JPS6233959Y2 - - Google Patents

Info

Publication number
JPS6233959Y2
JPS6233959Y2 JP4589382U JP4589382U JPS6233959Y2 JP S6233959 Y2 JPS6233959 Y2 JP S6233959Y2 JP 4589382 U JP4589382 U JP 4589382U JP 4589382 U JP4589382 U JP 4589382U JP S6233959 Y2 JPS6233959 Y2 JP S6233959Y2
Authority
JP
Japan
Prior art keywords
pressure
exhaust
compressor
intake
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4589382U
Other languages
Japanese (ja)
Other versions
JPS58148226U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4589382U priority Critical patent/JPS58148226U/en
Publication of JPS58148226U publication Critical patent/JPS58148226U/en
Application granted granted Critical
Publication of JPS6233959Y2 publication Critical patent/JPS6233959Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は排気ターボ過給機付内燃機関に係り、
特に内燃機関の低負荷運転時に排気をタービンか
ら迂回させて無過給状態とするに際して、その軸
受部から負圧状態にある吸気系側に潤滑油が漏洩
するのを防止できる排気ターボ過給機を備えた内
燃機関に関するものである。
[Detailed description of the invention] [Technical field of the invention] The invention relates to an internal combustion engine with an exhaust turbo supercharger,
In particular, an exhaust turbo supercharger that prevents lubricating oil from leaking from the bearing part to the intake system side, which is in a negative pressure state, when the exhaust gas is detoured from the turbine to create a non-supercharging state during low-load operation of the internal combustion engine. The invention relates to an internal combustion engine equipped with a

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般にデイーゼル機関にあつては、低負荷運転
時でも高負荷運転時でも、シリンダ内に吸入され
る空気量は略一定であり、その出力制御は燃料噴
射量によつて行なわれている。従つて、逆にその
機関の最大出力は、吸入され得る空気量により燃
焼し得る燃料の量が制限を受けることに基づい
て、決定されることになる。
In general, in a diesel engine, the amount of air taken into the cylinder is approximately constant during both low-load and high-load operation, and its output is controlled by the fuel injection amount. Therefore, conversely, the maximum output of the engine is determined based on the fact that the amount of fuel that can be combusted is limited by the amount of air that can be taken in.

他方、排気ターボ過給機は、主に内燃機関の吸
気系に設けられるコンプレツサと、その排気系に
設けられるタービンと、これらタービンとコンプ
レツサとを同軸で駆動すべく連結する駆動軸と、
この駆動軸を潤滑しつつ軸受する軸受部とから構
成され、排気によつて駆動されるタービンが駆動
軸を介してコンプレツサを駆動し、吸気を加圧し
て内燃機関に供給(過給)する機能を有してい
る。
On the other hand, an exhaust turbo supercharger mainly includes a compressor provided in the intake system of an internal combustion engine, a turbine provided in the exhaust system, and a drive shaft that connects these turbines and the compressor to drive them coaxially.
A turbine driven by exhaust gas drives a compressor via the drive shaft, pressurizes intake air, and supplies it to the internal combustion engine (supercharging). have.

このような排気ターボ過給機を、デイーゼル機
関の吸・排気系に介設して過給を行なうことは、
排気のエネルギによつてシリンダ内に充填される
空気量を増加させ、その増加量分だけ燃焼し得る
燃料を付加できることにより、機関の出力向上を
達成できることに他ならない。
Installing such an exhaust turbo supercharger in the intake/exhaust system of a diesel engine to perform supercharging,
By increasing the amount of air filled into the cylinder using the energy of the exhaust gas and adding fuel that can be combusted by the increased amount, it is possible to improve the output of the engine.

ところが、デイーゼル機関は低・中負荷運転域
にあつては、噴射される燃料の量に比して空気量
が過剰となつている。このため、このような低・
中負荷運転域において過給することは、徒にフリ
クシヨンを増大させ燃費を悪化させるに過ぎな
い。
However, in a diesel engine in a low/medium load operating range, the amount of air is excessive compared to the amount of fuel injected. For this reason, such low
Supercharging in a medium load operating range will only unnecessarily increase friction and worsen fuel efficiency.

