JPH0124376Y2 - - Google Patents

Info

Publication number
JPH0124376Y2
JPH0124376Y2 JP1984045884U JP4588484U JPH0124376Y2 JP H0124376 Y2 JPH0124376 Y2 JP H0124376Y2 JP 1984045884 U JP1984045884 U JP 1984045884U JP 4588484 U JP4588484 U JP 4588484U JP H0124376 Y2 JPH0124376 Y2 JP H0124376Y2
Authority
JP
Japan
Prior art keywords
pressure
fuel
chamber
switching valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984045884U
Other languages
Japanese (ja)
Other versions
JPS60159877U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4588484U priority Critical patent/JPS60159877U/en
Publication of JPS60159877U publication Critical patent/JPS60159877U/en
Application granted granted Critical
Publication of JPH0124376Y2 publication Critical patent/JPH0124376Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)

Description

【考案の詳細な説明】 [考案の技術分野] 本考案はターボ過給機を装備した電子制御燃料
噴射エンジンの燃料圧力制御装置に係り、特に蓄
圧された高圧の作動流体をプレツシヤレギユレー
タに作用させて、ホツトソーク時の燃料供給系内
の燃料の蒸発を防ぐようにしたものに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fuel pressure control device for an electronically controlled fuel injection engine equipped with a turbocharger, and in particular, the invention relates to a fuel pressure control device for an electronically controlled fuel injection engine equipped with a turbocharger. This invention relates to a system that prevents evaporation of fuel in a fuel supply system during hot soaking by acting on a rotor.

[考案の技術的背景] 電子制御燃料噴射エンジンでは、燃料噴射弁の
開弁時間を制御することにより燃料噴射制御を行
なうので、特に燃料流量制御精度を高めるために
燃料ポンプから燃料噴射弁までの燃料圧力を一定
に保つことが必要となる。燃料圧力を一定に保つ
ためにプレツシヤレギユレータが一般に採用され
ている。このプレツシヤレギユレータは、内燃機
関の吸気管の内圧(以下、単に吸気圧という)の
変化に応じて開閉弁が開度調整され燃料供給源へ
の戻り量を調節して、燃料ポンプから燃料噴射弁
までの燃料圧力を一定に制御する機能を有する。
[Technical background of the invention] In an electronically controlled fuel injection engine, fuel injection is controlled by controlling the opening time of the fuel injection valve. It is necessary to keep the fuel pressure constant. A pressure regulator is generally employed to maintain constant fuel pressure. This pressure regulator adjusts the opening of the on-off valve in response to changes in the internal pressure of the intake pipe of the internal combustion engine (hereinafter simply referred to as intake pressure), and adjusts the amount of fuel returned to the fuel supply source, thereby pumping the fuel into the fuel pump. It has the function of controlling the fuel pressure from the fuel injection valve to the fuel injection valve at a constant level.

ところで、燃料圧力はガス濃度や燃費との関係
から通常+2.55Kg/cm2を限度に制御されている。
したがつて、エンジン停止直後のホツトソーク時
には、燃料圧力は最大+2.55Kg/cm2となるが、こ
の2.55Kg/cm2の圧力でベーパが発生した場合、ホ
ツトリスタートが困難となるので問題となる。こ
こで、ホツトソークとは高回転・高負荷のとき、
内燃機関を急に停止させると、温度が急上昇して
内燃機関が高温状態になつている期間をいう。
Incidentally, fuel pressure is normally controlled to a limit of +2.55 kg/cm 2 due to its relationship with gas concentration and fuel efficiency.
Therefore, when the engine is hot soaked immediately after stopping, the fuel pressure reaches a maximum of +2.55Kg/ cm2 , but if vapor is generated at this pressure of 2.55Kg/ cm2 , it becomes difficult to restart the engine, which is a problem. Become. Here, hot soak is when the rotation is high and the load is high.
This refers to the period during which the internal combustion engine is in a high temperature state due to a sudden rise in temperature when the internal combustion engine is suddenly stopped.

そこで、ホツトソーク時のベーパロツクを防止
するために、燃料通路と燃料リターン通路との間
にバイパス通路を設け、ホツトソーク時上記バイ
パス通路を開いて燃料通路内に発生したベーパを
燃料リターン通路に逃がすようにしたもの(実開
昭57−115952号公報)が、過去に発表されてい
る。
Therefore, in order to prevent vapor lock during hot soak, a bypass passage is provided between the fuel passage and the fuel return passage, and the bypass passage is opened during hot soak to allow the vapor generated in the fuel passage to escape to the fuel return passage. (Utility Model Application Publication No. 57-115952) has been published in the past.

