JPS62288193A - Method for pulling up single crystal - Google Patents

Method for pulling up single crystal

Info

Publication number
JPS62288193A
JPS62288193A JP13242086A JP13242086A JPS62288193A JP S62288193 A JPS62288193 A JP S62288193A JP 13242086 A JP13242086 A JP 13242086A JP 13242086 A JP13242086 A JP 13242086A JP S62288193 A JPS62288193 A JP S62288193A
Authority
JP
Japan
Prior art keywords
crystal
melt
pulling
single crystal
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13242086A
Other languages
Japanese (ja)
Other versions
JPH0699228B2 (en
Inventor
Toshihiro Kotani
敏弘 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13242086A priority Critical patent/JPH0699228B2/en
Publication of JPS62288193A publication Critical patent/JPS62288193A/en
Publication of JPH0699228B2 publication Critical patent/JPH0699228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce high-quality single crystal having any diameter, by growing single crystal on seed crystal from a molded article partially immersed in raw material melt put in a crucible and forming a supercooled zone suitable for growth process. CONSTITUTION:Raw material melt is put in a crucible which is rising while being rotated through a supporting shaft. A molded article partially immersed in the melt is fixed by a bearer. The molded article has a small opening at the center and the part immersed in the melt consists of a slant side wall extending upward. Seed crystal is immersed in a supercooled zone of the melt in the molded article to attach crystal to the seed crystal, the seed crystal is pulled up, a shoulder part, a straight barrel part and a tail part of the growing single crystal are successively formed. In the above-mentioned single crystal pulling method, the crystal is pulled up while keeping the correlation shown by the formula S1<=S4<=S3<S2 when the relative velocity of the molded article based on the crucible is S1 in seeding process, S2 in shoulder forming process, S3 in straight barrel forming process and S4 in a tail forming process. Consequently, a proper supercooled zone is made corresponding to the diameter of formed single crystal to prevent dendrite formation.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は単結晶の引上方法に関し、特に、GaAs、 
Gap、 InP  などのI−V族化合物半導体単結
晶、CdTe、 ZnTe  などのII−Vl族化合
物半導体単結晶、Si、Ge  なとの半導体単結晶、
及びB1.2SiO2o、 LiNbO5,GdsGa
sOtgなどの酸化物単結晶を成形体内の原料融液より
引上げる方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for pulling single crystals, particularly GaAs,
Group IV compound semiconductor single crystals such as Gap and InP, II-Vl group compound semiconductor single crystals such as CdTe and ZnTe, semiconductor single crystals such as Si and Ge,
and B1.2SiO2o, LiNbO5, GdsGa
This invention relates to a method for pulling an oxide single crystal such as sOtg from a raw material melt in a molded body.

(従来の技術) 原料融液中に成形体を配置し、成形体中央の小開口から
誘引した融液に種結晶を浸してこれを引上げる、従来の
単結晶引上法は例えば、特開昭57−188500号公
報、特公昭57−45712  号公報、特開昭58−
15097  号公報、特開昭第57−789’1号公
報など、いずれも成形体を融液上に浮かべたものであり
、成形体の内外で常に液面が等しい状態で結晶を引上げ
ていた。即ち、種付は工程や肩部形成工程においても、
直胴部形成工程においても、成形体を特に移動すること
がなかった。
(Prior art) The conventional single crystal pulling method, in which a molded body is placed in a raw material melt and a seed crystal is immersed in the melt drawn through a small opening in the center of the molded body and pulled up, is described in, for example, Japanese Patent Publication No. Publication No. 188500/1982, Japanese Patent Publication No. 45712/1983, Japanese Patent Application Publication No. 58/1982
No. 15097, Japanese Unexamined Patent Publication No. 57-789'1, etc., both have a molded body floating on a melt, and the crystals are pulled up while the liquid level is always equal inside and outside the molded body. In other words, even in the seeding process and shoulder forming process,
There was no particular movement of the molded body during the process of forming the straight body part.