このようなデイーゼル機関の特性に鑑み、従来
低・中負荷運転時には、排気ターボ過給機全体の
機能を停止すべく内燃機関の排気をタービンから
迂回させてコンプレツサの機能をキヤンセルさ
せ、無過給状態、即ちピストンの吸引力によつて
のみ吸気して機関を運転するように構成したもの
が知られている。しかし、このような無過給状態
にあつては、内燃機関の吸気作用によつて、コン
プレツサ周辺を含む吸気系全体が大きな負圧状態
におかれると共に、他方排気系のタービン周辺
は、内燃機関の排圧によつて、大気圧より比較的
高い正圧状態にあるため、これらタービンとコン
プレツサとの間に位置する軸受部内に圧力差を生
じ、吸気系側から大きな負圧吸引力が作用するこ
とになる。この軸受部内には、駆動軸を潤滑すべ
く供給される潤滑油が充満しており、その油洩れ
を抑止すべく堅牢なシールが施されているが、そ
れにも拘らず無過給状態の負圧吸引力及び上記圧
力差によつて潤滑油が吸気系側に漏洩してしまう
問題があつた。これに対処すべく、無過給時の給
油量を調節することが考えられるが、単に給油を
停止するのでは、コンプレツサのキヤンセル状態
でも駆動軸が少量の排気ガスを受けるタービンに
より回転されており、他方微量でも継続して給油
するのでは油洩れを生じさせる可能性があり、ま
た瞬時に回転を上昇する過給運転への移行時に軸
受部の焼き付きを誘発するため複雑な給油調節装
置を必要とし困難であつた。
Considering these characteristics of diesel engines, conventionally, during low to medium load operation, the exhaust gas of the internal combustion engine is bypassed from the turbine and the compressor function is canceled to stop the entire function of the exhaust turbo supercharger, and the function of the compressor is canceled. It is known that the engine is operated by drawing air only by the suction force of the piston. However, in such a non-supercharging state, the entire intake system including the area around the compressor is placed in a large negative pressure state due to the intake action of the internal combustion engine, while the area around the turbine in the exhaust system is Due to the exhaust pressure of the engine, the pressure is relatively higher than atmospheric pressure, which creates a pressure difference in the bearings located between the turbine and the compressor, and a large negative pressure suction force acts from the intake system side. It turns out. The inside of this bearing is filled with lubricating oil supplied to lubricate the drive shaft, and a strong seal is applied to prevent oil leakage. There was a problem in that the lubricating oil leaked to the intake system side due to the pressure suction force and the above-mentioned pressure difference. In order to deal with this, it is possible to adjust the amount of oil supplied during non-supercharging, but simply stopping the supply of oil means that even when the compressor is cancelled, the drive shaft is rotated by the turbine that receives a small amount of exhaust gas. On the other hand, if oil is supplied continuously even in a small amount, there is a possibility of oil leakage, and a complicated oil supply adjustment device is required as it may cause seizing of the bearing when transitioning to supercharging operation where the rotation speed increases instantly. It was difficult to do so.

また、無過給状態とすべく排気ターボ過給機を
完全に停止させてしまうと、内燃機関が高負荷運
転に移行したことで瞬時に過給しようとしても、
直ぐにはコンプレツサの回転が上昇せずその起動
応答性を劣化させ、スムーズな出力上昇を得られ
ない問題があつた。また、吸気をコンプレツサか
らバイパスさせる無過給時には、コンプレツサが
無負荷状態となるため排気ターボ過給機がオーバ
ー・ランしサージングを生ずる虞れがあつた。尚
関連する技術として、「過給機関」(実開昭57−26
号公報)が提案されている。
In addition, if the exhaust turbo supercharger is completely stopped to achieve a non-supercharging state, even if the internal combustion engine shifts to high-load operation and attempts to supercharge instantly,
There was a problem in that the rotation of the compressor did not increase immediately and its starting response deteriorated, making it impossible to obtain a smooth increase in output. Furthermore, when there is no supercharging in which intake air is bypassed from the compressor, the compressor is in a no-load state, so there is a risk that the exhaust turbo supercharger will overrun and cause surging. As a related technology, "supercharging engine"
No. 2) has been proposed.

〔考案の目的〕[Purpose of invention]

本考案は、上述した如き従来の問題点に鑑み、
これを一挙に且つ有効に解決すべく創案されたも
のである。
The present invention has been developed in view of the conventional problems as mentioned above.
It was devised to solve these problems all at once and effectively.