[背景技術の問題点] ところが、前記従来のものは積極的にベーパの
発生を阻止するものではなく、燃料通路の残圧を
解放して発生したベーパを燃料タンクへ逃がすと
いう消極的手段を採つているので、ベーパロツク
による始動困難をたとえ解消できたとしても、残
圧がなくなることによる始動困難という問題が新
たに生じるので、必ずしも十分な効果は発揮でき
なかつた。しかも、一般的にターボ過給機付エン
ジンは、ターボ過給機なしのエンジンに比べエン
ジンルーム内温度の上昇を招き、更に市場におけ
るガソリンの揮発性が良くなつていることから、
燃料圧力を低下させるという上記従来の技術で
は、燃料噴射弁を含め燃料供給系内のベーパの発
生を助長することはあつても減少させることはな
いからベーパロツクを有効に防止することができ
ず、ホツトリスタートの困難性を解消できなかつ
た。
[Problems with the Background Art] However, the above-mentioned conventional devices do not actively prevent the generation of vapor, but instead adopt a passive means of releasing the residual pressure in the fuel passage and letting the generated vapor escape into the fuel tank. Therefore, even if the difficulty in starting due to the vapor lock could be resolved, a new problem of starting difficulty due to the loss of residual pressure would arise, and therefore a sufficient effect could not always be achieved. Moreover, engines with turbochargers generally cause a rise in engine compartment temperature compared to engines without turbochargers, and the volatility of gasoline in the market has also improved.
The above-mentioned conventional technique of lowering the fuel pressure only promotes the generation of vapor in the fuel supply system including the fuel injection valve, but does not reduce it, so vapor lock cannot be effectively prevented. The difficulty of hot restart could not be resolved.

尚、関連する技術として、「電子制御式燃料噴
射エンジンの燃料圧制御装置」(実開昭57−
193965号公報)及び「ベーパロツク防止装置」
(実開昭57−115952号公報)が提案されている。
As a related technology, "Fuel pressure control device for electronically controlled fuel injection engine" (1987--
193965) and “vapor lock prevention device”
(Utility Model Application Publication No. 57-115952) has been proposed.

[考案の目的] 本考案は上記従来の問題点に鑑みてなされたも
ので、その目的はベーパが発生しやすいホツトソ
ーク時に時、燃料圧力を積極的に高めて燃料供給
系のベーパの発生を有効に防止し、これに起因す
るホツトソーク時のエンジントラブルを確実に解
消するようにした燃料圧力制御装置を得ることで
ある。
[Purpose of the invention] The present invention was developed in view of the above-mentioned conventional problems.The purpose of this invention is to actively increase fuel pressure during hot soaking, where vapor is likely to be generated, to effectively reduce vapor generation in the fuel supply system. It is an object of the present invention to provide a fuel pressure control device which prevents this from occurring and reliably eliminates engine troubles caused by hot soaking.

[考案の概要] 上記目的を達成すべく、本考案の燃料圧力制御
装置は、燃料室と圧力室との差圧で開弁圧を変化
させ燃料供給系の燃料圧力を一定化するプレツシ
ヤレギユレータと、空圧源の圧力を蓄圧してホツ
トソーク時の燃料室圧より高圧とする蓄圧手段
と、前記圧力室を機関吸気系から前記蓄圧手段へ
切換えて接続する切換弁と、これをホツトソーク
時に切換作動させる切換弁作動手段を備えて構成
したものである。
[Summary of the invention] In order to achieve the above object, the fuel pressure control device of the present invention uses a pressure control device that changes the valve opening pressure based on the differential pressure between the fuel chamber and the pressure chamber to constantize the fuel pressure in the fuel supply system. a regulator, a pressure accumulating means for accumulating the pressure of the air pressure source to make the pressure higher than the fuel chamber pressure during hot soak, a switching valve for switching and connecting the pressure chamber from the engine intake system to the pressure accumulating means; The device is equipped with a switching valve actuating means for switching operation during hot soaking.

