JPS6233734A - Zirconium alloy having high corrosion resistance - Google Patents
Zirconium alloy having high corrosion resistanceInfo
- Publication number
- JPS6233734A JPS6233734A JP60171076A JP17107685A JPS6233734A JP S6233734 A JPS6233734 A JP S6233734A JP 60171076 A JP60171076 A JP 60171076A JP 17107685 A JP17107685 A JP 17107685A JP S6233734 A JPS6233734 A JP S6233734A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- fuel
- alloy
- corrosion
- zirconium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Powder Metallurgy (AREA)
- Arc Welding In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は新規な高耐食性ジルコニウム基合金に係わり、
特に耐ノジュラ腐食性に優れたBWR用燃料集合体部材
に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a novel highly corrosion-resistant zirconium-based alloy,
In particular, the present invention relates to a BWR fuel assembly member having excellent nodular corrosion resistance.
ジルコニウム基合金は、そのすぐれた耐食性と非常に小
さい熱中性子吸収断面積により原子カプラントの燃料集
合体の構造部材に使用されている。Zirconium-based alloys are used in structural members of atomic couplant fuel assemblies due to their excellent corrosion resistance and very small thermal neutron absorption cross sections.
これらの部材は長時間炉内で使用されるため、特にその
耐食性が重要である。ジルコニウム基合金の代表的なも
のについて、「ジルカロイ−2」(ZrにSnを約1.
5%、Feを約0.1%。Since these members are used in a furnace for a long time, their corrosion resistance is especially important. A typical example of a zirconium-based alloy is "Zircaloy-2" (Zr containing about 1.0% Sn).
5%, Fe approximately 0.1%.
Crを約0.1%、Niを約0.05%添加した合金)
及び「ジルカロイ−4J (ZrにSnを約1.5%
、Feを約0.2%、Crを約0.1%添加した合金)
が知られている。またスカターク合金(2,3,4,5
,6の5種類でジルコニウムにNbを0.4〜1.2%
、Snを0.09%以下。Alloy containing approximately 0.1% Cr and approximately 0.05% Ni)
and “Zircaloy-4J (approximately 1.5% Sn in Zr)
, an alloy containing approximately 0.2% Fe and approximately 0.1% Cr)
It has been known. Also, Scatarch alloy (2, 3, 4, 5
, 6 with 0.4 to 1.2% Nb in zirconium.
, Sn 0.09% or less.
Feを0.04%、Crを0.01〜0.5.M。0.04% Fe and 0.01 to 0.5% Cr. M.
を約0.3%添加した合金)が報告されている。It has been reported that an alloy containing approximately 0.3% of
前述のジルカロイ−2及びジルカロイ−2は現在の原子
炉の運転条件下ではその機能を充分果しているが、今後
原子カプラントの経済性向上の点から運転期間の長期化
などにより、更に過酷な使用条件が加わることが予測さ
れる。このため現状より一層耐食性にすぐれたジルコニ
ウム基合金が望まれている。Zircaloy-2 and Zircaloy-2 mentioned above are fully performing their functions under the current operating conditions of nuclear reactors, but in the future, from the viewpoint of improving the economic efficiency of nuclear couplants, the operating period will be extended, and even harsher operating conditions will be required. is expected to be added. Therefore, a zirconium-based alloy with better corrosion resistance than the current state is desired.
ジルコニウム基合金のBWR用燃料集合体の構造部材に
おいては、ノジュラ腐食と称する斑点状の灰白色の腐食
生成物が表面に生成される。原子炉内での長期間使用に
対して、この腐食生成物が大きく成長した場合には剥離
する恐れもある。この剥離により部材の肉厚減少は、燃
料構造部材の機械的強度の低下をもたらす懸念がある。In structural members of zirconium-based alloy BWR fuel assemblies, speckled grayish-white corrosion products called nodular corrosion are generated on the surface. When used for a long time in a nuclear reactor, if these corrosion products grow large enough, there is a risk that they will peel off. There is a concern that the decrease in the wall thickness of the member due to this peeling will result in a decrease in the mechanical strength of the fuel structural member.