本考案の目的は、内燃機関の低・中負荷運転時
に排気をタービンから迂回させて無過給状態とす
るに際して、その軸受部から負圧状態にある吸気
系側に潤滑油が漏洩するのを防止できると共に、
コンプレツサのサージングを防止し得る排気ター
ボ過給機付内燃機関を提供することにある。
The purpose of this invention is to prevent lubricating oil from leaking from the bearing part into the intake system, which is in a negative pressure state, when the internal combustion engine is operated at low to medium loads and the exhaust gas is detoured from the turbine to create a non-supercharging state. It can be prevented and
An object of the present invention is to provide an internal combustion engine with an exhaust turbo supercharger that can prevent compressor surging.

〔考案の実施例〕[Example of idea]

以下に、本考案に係る排気ターボ過給機付内燃
機関の好適一実施例を、添付図面に従つて詳述す
る。
Hereinafter, a preferred embodiment of an internal combustion engine with an exhaust turbo supercharger according to the present invention will be described in detail with reference to the accompanying drawings.

第1図に示す如く、1は内燃機関であり、その
シリンダ2には、吸気弁3及び排気弁4を介し
て、吸気系5及び排気系6が接続されている。こ
の吸気系5と排気系6とには、これらを結んで排
気のエネルギを吸気に付与させるための排気ター
ボ過給機7が備えられている。具体的には、この
排気ターボ過給機7は、主に排気系6の途中に設
けられたタービン8と、吸気系5の途中に設けら
れたコンプレツサ9と、これらコンプレツサ9と
タービン8とを同軸で駆動すべく連結する駆動軸
10と、この駆動軸10を軸受する軸受部11と
から構成されている。そして、この排気ターボ過
給機7は、内燃機関1の高負荷運転時、排気系6
を流通する排気によつて駆動されるタービン8が
同軸でコンプレツサ9を駆動し、吸気系5を流通
する吸気を加圧して内燃機関1に供給(過給)す
るように構成されている。また、この排気ターボ
過給機7の軸受部11には、その内方に駆動軸1
0を潤滑すべく潤滑油が供給され充満されてお
り、この軸受部11のコンプレツサ9及びタービ
ン8側には、その潤滑油が吸気系5及び排気系6
側に漏洩するのを抑止すべくシールが施こされて
いる。
As shown in FIG. 1, 1 is an internal combustion engine, and a cylinder 2 thereof is connected to an intake system 5 and an exhaust system 6 via an intake valve 3 and an exhaust valve 4. As shown in FIG. The intake system 5 and the exhaust system 6 are provided with an exhaust turbo supercharger 7 for connecting them and imparting exhaust energy to the intake air. Specifically, this exhaust turbo supercharger 7 mainly includes a turbine 8 provided in the middle of the exhaust system 6, a compressor 9 provided in the middle of the intake system 5, and the compressor 9 and the turbine 8. It is comprised of a drive shaft 10 that is connected to drive coaxially, and a bearing part 11 that bears this drive shaft 10. The exhaust turbo supercharger 7 is connected to the exhaust system 6 during high-load operation of the internal combustion engine 1.
A turbine 8 driven by exhaust gas flowing through the intake system 5 coaxially drives a compressor 9 to pressurize intake air flowing through the intake system 5 and supply it to the internal combustion engine 1 (supercharging). Further, the bearing portion 11 of the exhaust turbo supercharger 7 has a drive shaft 1 inside thereof.
The compressor 9 and turbine 8 sides of this bearing section 11 are filled with lubricating oil to lubricate the intake system 5 and exhaust system 6.
A seal is applied to prevent leakage to the outside.