上記空圧源はターボ過給機からの過給圧である
ことが好ましい。また、上記切換弁作動手段は、
冷却水温又はエンジンルーム内の温度が所定温度
以上で且つイグニツシヨンスイツチがオフのとき
に上記切換弁を切換作動させる駆動回路とするこ
とが好ましい。
Preferably, the air pressure source is supercharging pressure from a turbocharger. Further, the switching valve operating means is
Preferably, the driving circuit operates the switching valve when the cooling water temperature or the temperature in the engine room is above a predetermined temperature and the ignition switch is off.

いずれの形態であつても、ホツトソーク時には
切換弁作動手段が働き、切換弁がプレツシヤレギ
ユレータの圧力室を機関吸気系から蓄圧手段へ切
換えて接続する。空圧源の圧力を蓄圧しホツトソ
ーク時の燃料室圧よりも高圧の空気が、蓄圧手段
から、プレツシヤレギユレータの圧力室に加わ
る。プレツシヤレギユレータの燃料室と圧力室と
の間に差圧が生じ、開弁圧が燃料戻り量を小さく
する方向に変化し、燃料圧力が高められる。この
ため燃料供給系のベーパの発生が有効に防止され
る。この結果として、ベーパロツクが未然に防止
され、ホツトリスタート(熱間再始動)の困難性
が排除される。
In either form, the switching valve operating means operates during hot soak, and the switching valve switches and connects the pressure chamber of the pressure regulator from the engine intake system to the pressure accumulating means. The pressure of the air pressure source is accumulated, and air having a higher pressure than the fuel chamber pressure during hot soak is applied from the pressure accumulation means to the pressure chamber of the pressure regulator. A pressure difference is created between the fuel chamber and the pressure chamber of the pressure regulator, the valve opening pressure changes in a direction that reduces the amount of fuel returned, and the fuel pressure increases. Therefore, generation of vapor in the fuel supply system is effectively prevented. As a result, vapor lock is obviated and the difficulty of hot restart is eliminated.

[考案の実施例] 以下、本考案に係る燃料圧力制御装置の好適一
実施例を添付図面に従つて説明する。
[Embodiment of the invention] Hereinafter, a preferred embodiment of the fuel pressure control device according to the invention will be described with reference to the accompanying drawings.

第1図は、本考案の一実施例を示す燃料圧力制
御装置の構成図である。
FIG. 1 is a configuration diagram of a fuel pressure control device showing an embodiment of the present invention.

図示する如く、1は燃料供給源であり、これよ
り燃料は燃料ポンプ2により圧送されて燃料フイ
ルタ3を通つて燃料噴射弁4へ流れて行き、これ
の先端より各気筒5に通じる吸気管6内へ同時噴
射される。また、噴射されずに残つた燃料は、プ
レツシヤレギユレータ7内のダイヤフラム下側の
燃料室を通つて燃料供給源1にリターンする。上
記燃料ポンプ2からプレツシヤレギユレータ7の
燃料室に至る系路が本考案の燃料供給系20を構
成する。上記プレツシヤレギユレータ7は、その
ダイヤフラム上側の圧力室21にスプリングの力
を調整する吸気圧が導入されており、燃料室燃料
圧力がスプリングと吸気圧との圧力和よりも高け
ればこの圧力和に打ち勝つてダイヤフラムを押し
上げ、開閉弁8を開いて燃料供給源1へ燃料はリ
ターンするが、燃料圧力が低ければ開閉弁8は閉
じたままとなり燃料供給源1へはリターンしない
ようになつており、この作用により燃料ポンプ2
からプレツシヤレギユレータ7までの燃料圧力が
一定に保たれるようになつている。一方プレツシ
ヤレギユレータ7の圧力室21への吸気圧の導入
は、ターボ過給機9から気筒5に至る吸気管6の
途中から分岐した導入管10で行なつている。
As shown in the figure, 1 is a fuel supply source, from which fuel is pumped by a fuel pump 2 and flows through a fuel filter 3 to a fuel injection valve 4, and an intake pipe 6 leading to each cylinder 5 from the tip of the fuel injection valve 4. They are simultaneously injected inside. Further, the remaining fuel that is not injected returns to the fuel supply source 1 through the fuel chamber below the diaphragm in the pressure regulator 7. The line from the fuel pump 2 to the fuel chamber of the pressure regulator 7 constitutes the fuel supply system 20 of the present invention. In the pressure regulator 7, an intake pressure for adjusting the force of the spring is introduced into the pressure chamber 21 above the diaphragm, and if the fuel pressure in the fuel chamber is higher than the sum of the spring and intake pressure, Overcoming the pressure sum, the diaphragm is pushed up, the on-off valve 8 is opened, and the fuel returns to the fuel supply source 1. However, if the fuel pressure is low, the on-off valve 8 remains closed and the fuel does not return to the fuel supply source 1. Due to this action, the fuel pump 2
The fuel pressure from the pressure regulator 7 to the pressure regulator 7 is kept constant. On the other hand, intake pressure is introduced into the pressure chamber 21 of the pressure regulator 7 through an introduction pipe 10 branched from the middle of the intake pipe 6 extending from the turbocharger 9 to the cylinder 5.