一方、原料融液はルツボの周囲から加熱されるので、成
形体を用いる場合には成形体内の融液が成形体の外側よ
り融液温度が低くなり、結晶の固液界面で過冷却状態が
形成される。特に、種付は工程や肩部形成工程において
成形体内の過冷却領域が広いときにはデンドライト成長
が起こり易く、また過冷却領域を狭くするためには成形
体の開口部の大きさを小さくしなければならず、その結
果引上げ結晶の外径も小さくなるという欠点があつ・た
On the other hand, since the raw material melt is heated from around the crucible, when a molded body is used, the melt temperature inside the molded body is lower than that outside the molded body, and a supercooled state occurs at the solid-liquid interface of the crystal. It is formed. In particular, dendrite growth is likely to occur when the supercooled region within the compact is large during the seeding process or shoulder forming process, and in order to narrow the supercooled region, the size of the opening in the compact must be made small. However, as a result, the outer diameter of the pulled crystal becomes smaller.

(発明が解決しようとする問題点〕 本発明は従来の成形体を用いる単結晶引上方法の欠点を
解消し、引上方法の各工程に適した過冷却領域を任意に
形成することにより、デンドライト成長を防止し、引上
結晶の直径制御を確実にし、高品質の単結晶の製造を可
能とした単結晶の引上方法を提供しようとするものであ
る。
(Problems to be Solved by the Invention) The present invention solves the drawbacks of the conventional single crystal pulling method using a compact, and by arbitrarily forming a supercooled region suitable for each step of the pulling method, The present invention aims to provide a single crystal pulling method that prevents dendrite growth, ensures diameter control of the pulled crystal, and enables production of high quality single crystals.

(問題点を解決するための手段) 本発明は少なくとも融液に浸漬する部分が上方に広がっ
た傾斜側壁を有し、中央部に小開口部を有する成形体を
原料融液上に配置し、該成形体内の融液に種結晶を浸し
て種付けをする工程と、種結晶を引上げながら結晶直径
を増大させる肩部形成工程と、所定の直径を保ちながら
結晶を引上げる直胴部形成工程と、直径を減少させなが
ら尾部を形成する工程とからなる単結晶引上方法におい
て、原料融液収容ルツボに対する前記成形体の相対移動
速度を種付は工程時Sl、肩部形成工程時S2、直胴部
形成工程時S3、尾部形成工程時S4  として、Sl
≦54≦53<52 2関係を保ち結晶を引上げること
を特徴とする単結晶の引上方法である。
(Means for Solving the Problems) The present invention provides a molded body having at least a portion immersed in the melt having an upwardly extending inclined side wall and having a small opening in the center, disposed on the raw material melt, A step of immersing a seed crystal in the melt inside the molded body for seeding, a shoulder forming step of increasing the crystal diameter while pulling the seed crystal, and a straight body forming step of pulling the crystal while maintaining a predetermined diameter. In a single crystal pulling method comprising a step of forming a tail while decreasing the diameter, the relative movement speed of the compact with respect to the crucible containing the raw material melt is set at Sl during the seeding process, S2 during the shoulder forming process, and directly during the seeding process. As S3 during the trunk forming process and S4 during the tail forming process, Sl
This is a single crystal pulling method characterized by pulling a crystal while maintaining the following relationship: ≦54≦53<52.

(作 用) 第1図は本発明を実施するための単結晶引上装置の概念
図である。ルツボには原料融液とその上に封止剤(Bg
Os )を収容し、ルツボの周囲には原料を溶融するヒ
ーターとさらに外側に断熱材を配置する。先端に小開口
を有する逆円錐状の成形体を原料融液中に浸し、成形体
の内側に原料融液表面を保つ。第2図に成形体を示す。
(Function) FIG. 1 is a conceptual diagram of a single crystal pulling apparatus for carrying out the present invention. The crucible contains a raw material melt and a sealant (Bg
A heater for melting the raw material is placed around the crucible, and a heat insulating material is placed outside the crucible. An inverted cone-shaped molded body with a small opening at the tip is immersed in the raw material melt, and the surface of the raw material melt is maintained inside the molded body. Figure 2 shows the molded body.