ところで、図示する如く、排気系6には、ター
ビン8の排気導入口8aの上流側で分岐され排気
系6の下流側たるタービン8の排気導出口8b下
流側に亘つてタービン8を迂回する排気バイパス
通路12が設けられると共に、他方吸気系5に
は、コンプレツサ9の吸入口9a側から吐出口9
b側に亘つてコンプレツサ9を迂回する吸気バイ
パス通路13が設けられる。更に、これらバイパ
ス通路12,13には、これらを互いに同期して
開閉するための第1のバイパス開閉弁14及び第
2のバイパス開閉弁15が設けられる。そして、
内燃機関1の高負荷運転時には、これらバイパス
通路12,13はバイパス開閉弁14,15によ
り共に閉成され、排気全部がタービン8に供給さ
れコンプレツサ9は吸気全部を内燃機関1に過給
するように構成される。他方、低・中負荷運転時
には、これらバイパス通路12,13はバイパス
開閉弁14,15により共に開放されることにな
る。これに際し、排気バイパス通路12は、排気
ターボ過給機7を無過給状態とすべく排気の大部
分をタービン8から迂回させるように構成され
る。また、吸気バイパス通路13は、無過給状態
において、内燃機関1のピストン16の吸引作用
による吸気の流通が、吸気系5に介在するコンプ
レツサ9によつて妨げられないように、吸気をコ
ンプレツサ9から迂回させるように構成される。
特に、第1のバイパス開閉弁14は、排気バイパ
ス通路12だけをタービン8の排気導入口8aの
上流側で開閉するため、排気バイパス通路12の
開成時、即ち無過給状態にあつてもタービン8側
は連通され排気の一部がタービン8に供給される
ので、タービン8は比較的低い回転数ながらも継
続して駆動されることになる。
By the way, as shown in the figure, the exhaust system 6 includes exhaust gas that is branched upstream of the exhaust gas inlet 8a of the turbine 8 and bypasses the turbine 8 to the downstream side of the exhaust gas outlet 8b of the turbine 8, which is the downstream side of the exhaust system 6. A bypass passage 12 is provided in the other intake system 5, and a bypass passage 12 is provided in the intake system 5.
An intake bypass passage 13 that bypasses the compressor 9 is provided over the b side. Furthermore, these bypass passages 12 and 13 are provided with a first bypass on-off valve 14 and a second bypass on-off valve 15 for opening and closing them in synchronization with each other. and,
During high-load operation of the internal combustion engine 1, these bypass passages 12 and 13 are both closed by the bypass on-off valves 14 and 15, so that all of the exhaust gas is supplied to the turbine 8 and the compressor 9 supercharges all of the intake air to the internal combustion engine 1. It is composed of On the other hand, during low/medium load operation, these bypass passages 12, 13 are both opened by bypass opening/closing valves 14, 15. At this time, the exhaust bypass passage 12 is configured to bypass most of the exhaust gas from the turbine 8 in order to place the exhaust turbo supercharger 7 in a non-supercharging state. In addition, the intake bypass passage 13 is configured to direct intake air to the compressor 9 so that the flow of intake air due to the suction action of the piston 16 of the internal combustion engine 1 is not obstructed by the compressor 9 interposed in the intake system 5 in the non-supercharging state. is configured to be diverted from.
In particular, since the first bypass opening/closing valve 14 opens and closes only the exhaust bypass passage 12 on the upstream side of the exhaust gas inlet 8a of the turbine 8, the turbine Since the 8 side is connected and a part of the exhaust gas is supplied to the turbine 8, the turbine 8 is continuously driven even though the rotation speed is relatively low.