第3図はBWR燃料集合体の概要図である。まず多数の
燃料棒(燃料ペレット1とそれを被覆している燃料被覆
管2及び端栓3に大別される)とされらを相互に所定の
間隔で保持するスペーサー4、それらを燃料棒の外側に
燃料棒長手方向に沿った角筒のチャンネルボックス5で
構成され、それらは燃料の効率あるいはプラントの安全
性から重要な役割をもつ。FIG. 3 is a schematic diagram of a BWR fuel assembly. First, a spacer 4 that holds a large number of fuel rods (roughly divided into fuel pellets 1, fuel cladding tubes 2 and end plugs 3 covering the fuel pellets) at a predetermined distance from each other, It consists of a rectangular channel box 5 extending along the longitudinal direction of the fuel rods on the outside, and these play an important role in terms of fuel efficiency and plant safety.
チャンネルボックスは板材を角筒に形成し、その継目を
突合せ溶接して製造される。スペーサも同様に溶接で組
立てられる。Channel boxes are manufactured by forming plates into rectangular tubes and butt welding their joints. The spacer is similarly assembled by welding.
燃料被覆管は、第5図に示すように内側が燃料ペレット
に接し、外側が炉水と接するもので、強度部材であると
共に燃焼時に発生する腐食性ガス(ヨウ素など)及び炉
水との腐食環境下で使用される。特に炉水に接する外表
面のノジュラ腐食防止が重要とされている。As shown in Figure 5, the fuel cladding tube is in contact with the fuel pellets on the inside and with the reactor water on the outside, and is a strength member, as well as corrosion resistant from corrosive gases (such as iodine) generated during combustion and the reactor water. used in the environment. It is particularly important to prevent nodular corrosion on the outer surface that comes into contact with reactor water.
燃料スペーサは燃料集合体の長手方向に沿っていくつか
の位置で多数の燃料棒を固定しており、燃料棒の横方向
の振動、長手方向の曲がりなどを防止している。第6図
はスペーサの平面図、第7図はスペーサの側面図を示し
ており、被覆管2はスペーサグリッド6とランタン型板
バネ7によって固定される。このためスペーサには燃料
棒からの応力が負荷された状態で使用される。なおこの
部材は炉水に接すことからノジュラ腐食を起こす懸念が
ある。The fuel spacer fixes a large number of fuel rods at several positions along the length of the fuel assembly, and prevents the fuel rods from vibrating in the lateral direction or bending in the longitudinal direction. 6 shows a plan view of the spacer, and FIG. 7 shows a side view of the spacer, in which the cladding tube 2 is fixed by a spacer grid 6 and a lantern-type leaf spring 7. For this reason, the spacer is used under stress from the fuel rods. Since this member comes into contact with reactor water, there is a risk of nodular corrosion.
燃料チャンネルボックスは燃料スペーサで組込まれた燃
料棒の外側に位置し、上部タイプレート8と及び下部タ
イプレート9で燃料棒を固定した状態で使用される。第
8図は燃料チャンネルボックスを拡大した図を示すが、
2分割した板加工材を溶接10した角筒形状を呈す0部
材は運転時に燃料棒で発生した高温水及び蒸気を強制的
に上部へ導くものであり、角筒が外側に広がる応力が負
荷される状態で長時間使用される。この部材も炉水に接
することから耐ノジュラ腐食にすぐれていることが必要
である。The fuel channel box is located outside the fuel rods assembled with the fuel spacer, and is used with the fuel rods fixed by the upper tie plate 8 and the lower tie plate 9. Figure 8 shows an enlarged view of the fuel channel box.
The rectangular tube-shaped member is made by welding two divided plates into a rectangular tube shape that forcibly guides high-temperature water and steam generated in the fuel rods during operation to the top, and the rectangular tube is loaded with stress that spreads outward. used for long periods of time. Since this member also comes into contact with reactor water, it must have excellent nodular corrosion resistance.
更に部材に対してはジルコニウム基合金の酸化反応の際
に水素が発生(Z r + 2 HzO−+ Z r○
2+21’z)し、この水素が材料中に蓄積し、材料強
度を阻害するとともに耐ノジュラ腐食性にも悪影響を及
ぼす懸念がある。Furthermore, for parts, hydrogen is generated during the oxidation reaction of zirconium-based alloys (Z r + 2 HzO- + Z r○
2+21'z), and there is a concern that this hydrogen accumulates in the material, impairing the strength of the material and having an adverse effect on the nodular corrosion resistance.