第2図(4)は成形体の斜視図、第2図03)は断面図
である。成形体の直胴部の内径は70〜80惧1直胴部
の高さはlO〜30B1小開口部の直径はJ〜30−1
逆円錐形部の高さは10〜20B程度の大きさであるが
、直胴部は必ずしも必要としない。この成形体は第1図
では支持体を介して断熱材に固定しているが、他に固定
することもできるし、成形体に上下移動手段を付設する
こともτきる。ルツボは支持体により徐々に上昇させ、
必要に応じて回転を加えて、原料融液を所定温度に保つ
ようにヒーターとの位置関係を維持する。また、引上軸
の先端には種結晶が固定されており該種結晶を前記成形
体内の過冷却原料融液に十分浸した後に徐々に回転しな
がら引上げる。第3図は引上げの各工程における融液と
成形体、引上結晶の状況を示したもので、第3図囚は種
付は工程であり、成形体内外の融液の液面高さの違いが
8〜12執であり、第3図(B)は肩部形成工程で成形
体の相対移動速度が最も大きな値を示す時であり、液面
高さの違いは10〜13Bである。第3図(C)は直胴
部形成工程で液面高さの違いは12〜16間、第3図(
D)は尾部形成工程で液面高さの違いはlO〜13tm
である。この成形体内外の液面高さの違いは成形体の形
状及び開口部の大きさにより変化するが、8鵡以上の差
ができる。
FIG. 2 (4) is a perspective view of the molded body, and FIG. 2 (03) is a sectional view. The inner diameter of the straight body part of the molded body is 70~80mm.1 The height of the straight body part is 1O~30B1.The diameter of the small opening is J~30-1.
The height of the inverted conical portion is approximately 10 to 20 B, but the straight body portion is not necessarily required. Although this molded body is fixed to the heat insulating material via a support in FIG. 1, it can also be fixed in other ways, or a vertical moving means may be attached to the molded body. The crucible is gradually raised by a support,
Rotation is applied as necessary to maintain the positional relationship with the heater so as to maintain the raw material melt at a predetermined temperature. Further, a seed crystal is fixed to the tip of the pulling shaft, and after the seed crystal is fully immersed in the supercooled raw material melt in the molded body, it is gradually pulled up while rotating. Figure 3 shows the state of the melt, compact, and pulled crystals in each pulling process. Figure 3 shows that seeding is a process, and the height of the melt level inside and outside the compact is shown in Figure 3. The difference is 8 to 12 degrees, and FIG. 3(B) shows the time when the relative movement speed of the molded body shows the largest value in the shoulder forming process, and the difference in liquid level height is 10 to 13 degrees. Figure 3 (C) shows the straight body part forming process, and the difference in liquid level height is between 12 and 16.
D) is the tail forming process, and the difference in liquid level height is 10~13tm.
It is. The difference in liquid level height inside and outside the molded body varies depending on the shape of the molded body and the size of the opening, but there can be a difference of 8 cm or more.

このように、成形体の外側は熱い融液が取り囲むのに対
し、外側の液面より低い位置で結晶成長を行なうので、
成形体内の温度分布は成形体器壁温度が最も高くなり、
引上結晶の保温性がよくなる。また、成形体器壁温度が
最も高いことから、結晶と成形体の固着や成形体器壁か
らの成長核発生を防止することができ、結晶成長を円滑
に行なうことができる。
In this way, while the outside of the molded body is surrounded by hot melt, crystal growth occurs at a position lower than the outside liquid level.
The temperature distribution inside the compact is highest at the wall temperature of the compact,
Improves the heat retention of the pulled crystal. Furthermore, since the temperature of the wall of the molded body is the highest, it is possible to prevent the crystals from sticking to the molded body and to prevent the generation of growth nuclei from the wall of the molded body, allowing smooth crystal growth.

次に、第4図及び第5図に引上げの各工程との関連で、
引上結晶の長さに対して成形体の相対移動速度の変化及
び成形体内の原料融液表面の直径の変化の関係を示す。
Next, Figures 4 and 5 show the following in relation to each pulling process.
The relationship between the length of the pulled crystal, the change in the relative moving speed of the molded body, and the change in the diameter of the surface of the raw material melt inside the molded body is shown.

この関係をもとに引上工程を順に説明する。The pulling process will be explained in order based on this relationship.

成形体内に導入された融液は過冷却融液部を形成し、そ
の上部で結晶化し、引き上げられる。種付は時に、この
過冷却融液部の断面積が大であると、結晶は種結晶の外
径から、急激に成長する。
The melt introduced into the molded body forms a supercooled melt section, crystallizes in the upper part, and is pulled up. When seeding occurs, when the cross-sectional area of this supercooled melt portion is large, crystals grow rapidly from the outer diameter of the seed crystal.

その外径は過冷却融液部の断面積に依存する。著しい時
はデンドライト成長を起こし多結晶化する。
Its outer diameter depends on the cross-sectional area of the supercooled melt section. In severe cases, dendrite growth occurs and becomes polycrystalline.