また、特にコンプレツサ9の吐出口9bに連続
して形成され、吸気バイパス通路13の下流側に
連結される吐出口側通路17には、これを閉成し
てコンプレツサ9の吐出口9b側を所定圧(正
圧)に保持する圧力室18を区画形成するための
仕切弁19が設けられる。この仕切弁19には、
これを作動すべく仕切弁開度制御手段20が設け
られる。この仕切弁開度制御手段20は、シリン
ダ21と、このシリンダ21内を大気圧室22と
圧導入室23とに区画するダイヤフラム24と、
このダイヤフラム24の撓みで仕切弁19を作動
するロツド25とを有している。大気圧室22に
は、シリンダ21に穿設された孔部26を介して
大気圧が導入されると共に、ダイヤフラム24を
圧導入室23側に付勢するバネ27が設けられて
いる。他方、圧導入室23には、コンプレツサ9
の吐出口9b側(仕切弁19の閉成時には圧力室
18内)の圧力を検出する圧力検出管28が接続
されている。そして、コンプレツサ9の吐出口9
b側の圧力が低い時には、バネ27の付勢力によ
つて仕切弁19が吐出口側通路17を閉成し、他
方漸次昇圧し所定圧以上になつたことが圧力検出
管28によつて検出されると、圧導入室23に導
入された圧力がバネ27と平衡すべくダイヤフラ
ム24を撓ませて仕切弁19を作動し、コンプレ
ツサ9の吐出口9b側の圧力を所定圧に復帰させ
るべく吐出口側通路17の開度を制御するように
構成される。従つて、無過給時にあつては、コン
プレツサ9の吐出口9b側を含む吸気系5全体が
負圧状態となるので、仕切弁19により吐出口側
通路17が閉成されて圧力室18が形成されると
共に、他方排気の一部で駆動されるタービン8に
よりコンプレツサ9は、吸気バイパス通路13側
へ吸引される吸気の一部を引き込んで圧気を吐出
するので、圧力室18を昇圧してこれに臨むコン
プレツサ9の吐出口9b側を所定圧(正圧)にで
きることになる。また、継続して吐出される圧気
により、圧力室18内が所定圧を越えると、仕切
弁開度制御手段20がこれを検出してその圧力を
逃がすべく仕切弁19の開度を制御できるので、
過度な圧力上昇によるコンプレツサ9のサージン
グ発生を防止しつつ、コンプレツサ9の吐出口9
b側を所定圧に保持できることになる。また、仕
切弁開度制御手段20に備えられたバネ27は、
コンプレツサ9の圧力比(=コンプレツサの吐出
口側圧力/コンプレツサの吸入口側圧力)を適正
な値として、無過給時のタービン8の排気導入口
8a側圧力(=内燃機関の排圧)を上げることな
くフリクシヨンを低減できるよう、そのバネ定数
が設定されている。
In particular, a discharge port side passage 17 that is formed continuously with the discharge port 9b of the compressor 9 and connected to the downstream side of the intake bypass passage 13 is closed so that the discharge port 9b side of the compressor 9 can be connected to a predetermined position. A gate valve 19 is provided to partition a pressure chamber 18 that is maintained at a positive pressure. This gate valve 19 has
Gate valve opening degree control means 20 is provided to operate this. This gate valve opening control means 20 includes a cylinder 21, a diaphragm 24 that partitions the inside of the cylinder 21 into an atmospheric pressure chamber 22 and a pressure introduction chamber 23,
It has a rod 25 that operates the gate valve 19 by the deflection of the diaphragm 24. Atmospheric pressure is introduced into the atmospheric pressure chamber 22 through a hole 26 formed in the cylinder 21, and a spring 27 is provided that biases the diaphragm 24 toward the pressure introduction chamber 23 side. On the other hand, a compressor 9 is installed in the pressure introduction chamber 23.
A pressure detection pipe 28 is connected to detect the pressure on the discharge port 9b side (inside the pressure chamber 18 when the gate valve 19 is closed). Then, the discharge port 9 of the compressor 9
When the pressure on the b side is low, the gate valve 19 closes the discharge port side passage 17 due to the biasing force of the spring 27, and the pressure detection tube 28 detects that the pressure gradually increases to a predetermined pressure or higher. When the pressure introduced into the pressure introduction chamber 23 is balanced with the spring 27, the diaphragm 24 is bent to operate the gate valve 19, and the pressure on the discharge port 9b side of the compressor 9 is restored to a predetermined pressure. It is configured to control the opening degree of the outlet side passage 17. Therefore, during non-supercharging, the entire intake system 5 including the discharge port 9b side of the compressor 9 is in a negative pressure state, so the discharge port side passage 17 is closed by the gate valve 19 and the pressure chamber 18 is closed. The compressor 9 draws in a part of the intake air sucked into the intake bypass passage 13 side by the turbine 8 driven by a part of the exhaust gas and discharges pressurized air, thereby increasing the pressure in the pressure chamber 18. The discharge port 9b side of the compressor 9 facing this can be brought to a predetermined pressure (positive pressure). Furthermore, when the pressure inside the pressure chamber 18 exceeds a predetermined pressure due to continuously discharged pressure air, the gate valve opening control means 20 detects this and can control the opening of the gate valve 19 to release the pressure. ,
While preventing surging of the compressor 9 due to excessive pressure rise, the discharge port 9 of the compressor 9 is
This means that the b side can be maintained at a predetermined pressure. Further, the spring 27 provided in the gate valve opening control means 20 is
With the pressure ratio of the compressor 9 (=compressor discharge port side pressure/compressor suction port side pressure) set to an appropriate value, the pressure on the exhaust gas inlet 8a side of the turbine 8 (=exhaust pressure of the internal combustion engine) during non-supercharging is determined. Its spring constant is set to reduce friction without increasing it.

