向けて流通する気流に
露される筒状坩堝の円形状に形成されている下部
を支持するため前記円錐状下部の比較的径小部を
内接させる頭部を有する筒状の坩堝受け具におい
て、前記頭部の下方域に配される坩堝部分に対し
て前記気流を付与するために前記頭部の近傍に軸
方向に沿つて複数の透孔を設けていることを特徴
とする坩堝受け具。
The conical lower part is arranged to be movable up and down in the furnace core tube and is for supporting the circularly formed lower part of the cylindrical crucible which is exposed to the airflow flowing from the bottom to the top in the furnace core tube. In a cylindrical crucible receiver having a head in which a relatively small-diameter portion of A crucible holder characterized by having a plurality of through holes provided along the axial direction.
JP3421982U 1982-03-10 1982-03-10 Crucible holder Granted JPS58140177U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3421982U JPS58140177U (en) 1982-03-10 1982-03-10 Crucible holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3421982U JPS58140177U (en) 1982-03-10 1982-03-10 Crucible holder

Publications (2)

Publication Number Publication Date
JPS58140177U JPS58140177U (en) 1983-09-21
JPS623406Y2 true JPS623406Y2 (en) 1987-01-26

Family

ID=30045721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3421982U Granted JPS58140177U (en) 1982-03-10 1982-03-10 Crucible holder

Country Status (1)

Country Link
JP (1) JPS58140177U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821623B2 (en) * 2006-09-15 2011-11-24 日立化成工業株式会社 Single crystal growth crucible and fluoride crystal grown by this crucible

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852292Y2 (en) * 1979-03-20 1983-11-29 三洋電機株式会社 crucible support

Also Published As

Publication number Publication date
JPS58140177U (en) 1983-09-21

Similar Documents

Publication Publication Date Title
US9822466B2 (en) Crystal growing systems and crucibles for enhancing heat transfer to a melt
GB1589491A (en) Apparatus for growing single crystals from melt with additional feeding of comminuted charge
JPS5826097A (en) Tubular crystal member growth device
JPS623406Y2 (en)
JPH08175896A (en) Method and device for producing single crystal
JPS62167284A (en) Method and device for producing single crystal by bridgman technique
JPH07187880A (en) Production of oxide single crystal
US3567397A (en) Apparatus for obtaining a dross-free crystalline growth melt
JPS62148390A (en) Method for growing single crystal
JP2721242B2 (en) Silicon single crystal pulling method
JP3039724B2 (en) Single crystal manufacturing equipment
JPS5537460A (en) Structure of crucible
JP2543828Y2 (en) Single crystal manufacturing equipment
JPS6321576Y2 (en)
CN211036181U (en) Single crystal furnace with guide type pulling mechanism
JPH11189487A (en) Production apparatus for oxide single crystal
JPS5852292Y2 (en) crucible support
JPH0210129Y2 (en)
JPH01290583A (en) Method for growing germanium single crystal
KR19990083018A (en) Method for porducing silicon single crystal
JPS5815499Y2 (en) Structure of crucible support
JPS62288193A (en) Method for pulling up single crystal
JPH024126Y2 (en)
JPS63285183A (en) Production of compound semiconductor single crystal
JPH0733583A (en) Apparatus for growing semiconductor single crystal