従って、種付は時は、上記過冷却融液部の断面積を小さ
く好ましくは、種結晶と同程度の直径を有する程度にす
る。次に、肩部形成時においては、上記成形体をルツボ
に対して相対的に移動させ徐々に融液内に浸漬させてい
く。この移動速度は、ルツボの融液低下速度より大であ
り、かつ、成形体は上部に広がったテーパ状の形状をも
つため、成形体内に形成される過冷却融液部の断面積は
結晶の引き上げに伴なって徐々に増大し、その結果、引
き上げられた結晶の外径も徐々に増加する。これにより
肩部が形成される。結晶外径が所望の値に達した時点で
成形体の相対移動速度をルツボ内の融液の液面低下速度
と等しくして、成形体内に形成される過冷却融液部の断
面積を一定とし、これによって規制される結晶外径も一
定となり直胴部が形成される。次に、相対移動速度をこ
れより低下させて結晶径を徐々に小さくし尾部を形成す
る。
Therefore, during seeding, the cross-sectional area of the supercooled melt portion is made small, preferably to the extent that it has a diameter comparable to that of the seed crystal. Next, when forming the shoulder, the molded body is moved relative to the crucible and gradually immersed in the melt. This moving speed is higher than the rate at which the melt drops in the crucible, and since the molded body has a tapered shape that widens at the top, the cross-sectional area of the supercooled melt part formed inside the molded body is smaller than that of the crystal. It gradually increases as the crystal is pulled, and as a result, the outer diameter of the pulled crystal also gradually increases. This forms a shoulder. When the outer diameter of the crystal reaches the desired value, the relative movement speed of the molded body is made equal to the drop rate of the melt level in the crucible, and the cross-sectional area of the supercooled melt part formed inside the molded body is kept constant. The outer diameter of the crystal, which is regulated by this, is also constant, and a straight body portion is formed. Next, the relative movement speed is lowered to gradually reduce the crystal diameter and form a tail.

すなわち、引上げ結晶の外径は成形体内に形成される過
冷却融液部の断面積に規制されており、これをテーバ状
成形体を使用して、種付は時、肩部形成時、直胴部形成
時、尾部形成時で相対移動速度を変化させることにより
制御して、デンドライト成長のない、径変動の少ない高
品質の単結晶を得ることができる。
In other words, the outer diameter of the pulled crystal is regulated by the cross-sectional area of the supercooled melt formed inside the compact, and when using a tapered compact, seeding is carried out at the same time, shoulder formation is performed, and straight. By controlling the relative movement speed by changing the relative movement speed during the formation of the trunk and the tail, it is possible to obtain a high-quality single crystal without dendrite growth and with little variation in diameter.

(実施例1) LEC法(液体封止チョクラルスキ法)により<111
>方向のGaAs  単結晶の引き上げを実施しな。4
インチ石英ルツボにGaAs  原料1.5KFをチャ
ージし、封止剤としてB2011  を240P使用し
成形体は第2図のものを使用した。温度分布は縦方向の
温度勾配を10℃/ホ、径方向温度勾配を1℃/ cy
nとした。成形体の相対移動速度は種付は時0既/H1
肩部形成時1.8a/H,直胴部形成時1.25M/H
,尾部形成時0.5肱/Hとし、引上げ速度を5IuL
/Hとした。結晶は直胴部外径50既でデンドライト成
長がなく径変動の少ないものが得られた。
(Example 1) <111 by LEC method (liquid encapsulation Czochralski method)
> direction of GaAs single crystal pulling. 4
An inch quartz crucible was charged with 1.5KF of GaAs raw material, 240P of B2011 was used as a sealant, and the molded body shown in FIG. 2 was used. The temperature distribution has a longitudinal temperature gradient of 10°C/cy and a radial temperature gradient of 1°C/cy.
It was set as n. The relative movement speed of the molded body is 0/H1 for seeding.
1.8a/H when forming the shoulder part, 1.25M/H when forming the straight body part
, the tail was formed at 0.5 elbow/H, and the pulling rate was 5 IuL.
/H. The crystal had an outer diameter of 50 mm, no dendrite growth, and little variation in diameter.

増大と減少が繰り返して発生した。Increases and decreases occurred repeatedly.

(実施例2) LEC法によりZnTe  単結晶の引き上げを実施し
た。4インチ径石英るつぼにZnTe  原料を1.4
に、チャージ、封止剤としてB2O3を2401使用し
た。成形体は実施例1と同じ形状のものを使用し゛た。
(Example 2) A ZnTe single crystal was pulled by the LEC method. 1.4 ml of ZnTe raw material in a 4-inch diameter quartz crucible
In this case, B2O3 was used as a charge and a sealant. A molded article having the same shape as in Example 1 was used.