このようなことにより、燃料被覆管燃料スペーサ、設料
チャンネルボックス用材料には耐ノジュラ腐食性のすぐ
れた材料が今後増々要望される。For this reason, materials with excellent nodular corrosion resistance will be increasingly required for materials for fuel cladding tube fuel spacers and construction channel boxes.
このため、ジルカロイ合金に代るより耐食性の優れた材
料が検討されている。この中でZr−Nb系合金のZr
−2,5%Nb 合金はカナダのプラントの圧力管に使
用されている。この材料の機械的性質、照射成長を改醤
したというZr−2,5〜4.0%S n −0、5〜
1 、5%M o −0、5〜1.5%Nb合金がある
(特開昭5l−134304) 。For this reason, materials with better corrosion resistance are being considered in place of Zircaloy alloys. Among these, Zr of Zr-Nb alloy
-2.5% Nb alloy is used in pressure pipes in a Canadian plant. The mechanical properties of this material are Zr-2,5~4.0%Sn-0,5~ which is said to have been modified by irradiation growth.
1, 5% Mo-0, 5-1.5% Nb alloy (Japanese Unexamined Patent Publication No. 51-134304).
また、ジルカロイより耐食性が優れているといわれてい
るスカターク合金(Zr−0,25〜1.5%Nb−0
,025〜0.2%5n−0,02〜1.0%(Cr+
Mo)、又はZr−0,45〜1.2%Nb−0,04
〜0.1%5n−0,25〜0.6%(Cr+Mo)
−0,7〜0.7〜1.8%(Nb+ Cr + M
o )がある(特開昭5O−148213) 、またジ
ルカロイ−4にNbを0.5%、1.0%添加したもの
が発表されている(Nucl、5cie、 and E
ng旦ユ(1977) ) 。In addition, Scatarch alloy (Zr-0.25~1.5%Nb-0) is said to have better corrosion resistance than Zircaloy.
,025~0.2%5n-0,02~1.0%(Cr+
Mo), or Zr-0,45-1.2%Nb-0,04
~0.1%5n-0,25~0.6% (Cr+Mo)
-0.7~0.7~1.8% (Nb+Cr+M
o) (Japanese Unexamined Patent Publication No. 5O-148213), and Zircaloy-4 with 0.5% and 1.0% Nb added (Nucl, 5cie, and E
ng Danyu (1977)).
しかし、これらの材料はZr−2,5%Nb 合金を
除いてほとんどが使用実績がなく、ジルカロイ合金にと
って代るほどの材料でないと言われている。However, with the exception of Zr-2,5%Nb alloy, most of these materials have no experience in use, and are said to be insufficient to replace Zircaloy alloys.
本発明の目的は、耐ノジュラ腐食性の優れたジルコニウ
ム合金を提供することにある。An object of the present invention is to provide a zirconium alloy with excellent nodular corrosion resistance.
本発明は、重量で錫1〜2%、鉄0.1〜0.3に、ク
ロム0.05〜0.2%及びモリブデンo、os〜5.
0%含み、残部ジルコニウムからなり、又はこれにN
i O,03〜0.1%、NbO,05〜5%及びVo
、05〜5%の1種以上含むことを特徴とする高耐食性
ジルコニウム基合金にある。The present invention consists of 1-2% tin, 0.1-0.3% iron, 0.05-0.2% chromium, and 5% molybdenum by weight.
0%, the remainder consists of zirconium, or N
i O, 03-0.1%, NbO, 05-5% and Vo
, 05 to 5%.
本発明者らはジルカロイの化学組成を大幅に変えること
なく、耐ノジュラ腐食を改善することを検討した結果、
次の事実を見出した。The present inventors investigated ways to improve nodular corrosion resistance without significantly changing the chemical composition of Zircaloy.
I discovered the following facts.
即ち、ジルカロイ合金に微量のMOを添加したインゴッ
トを鍛造、熱間塑性加工、冷間塑性加工及び焼なましの
工程を経て板材に加工し、その後、腐食試験を行った。That is, an ingot containing a small amount of MO added to a Zircaloy alloy was processed into a plate material through the steps of forging, hot plastic working, cold plastic working, and annealing, and then a corrosion test was conducted.