上記ターボ過給機9の下流側にターボ過給機9
から過給圧を正圧の作動流体として蓄圧してホツ
トソーク時の燃料室圧よりも高圧とするための蓄
圧手段11を設ける。この蓄圧手段11は、本実
施例では、逆止弁付きの高圧チヤンバで構成しタ
ーボ過給機9が停止しても高圧を保持する。ま
た、正圧の作動流体はターボ過給機9からの過給
気をそのまま使用するようにしてあるが、過給気
とは別な空圧源を用いてもよい。
A turbo supercharger 9 is installed downstream of the turbo supercharger 9.
A pressure accumulating means 11 is provided for accumulating the supercharging pressure as a positive pressure working fluid to make the pressure higher than the fuel chamber pressure during hot soak. In this embodiment, this pressure accumulating means 11 is constituted by a high pressure chamber with a check valve, and maintains high pressure even when the turbocharger 9 is stopped. Furthermore, although the supercharged air from the turbocharger 9 is used as the positive pressure working fluid, an air pressure source separate from the supercharged air may be used.

一方、吸気圧をプレツシヤレギユレータ7の圧
力室21へ導入する導入管10に、プレツシヤレ
ギユレータ7の開閉弁8を閉成させるべく上記蓄
圧手段11からの作動流体を吸気圧に代えてプレ
ツシヤレギユレータ7の圧力室21に導入し、燃
料供給源1への戻り量を絞るための切換弁12を
設ける。この切換弁12は、例えば、プレツシヤ
レギユレータ7側の導入管10を吸気管6と蓄圧
手段11とに選択的に切換えるソレノイド式の二
方弁で構成する。
On the other hand, the working fluid from the pressure accumulating means 11 is sucked into the introduction pipe 10 that introduces the intake pressure into the pressure chamber 21 of the pressure regulator 7 in order to close the on-off valve 8 of the pressure regulator 7. A switching valve 12 is provided to introduce air into the pressure chamber 21 of the pressure regulator 7 instead of atmospheric pressure and throttle the amount of fuel returned to the fuel supply source 1. The switching valve 12 is, for example, a solenoid-type two-way valve that selectively switches the introduction pipe 10 on the pressure regulator 7 side to the intake pipe 6 and the pressure accumulating means 11.

そして、この切換弁12には、冷却水温又はエ
ンジンルーム内の温度が所定温度以上であること
を検知する温度スイツチ13と、イグニツシヨン
スイツチ14との並列駆動回路が切換弁作動手段
15として設けてある。イグニツシヨンスイツチ
14がOFFしてエンジンが停止し、且つ冷却水
温等が所定温度以上であることを検知して温度ス
イツチ13がOFFしたときのみ切換弁12を蓄
圧手段11側に接続し、それ以外の条件のときは
吸気管6側に接続するように構成する。なお、図
中16はバツテリである。
The switching valve 12 is provided with a switching valve actuating means 15 including a temperature switch 13 that detects that the cooling water temperature or the temperature in the engine room is higher than a predetermined temperature, and an ignition switch 14 in parallel. There is. The switching valve 12 is connected to the pressure accumulating means 11 side only when the ignition switch 14 is turned OFF, the engine is stopped, and the temperature switch 13 is turned OFF by detecting that the cooling water temperature is higher than a predetermined temperature. Under other conditions, the configuration is such that it is connected to the intake pipe 6 side. Note that 16 in the figure is a battery.