縦方向温度分布は100℃/cfn1径方向温度分布は
lO℃/c1n とした。成形体の移動速度は種付は時
0.2B/H,肩部形成時1.2mx/H,直胴部形成
時0.6IuL/H1尾部形成時0.3題/Hで引き上
げ速度をBat/Hとした。得られた結晶はプントラン
ト成長なく直胴部直径40amm、長さく3Qmで粒界
数個を含む程度の・良質の結晶であった。
The temperature distribution in the longitudinal direction was 100° C./cfn1, and the temperature distribution in the radial direction was 10° C./c1n. The moving speed of the molded body was 0.2 IuL/H for seeding, 1.2 mx/H for shoulder formation, 0.6 IuL/H for straight body formation, 0.3 mx/H for tail formation, and the pulling speed was Bat. /H. The obtained crystal had a straight body diameter of 40 am, a length of 3 Qm, and was of good quality, containing several grain boundaries, without Puntrian growth.

成形体を上記のように積極的に移動させないときには種
付は直後からデンドライトが発生し、または引上中に結
晶が融液から切断され安定な結晶引上げは不可能であつ
な。
If the compact is not actively moved as described above, dendrites will occur immediately after seeding, or crystals will be cut from the melt during pulling, making stable crystal pulling impossible.

(発明の効果) 本発明は上記構成を採用することによって、引上法の各
工程に適応した過冷却領域を形成することにより、単結
晶の肩部形成、直胴部形成の制御が容易にな゛す、デン
ドライト成長を含まない高品質の単結晶を引上げること
ができた。
(Effects of the Invention) By adopting the above configuration, the present invention forms a supercooled region suitable for each step of the pulling method, thereby easily controlling the formation of the shoulder and straight body of a single crystal. In addition, we were able to pull a high-quality single crystal that does not contain dendrite growth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための引上装置の全体図、第
2図(4)(B)は第1図装置で使用する成形体の斜視
図と断面図、第3図(4)〜(9)は引上法の各工程に
おける成形体の融液と引上結晶の関係を示した拡大図、
第4図は引上結晶長さと成形体の相対移動速度の関係を
示した図、第5図は引上結晶長さと成形体内の原料融液
表面直径の変化の関係を示した図である。 第1図 (A)       第2図 −イ釡か1蒙宝−N匁 一イ帽かむ、置各4S鴫嶋
Fig. 1 is an overall view of a pulling device for carrying out the present invention, Fig. 2 (4) and (B) are perspective views and cross-sectional views of a molded body used in the device shown in Fig. 1, and Fig. 3 (4). - (9) are enlarged views showing the relationship between the melt of the compact and the pulled crystals in each step of the pulling method;
FIG. 4 is a diagram showing the relationship between the pulled crystal length and the relative moving speed of the molded body, and FIG. 5 is a diagram showing the relationship between the pulled crystal length and the change in the surface diameter of the raw material melt in the molded body. Fig. 1 (A) Fig. 2 - I pot or 1 Monho - N Momme I cap, each 4S Shizushima