尚、上記第1のバイパス開閉弁14及び第2の
バイパス開閉弁15には、これら夫々を開閉作動
させるべく上記仕切弁開度制御手段20と同様な
構成でなる弁作動手段29…が設けられている。
この弁作動手段29…は、シリンダ21…と、こ
のシリンダ21…内を大気圧室22…と圧導入室
23…とに区画するダイヤフラム24…と、この
ダイヤフラム24…の撓みでバイパス開閉弁1
4,15を作動するロツド25…とを有してい
る。大気圧室22…には、シリンダ21…に穿設
された孔部26…を介して大気圧が導入されると
共に、ダイヤフラム24…を圧導入室23…側に
付勢するバネ27…が設けられている。他方、圧
導入室23…には、三方切換電磁弁34を介して
圧源31…若しくは大気に接続される。この電磁
弁34には、内燃機関1の負荷状態を検出し電磁
弁34を励磁して切り換えるべくバツテリ32等
に接続された負荷検出スイツチ33が接続されて
いる。
The first bypass on-off valve 14 and the second bypass on-off valve 15 are provided with valve actuation means 29 having the same configuration as the gate valve opening degree control means 20 to open and close them respectively. ing.
This valve operating means 29... includes a cylinder 21..., a diaphragm 24... that partitions the inside of this cylinder 21... into an atmospheric pressure chamber 22... and a pressure introduction chamber 23..., and a bypass opening/closing valve 1 by the deflection of this diaphragm 24...
4, 15. Atmospheric pressure is introduced into the atmospheric pressure chambers 22 through holes 26 formed in the cylinders 21, and springs 27 are provided to bias the diaphragms 24 toward the pressure introduction chambers 23. It is being On the other hand, the pressure introduction chambers 23 are connected to the pressure source 31 or the atmosphere via a three-way switching solenoid valve 34. A load detection switch 33 connected to a battery 32 or the like is connected to the electromagnetic valve 34 in order to detect the load condition of the internal combustion engine 1 and excite the electromagnetic valve 34 to switch the load state.

内燃機関1の低・中負荷運転時にあつては、こ
れを検出して負荷検出スイツチ33は開となり、
電磁弁34は励磁されず圧源31と圧導入室23
…とが連通され、バネ27…に抗してダイヤフラ
ム24…を撓ませることになる。ダイヤフラム2
4…が撓むことにより、バイパス開閉弁14,1
5は、同期してバイパス通路12,13を開成す
ることになる。他方、高負荷運転に至つたことを
負荷検出スイツチ33が検出すると閉となり、電
磁弁34は励磁されて切り換えられ大気と圧導入
室23…とが連通されることになる。
During low/medium load operation of the internal combustion engine 1, this is detected and the load detection switch 33 is opened.
The solenoid valve 34 is not excited and the pressure source 31 and pressure introduction chamber 23
... are communicated with each other, and the diaphragm 24 is bent against the spring 27. Diaphragm 2
4... is bent, the bypass on-off valves 14, 1
5 opens the bypass passages 12 and 13 synchronously. On the other hand, when the load detection switch 33 detects that high-load operation has started, it closes, and the electromagnetic valve 34 is excited and switched, so that the atmosphere and the pressure introduction chambers 23 are communicated with each other.

以上の構成の作用について述べる。 The operation of the above configuration will be described.

内燃機関1の低・中負荷運転時にあつては、吸
気をシリンダ2へ過給することは望ましくないの
で、弁作動手段29…によりバイパス開閉弁1
4,15を作動させ、吸気バイパス通路13及び
排気バイパス通路12を共に開成し、吸気及び排
気を排気ターボ過給機7から迂回させ、無過給状
態で運転することになる。これに際し、吸気系5
では負圧状態となるため、仕切弁19が吐出口側
通路17を閉成して圧力室18を区画形成すると
共に、他方排気系6では、タービン8に排気の一
部が流入してこれを駆動している。従つて、コン
プレツサ9は、無過給状態にあつてもタービン8
に駆動され、吸気の一部を吸入して圧気を吐出
し、圧力室18内を昇圧してコンプレツサ9の吐
出口9b側を所定圧(正圧)に保持できることに
なる。従つて、この圧力室18により、軸受部1
1を吸気系5の負圧吸引力から遮断でき、シール
を介して潤滑油が吸気系5に漏洩するのを防止す
ることができる。
During low/medium load operation of the internal combustion engine 1, it is not desirable to supercharge the intake air to the cylinder 2, so the bypass opening/closing valve 1 is operated by the valve operating means 29.
4 and 15 are activated, both the intake bypass passage 13 and the exhaust bypass passage 12 are opened, intake air and exhaust air are detoured from the exhaust turbo supercharger 7, and the engine is operated in a non-supercharging state. At this time, the intake system 5
Since the pressure is in a negative pressure state, the gate valve 19 closes the discharge port side passage 17 to partition the pressure chamber 18, and at the same time, in the exhaust system 6, a part of the exhaust gas flows into the turbine 8 and It's driving. Therefore, the compressor 9 can operate the turbine 8 even in the non-supercharging state.
This means that a portion of the intake air is sucked in and pressurized air is discharged, thereby increasing the pressure in the pressure chamber 18 and maintaining the pressure on the discharge port 9b side of the compressor 9 at a predetermined pressure (positive pressure). Therefore, due to this pressure chamber 18, the bearing portion 1
1 from the negative pressure suction force of the intake system 5, and it is possible to prevent lubricating oil from leaking into the intake system 5 via the seal.