以上の構成よりなる本実施例の作用について述
べる。
The operation of this embodiment having the above configuration will be described.

高速走行後エンジンを停止したホツトソーク
時、プレツシヤレギユレータ7の圧力室21に吸
気圧が単に導入されている場合では、吸気圧が時
間の経過とともに大気圧にまで降下していくの
で、開閉弁8が開いて戻り量が増加し燃料圧力の
絶対圧も、差圧2.55Kg/cm2を維持したまま、その
降下につれて低下していく。しかも、この差圧
も、燃料ポンプ2の逆止弁あるいは上記開閉弁8
のリークにより完全には維持することができない
ので、燃料圧力の絶対圧の低下の仕方は速く、ホ
ツトソーク時はベーパ発生の要因を形成する。一
方、ガソリン燃料の揮発性が年々上昇しているこ
と、及びターボ過給機9を装着したエンジンにあ
つては、特に、エンジンルームが高温になること
から上記要因と相俟つてベーパが発生しやすくホ
ツトリスタートが困難となる。
If the intake pressure is simply introduced into the pressure chamber 21 of the pressure regulator 7 during a hot soak when the engine is stopped after high-speed driving, the intake pressure will drop to atmospheric pressure over time. The on-off valve 8 opens and the return amount increases, and the absolute pressure of the fuel also decreases as the differential pressure decreases while maintaining the differential pressure of 2.55 Kg/cm 2 . Moreover, this pressure difference also applies to the check valve of the fuel pump 2 or the on-off valve 8.
Since the fuel pressure cannot be maintained completely due to leakage, the absolute pressure of the fuel decreases rapidly, and becomes a cause of vapor generation during hot soaking. On the other hand, the volatility of gasoline fuel is increasing year by year, and in the case of engines equipped with a turbo supercharger 9, vapors are generated due to the high temperature of the engine compartment, in combination with the above factors. This makes hot restart difficult.

しかし、本考案では、ホツトソーク時に吸気圧
に代えてプレツシヤレギユレータ7に圧力室21
に高圧の作動流体を作用させるようにしたので、
上述した問題が解消する。すなわち、エンジン停
止後のホツトソーク時を切換弁作動手段15が検
知すると切換弁12はプレツシヤレギユレータ7
の圧力室21に通じる導入管10を吸気管6から
蓄圧手段11に切換接続する。この切換接続によ
りプレツシヤレギユレータ7の圧力室21に蓄圧
手段11から高圧の作動流体が流入し、開閉弁8
を閉成させ燃料供給源1への燃料戻り量を停止す
る。上記蓄圧手段11からの作動流体の流入は、
蓄圧手段11の蓄圧量にもよるが、逆止弁を有し
て逆流を防止しているため、エンジン温度が十分
低下するまで長時間継続し得る。したがつて、燃
料ポンプ2からプレツシヤレギユレータ7に至る
燃料供給系20内の燃料圧力は、吸気圧に関係な
く大きな値に維持することができる。その結果、
ベーパの発生が抑制されベーパロツクも有効に防
止することができ、ホツトリスタートも円滑とな
り、発進性も向上する。
However, in the present invention, the pressure chamber 21 is used in the pressure regulator 7 instead of the intake pressure during hot soak.
By applying high-pressure working fluid to the
The above-mentioned problem is resolved. That is, when the switching valve operating means 15 detects the hot soak time after the engine is stopped, the switching valve 12 is activated by the pressure regulator 7.
The inlet pipe 10 communicating with the pressure chamber 21 is switched and connected from the intake pipe 6 to the pressure accumulating means 11. Due to this switching connection, high-pressure working fluid flows from the pressure accumulating means 11 into the pressure chamber 21 of the pressure regulator 7, and the on-off valve 8
is closed and the amount of fuel returned to the fuel supply source 1 is stopped. The inflow of the working fluid from the pressure accumulating means 11 is as follows:
Although it depends on the amount of pressure accumulated in the pressure accumulation means 11, since it has a check valve to prevent backflow, it can continue for a long time until the engine temperature is sufficiently lowered. Therefore, the fuel pressure within the fuel supply system 20 from the fuel pump 2 to the pressure regulator 7 can be maintained at a large value regardless of the intake pressure. the result,
The generation of vapor is suppressed, vapor lock can be effectively prevented, hot restart becomes smooth, and starting performance is improved.