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも融液に浸漬する部分が上方に広がつた
傾斜側壁を有し、中央部に小開口部を有する成形体を原
料融液上に配置し、該成形体内の融液に種結晶を浸して
種付けをする工程と、種結晶を引上げながら結晶直径を
増大させる肩部形成工程と、所定の直径を保ちながら結
晶を引上げる直胴部形成工程と、直径を減少させながら
尾部を形成する工程とからなる単結晶引上方法において
、原料融液収容ルツボに対する前記成形体の相対移動速
度を種付け工程時S_1、肩部形成工程時S_2、直胴
部形成工程時S_3、尾部形成工程時S_4として、S
_1≦S_4≦S_3<S_2の関係を保ち結晶を引上
げることを特徴とする単結晶の引上方法。
(1) A molded body having sloped side walls with at least the part immersed in the melt expanding upward and a small opening in the center is placed on the raw material melt, and the melt in the molded body is seeded with seed crystals. a shoulder formation process that increases the crystal diameter while pulling the seed crystal; a straight body formation process that pulls the crystal while maintaining a predetermined diameter; and a tail formation process that reduces the diameter. In the single crystal pulling method, the relative movement speed of the compact with respect to the crucible containing the raw material melt is set at S_1 during the seeding process, S_2 during the shoulder forming process, S_3 during the straight body forming process, and S_3 during the tail forming process. As S_4, S
A single crystal pulling method characterized by pulling the crystal while maintaining the relationship _1≦S_4≦S_3<S_2.
(2)肩部形成工程時の成形体の相対移動速度S_2を
結晶引上げに伴なうルツボ内融液の液面低下速度より大
きくし、直胴部形成工程時の相対移動速度S_3を前記
液面低下速度とほぼ等しくし、尾部形成工程時の相対移
動速度S_4を前記液面低下速度より小さくすることを
特徴とする特許請求の範囲第(1)項記載の単結晶の引
上方法。
(2) The relative movement speed S_2 of the molded body during the shoulder forming process is set to be higher than the liquid level drop rate of the melt in the crucible accompanying crystal pulling, and the relative movement speed S_3 during the straight body forming process is set to The method for pulling a single crystal according to claim 1, wherein the relative movement speed S_4 during the tail forming step is set to be approximately equal to the surface lowering speed and smaller than the liquid level lowering speed.
(3)原料融液の表面に液体封止剤を配してチョクラル
スキ法により結晶を引上げることを特徴とする特許請求
の範囲第(1)項又は第(2)項記載の単結晶の引上方
法。
(3) Pulling a single crystal according to claim 1 or 2, characterized in that a liquid sealant is disposed on the surface of the raw material melt and the crystal is pulled by the Czochralski method. Upper method.
JP13242086A 1986-06-06 1986-06-06 Single crystal pulling method Expired - Lifetime JPH0699228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13242086A JPH0699228B2 (en) 1986-06-06 1986-06-06 Single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13242086A JPH0699228B2 (en) 1986-06-06 1986-06-06 Single crystal pulling method

Publications (2)

Publication Number Publication Date
JPS62288193A true JPS62288193A (en) 1987-12-15
JPH0699228B2 JPH0699228B2 (en) 1994-12-07

Family

ID=15080959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13242086A Expired - Lifetime JPH0699228B2 (en) 1986-06-06 1986-06-06 Single crystal pulling method

Country Status (1)

Country Link
JP (1) JPH0699228B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292487A (en) * 1991-04-16 1994-03-08 Sumitomo Electric Industries, Ltd. Czochralski method using a member for intercepting radiation from raw material molten solution and apparatus therefor
WO2003068696A1 (en) * 2002-02-13 2003-08-21 Nikko Materials Co., Ltd. Production method for compound semiconductor single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292487A (en) * 1991-04-16 1994-03-08 Sumitomo Electric Industries, Ltd. Czochralski method using a member for intercepting radiation from raw material molten solution and apparatus therefor
US5429067A (en) * 1991-04-16 1995-07-04 Sumitomo Electric Industries, Ltd. Czochralski method using a member for intercepting radiation from a raw material molten solution
WO2003068696A1 (en) * 2002-02-13 2003-08-21 Nikko Materials Co., Ltd. Production method for compound semiconductor single crystal
US7229494B2 (en) 2002-02-13 2007-06-12 Nippon Mining & Metals Co., Ltd. Production method for compound semiconductor single crystal

Also Published As

Publication number Publication date
JPH0699228B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
US4894206A (en) Crystal pulling apparatus
JPS6046993A (en) Device for pulling up single crystal
JPH076972A (en) Growth method and device of silicon single crystal
JPS62288193A (en) Method for pulling up single crystal
US5379717A (en) Method of growing single crystal of compound semiconductors
US5683504A (en) Growth of silicon single crystal
JPS62167284A (en) Method and device for producing single crystal by bridgman technique
JPS6136192A (en) Crucible for producing single crystal
JP3885245B2 (en) Single crystal pulling method
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2833432B2 (en) Silicon single crystal growth method
JPH01294592A (en) Growth of single crystal
JPS644998B2 (en)
JPS63215594A (en) Growth of crystal by double crucible
JPS6012318B2 (en) Single crystal pulling method and device
JPH10279382A (en) Production of signal crystal
JPS63295498A (en) Production of single-crystal of group iii-v compound semiconductor
JPH09227278A (en) Method for growing single crystal
JP3018429B2 (en) Method and apparatus for producing single crystal
JPH03261694A (en) Pull method for single crystal and system therefor
JPS5983994A (en) Preparation of single crystal
JPH01167295A (en) Crucible for growing single crystal of compound semiconductor
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPH02160689A (en) Apparatus for producing single crystal