また、コンプレツサ9の吐出口9b側は正圧に
保持されるため、無過給時にあつてもコンプレツ
サ9にその圧力差に基く仕事をさせているので、
タービン8がオーバーランすることはなく、排気
ターボ過給機7を継続して駆動できる。
In addition, since the discharge port 9b side of the compressor 9 is maintained at a positive pressure, the compressor 9 is allowed to perform work based on the pressure difference even when there is no supercharging.
The turbine 8 does not overrun, and the exhaust turbo supercharger 7 can be continuously driven.

また、仕切弁19は、圧力室18内の圧力を検
出する仕切弁開度制御手段20によつて適宜開度
が制御されるので、圧力室18内を所定圧に保持
でき、コンプレツサ9のサージングを防止できる
と共に、内燃機関1の排圧を上げることなくフリ
クシヨンの低減を図ることができる。
Further, since the opening of the gate valve 19 is appropriately controlled by the gate valve opening degree control means 20 that detects the pressure inside the pressure chamber 18, the inside of the pressure chamber 18 can be maintained at a predetermined pressure, and the surging of the compressor 9 can be controlled. In addition, it is possible to reduce friction without increasing the exhaust pressure of the internal combustion engine 1.

尚、内燃機関1の高負荷運転時にあつては、バ
イパス開閉弁14,15がバイパス通路12,1
3を閉成することによつて、通常の過給状態で運
転されることになる。これに際し、仕切弁19
は、コンプレツサ9の吐出口9b側の圧力によつ
て作動されるので、このようなコンプレツサ9が
高い吐出圧を有する時に吐出口側通路17を閉成
することはなく、コンプレツサ9のサージングを
誘引することはない。
Note that during high-load operation of the internal combustion engine 1, the bypass on-off valves 14 and 15 are closed to the bypass passages 12 and 1.
By closing 3, the engine will be operated in a normal supercharging state. At this time, the gate valve 19
is operated by the pressure on the discharge port 9b side of the compressor 9, so when such a compressor 9 has a high discharge pressure, it does not close the discharge port side passage 17 and induces surging of the compressor 9. There's nothing to do.

〔考案の効果〕[Effect of idea]

以上要するに本考案によれば、以下の如き優れ
た効果を発揮する。
In summary, the present invention provides the following excellent effects.

(1) 内燃機関の低負荷運転時に無過給状態とする
に際して、コンプレツサの吐出口側に圧力室を
形成して圧気を圧力室内に蓄圧させコンプレツ
サの吐出口側を所定圧(正圧)にできるので、
軸受部を負圧な吸気系から遮断でき、潤滑油の
漏洩を防止することができる。
(1) When the internal combustion engine is in a non-supercharging state during low-load operation, a pressure chamber is formed on the discharge port side of the compressor and pressurized air is accumulated in the pressure chamber to bring the discharge port side of the compressor to a predetermined pressure (positive pressure). Because you can
The bearing part can be isolated from the negative pressure intake system, and leakage of lubricating oil can be prevented.

(2) 無過給時にあつても、コンプレツサに、その
吸気口側と吐出口側の圧力差に基く仕事をさせ
ることができるので、タービンのオーバーラン
を防止することができる。
(2) Even when there is no supercharging, the compressor can perform work based on the pressure difference between the intake port side and the discharge port side, so overrun of the turbine can be prevented.