ホツトソーク時以外のときは、切換弁作動手段
15はプレツシヤレギユレータ7の圧力室21に
通じる導入管10を吸気管6に切換接続するの
で、プレツシヤレギユレータ7の圧力室21には
吸気圧が導入され、燃料圧力と吸気圧との差圧は
所定値の2.55Kg/cm2に維持される。したがつて燃
料圧力が高すぎる場合に生じるガス濃度・燃費増
大及びCOの増加を有効に回避することができる。
When not hot soaking, the switching valve operating means 15 switches and connects the inlet pipe 10 leading to the pressure chamber 21 of the pressure regulator 7 to the intake pipe 6, so that the pressure chamber 21 of the pressure regulator 7 Intake pressure is introduced into the engine, and the differential pressure between the fuel pressure and the intake pressure is maintained at a predetermined value of 2.55 kg/cm 2 . Therefore, increases in gas concentration, fuel consumption, and CO that would occur if the fuel pressure was too high can be effectively avoided.

このように上記実施例によれば、運転性能を損
なうことなく、ホツトソーク時の燃料供給系20
内のベーパ発生に起因するホツトリスタートの問
題を有効に解決することができる。
As described above, according to the above embodiment, the fuel supply system 20 during hot soaking can be improved without impairing the operating performance.
It is possible to effectively solve the problem of hot restart caused by vapor generation inside the engine.

第2図は本発明の他の実施例を示し、特にイン
タークーラ17を備えているエンジンに適用した
ものである。燃料の蒸発を防止するためには、燃
料供給系をより高圧にすることが有効である。イ
ンタークーラ17付の場合はインタークーラ17
に依る圧損があるため、ターボ過給圧を直接プレ
ツシヤレギユレータの圧力室に与えるべく、イン
タークーラ17を経由した下流側ではなくインタ
ークーラ17の上流側に蓄圧手段11を接続して
いる。
FIG. 2 shows another embodiment of the present invention, which is particularly applied to an engine equipped with an intercooler 17. In order to prevent fuel evaporation, it is effective to increase the pressure of the fuel supply system. Intercooler 17 if equipped with intercooler 17
Since there is a pressure loss due to There is.

また、切換弁作動手段15たる駆動回路をイグ
ニツシヨンスイツチ14とコントローラ18との
直列回路とし、イグニツシヨンスイツチ14ON
後もコントローラ18によりエンジン運転に応じ
て切換弁12を制御できるようにし、燃料圧力の
最適化をはかることもできる。
Further, the drive circuit serving as the switching valve actuating means 15 is a series circuit of the ignition switch 14 and the controller 18, and the ignition switch 14 is turned ON.
The switching valve 12 can also be controlled later by the controller 18 in accordance with engine operation, thereby optimizing the fuel pressure.

[考案の効果] 以上要するに本考案によれば、ホツトソーク時
には、プレツシヤレギユレータの圧力室に、蓄圧
手段から燃料室圧よりも高圧の空気を加えるた
め、燃料供給系の燃料圧力を可及的に上昇させ、
燃料供給系内におけるベーパの発生を有効に防止
することができる。したがつて、これに起因する
ホツトリスタートの困難性を確実に解消すること
ができる。
[Effects of the invention] In summary, according to the invention, during hot soaking, air with a pressure higher than the fuel chamber pressure is added from the pressure accumulating means to the pressure chamber of the pressure regulator, so that the fuel pressure in the fuel supply system can be increased. to raise the level of
The generation of vapor within the fuel supply system can be effectively prevented. Therefore, the difficulty of hot restart caused by this can be reliably resolved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る燃料圧力制御装置の好適
一実施例を示す構成図、第2図は同じく他の実施
例を示す要部構成図である。 尚、図中1は燃料供給源、7はプレツシヤレギ
ユレータ、8はプレツシヤレギユレータの開閉
弁、9は空圧源の例示であるターボ過給機、11
は蓄圧手段、12は切換弁、15は切換弁作動手
段、20は燃料供給系、21はプレツシヤレギユ
レータの圧力室である。
FIG. 1 is a block diagram showing a preferred embodiment of a fuel pressure control device according to the present invention, and FIG. 2 is a block diagram showing a main part of another embodiment. In the figure, 1 is a fuel supply source, 7 is a pressure regulator, 8 is an on-off valve for the pressure regulator, 9 is a turbo supercharger, which is an example of a pneumatic source, and 11 is a pressure regulator.
12 is a pressure accumulating means, 12 is a switching valve, 15 is a switching valve operating means, 20 is a fuel supply system, and 21 is a pressure chamber of a pressure regulator.