(3) 仕切弁の開度を圧力室内の圧力を検出する仕
切弁開度制御手段によつて制御するようにした
ので、逐次過度な昇圧を回避させてコンプレツ
サのサージングを防止できる。
(3) Since the opening degree of the gate valve is controlled by the gate valve opening degree control means that detects the pressure in the pressure chamber, it is possible to avoid sequentially excessive pressure rise and prevent compressor surging.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案に係る排気ターボ過給機付内燃機関
の好適一実施例を示す側断面図である。 図中、1は内燃機関、5は吸気系、6は排気
系、8はタービン、8aはその排気導入口、9は
コンプレツサ、9aはその吸入口、9bはその吐
出口、10は駆動軸、12は排気バイパス通路、
13は吸気バイパス通路、14は第1のバイパス
開閉弁、15は第2のバイパス開閉弁、17は通
路たる吐出口側通路、18は圧力室、19は仕切
弁、20は仕切弁開度制御手段である。
The figure is a side sectional view showing a preferred embodiment of an internal combustion engine with an exhaust turbo supercharger according to the present invention. In the figure, 1 is an internal combustion engine, 5 is an intake system, 6 is an exhaust system, 8 is a turbine, 8a is an exhaust inlet, 9 is a compressor, 9a is an inlet, 9b is an outlet, 10 is a drive shaft, 12 is an exhaust bypass passage;
13 is an intake bypass passage, 14 is a first bypass on-off valve, 15 is a second bypass on-off valve, 17 is a passage on the discharge port side, 18 is a pressure chamber, 19 is a gate valve, and 20 is a gate valve opening control It is a means.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内燃機関を過給すべく吸気系のコンプレツサを
同一駆動軸を介して排気系のタービンで駆動する
排気ターボ過給機と、上記吸・排気系夫々に接続
され吸・排気をこれらコンプレツサ及びタービン
から迂回させる吸・排気バイパス路と、上記コン
プレツサの吐出口側圧力を正圧とすべく該吐出口
側を閉じる仕切弁と、上記吐出口側圧力の上昇に
従つて上記仕切弁の開度を順次大きくする仕切弁
開度制御手段とを備えたことを特徴とする排気タ
ーボ過給機付内燃機関。
An exhaust turbo supercharger that drives a compressor in the intake system by a turbine in the exhaust system via the same drive shaft to supercharge the internal combustion engine, and an exhaust turbo supercharger that is connected to the above-mentioned intake and exhaust systems and supplies intake and exhaust from these compressors and the turbine. an intake/exhaust bypass path to be detoured; a gate valve that closes the discharge port side of the compressor to make the pressure on the discharge port side positive; and an opening degree of the gate valve that is sequentially adjusted as the pressure on the discharge port side increases. An internal combustion engine with an exhaust turbo supercharger, characterized in that it is equipped with means for controlling the opening degree of a gate valve.
JP4589382U 1982-03-31 1982-03-31 Internal combustion engine with exhaust turbocharger Granted JPS58148226U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4589382U JPS58148226U (en) 1982-03-31 1982-03-31 Internal combustion engine with exhaust turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4589382U JPS58148226U (en) 1982-03-31 1982-03-31 Internal combustion engine with exhaust turbocharger

Publications (2)

Publication Number Publication Date
JPS58148226U JPS58148226U (en) 1983-10-05
JPS6233959Y2 true JPS6233959Y2 (en) 1987-08-31

Family

ID=30056898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4589382U Granted JPS58148226U (en) 1982-03-31 1982-03-31 Internal combustion engine with exhaust turbocharger

Country Status (1)

Country Link
JP (1) JPS58148226U (en)

Also Published As

Publication number Publication date
JPS58148226U (en) 1983-10-05

Similar Documents

Publication Publication Date Title
JPS6233959Y2 (en)
JPS6233958Y2 (en)
JPS58152123A (en) Suction valve for internal-combustion engine
JPS60243329A (en) Supercharging apparatus for engine
JPH03290028A (en) Fuel injector for series two-stage supercharging diesel engine
JPS5851221A (en) Supercharging system for engine
JPH0118806Y2 (en)
JPH0242131A (en) Exhaust structure for engine with exhaust turbosupercharger
JPS5815642Y2 (en) Intake switching device for turbocharged engines
JPS5920851B2 (en) Internal combustion engine with supercharger
JP6385841B2 (en) Internal combustion engine negative pressure system
JPS61291728A (en) 2-step type supercharging device
JPS6218646Y2 (en)
JPH0124376Y2 (en)
JPH0310348Y2 (en)
JPS5833371B2 (en) engine supercharging device
KR100291086B1 (en) Actuator control apparatus of turbo charger west gate valve
JPH0625642Y2 (en) Intake system structure of turbocharged engine
JPS58144627A (en) Supercharging pressure regulating device
JPH0518256A (en) Control device for engine with supercharger
JPH0336138B2 (en)
KR19980034785A (en) Turbo rack protector
JPS6218734B2 (en)
JPS60192842A (en) Engine with supercharger
JPH02161130A (en) Control device for turbo-charger