Claims (1)

【実用新案登録請求の範囲】 1 燃料室と圧力室との差圧で開弁圧を変化させ
燃料供給系の燃料圧力を一定化するプレツシヤ
レギユレータと、空圧源の圧力を蓄圧してホツ
トソーク時の燃料室圧より高圧とする蓄圧手段
と、前記圧力室を機関吸気系から前記蓄圧手段
へ切換えて接続する切換弁と、これをホツトソ
ーク時に切換作動させる切換弁作動手段を備え
たことを特徴とする燃料圧力制御装置。 2 上記空圧源がターボ過給機からの過給圧であ
ることを特徴とする実用新案登録請求の範囲第
1項に記載の燃料圧力制御装置。 3 上記切換弁作動手段が、冷却水温又はエンジ
ンルーム内の温度が所定温度以上で且つイグニ
ツシヨンスイツチがオフのときに上記切換弁を
切換作動させる駆動回路であることを特徴とす
る実用新案登録請求の範囲第1項に記載の燃料
圧力制御装置。
[Scope of claim for utility model registration] 1. A pressure regulator that stabilizes the fuel pressure in the fuel supply system by changing the valve opening pressure based on the differential pressure between the fuel chamber and the pressure chamber, and accumulating the pressure of the air pressure source. a pressure accumulating means for making the fuel chamber pressure higher than the pressure in the fuel chamber during a hot soak; a switching valve for switching and connecting the pressure chamber from the engine intake system to the pressure accumulating means; and a switching valve operating means for switching and operating the pressure chamber during a hot soak. A fuel pressure control device characterized by: 2. The fuel pressure control device according to claim 1, wherein the air pressure source is supercharging pressure from a turbocharger. 3. Registration of a utility model characterized in that the switching valve operating means is a drive circuit that switches and operates the switching valve when the cooling water temperature or the temperature in the engine room is above a predetermined temperature and the ignition switch is off. A fuel pressure control device according to claim 1.
JP4588484U 1984-03-31 1984-03-31 fuel pressure control device Granted JPS60159877U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4588484U JPS60159877U (en) 1984-03-31 1984-03-31 fuel pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4588484U JPS60159877U (en) 1984-03-31 1984-03-31 fuel pressure control device

Publications (2)

Publication Number Publication Date
JPS60159877U JPS60159877U (en) 1985-10-24
JPH0124376Y2 true JPH0124376Y2 (en) 1989-07-24

Family

ID=30559766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4588484U Granted JPS60159877U (en) 1984-03-31 1984-03-31 fuel pressure control device

Country Status (1)

Country Link
JP (1) JPS60159877U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852369Y2 (en) * 1980-12-19 1983-11-29 マツダ株式会社 Fuel supply control device for fuel injection engines

Also Published As

Publication number Publication date
JPS60159877U (en) 1985-10-24

Similar Documents

Publication Publication Date Title
JP6414572B2 (en) Engine supercharger
JP5989406B2 (en) Fuel pressure control device
JPH0124376Y2 (en)
JPS6054491B2 (en) compression ignition internal combustion engine
JP5115822B2 (en) Fuel injection control device for in-cylinder injection engine
JPH11229885A (en) Diesel engine
KR19980035220A (en) Turbo rack protector
JP2737412B2 (en) EGR valve rust prevention device
JP3531896B2 (en) Common rail fuel injector
JPH0221563Y2 (en)
JPH045729Y2 (en)
JPS638841Y2 (en)
JP2021116793A (en) Internal combustion engine with exhaust turbo supercharger
JPS6233959Y2 (en)
JPH0216055Y2 (en)
JPS6246817Y2 (en)
JPS6237942Y2 (en)
JPH0223690B2 (en)
JPS6233958Y2 (en)
JP2024072354A (en) Supercharged Engine System
JPH0326298Y2 (en)
JPH10169458A (en) Diesel engine
JPH0810654Y2 (en) Auxiliary air supply for engine
JPH07103046A (en) Control device for engine with supercharger
JPH0571775B2 (en)