その結果、Moの添は耐ノジュラ腐食性を著しく改善す
ることを見いだした。As a result, it was found that addition of Mo significantly improved nodular corrosion resistance.
この効果はMoのほかに、さらにNb及びVを複合添加
すると、より顕著に現われる。このことは従来ジルカロ
イの高耐食化熱処理として知られるβあるいはβ+α相
の温度から焼入する方法に比べ、製造が容易であり、か
つ耐食性改善が飛門的に向上することが判った。This effect becomes more pronounced when a combination of Nb and V is added in addition to Mo. It has been found that this method is easier to manufacture and significantly improves the corrosion resistance compared to the method of hardening Zircaloy from the temperature of the β or β+α phase, which is known as the conventional heat treatment for improving corrosion resistance of Zircaloy.
次に本発明者の化学成分の範囲を示す。Next, the range of the chemical components of the present inventor is shown.
Snはジルコニウム基合金の窒素による耐食性低下の悪
影響を抑制する働きがあるため1〜2%添加することが
よい、1%以下ではその効果が小さく、また2%以上の
添加は耐食性には問題ないが機械的性質によくない。Sn has the effect of suppressing the negative effect of reducing corrosion resistance due to nitrogen in zirconium-based alloys, so it is recommended to add 1 to 2%. If it is less than 1%, the effect will be small, and if it is added more than 2%, there will be no problem with corrosion resistance. is not good for mechanical properties.
Fe及びNiの添加はジルコニウム基合金の耐食性及び
機械的性質の改善に効果がある。従って各元素とも0.
05〜0.3%の範囲で含有することが望ましい。0.
05%以下ではその効果が小さく、また0、3%以上の
添加では核特性並びに部材の延性に悪影響を及ぼす。The addition of Fe and Ni is effective in improving the corrosion resistance and mechanical properties of zirconium-based alloys. Therefore, each element is 0.
The content is preferably in the range of 0.05 to 0.3%. 0.
If the amount is less than 0.05%, the effect will be small, and if it is added more than 0.3%, it will have an adverse effect on the core properties and the ductility of the member.
MOは微量の添加で耐ノジユラ腐食性改善に効果がある
。なおMO添加のほかに微量のNb及びVを複合添加で
はより少ない添加量でかつ安定した耐食性を示す。それ
に元素の添加量はMoのみでは0.05〜5.0%が好
ましく、またそれらにNb及びV(7)1種もしくは2
種を0.05〜5.0%添加するとより効果的である。Addition of a small amount of MO is effective in improving nodule corrosion resistance. In addition to the addition of MO, the combined addition of trace amounts of Nb and V provides stable corrosion resistance with a smaller addition amount. In addition, the amount of elements added is preferably 0.05 to 5.0% for Mo alone, and Nb and V (7) or two.
It is more effective to add seeds in an amount of 0.05 to 5.0%.
これら元素の添加量の上限値を定めた理由は金属組織上
、金属間化合物あるいは金属第二相が多量に析出するた
めであり、かつ耐食性に寄与する元素が合金のマトリッ
クスに飽和するためで、これらは耐ノジュラ腐食性に有
効である。一方、これらの析出は部材の加工性及び延性
を低下させるので基本的には望ましくない、また同時に
多量の添加は核特性上好ましくない、つまりこれら元素
は熱中性子吸収断面積がZrに比べ著しく大きいことか
ら、中性子経済性が低下するからである。特に、Mo添
加量は0.2〜1.0重厘%が好ましく、0.2〜0.
5%が特に好ましい。また、Nb及び■添加量は0.0
5〜1.0%が好ましく、0.1−0.3%がより好ま
しい。The reason for setting the upper limit for the amount of addition of these elements is that intermetallic compounds or metal second phases precipitate in large quantities due to the metallographic structure, and the elements that contribute to corrosion resistance become saturated in the matrix of the alloy. These are effective in nodular corrosion resistance. On the other hand, these precipitations are basically undesirable because they reduce the workability and ductility of the member, and at the same time, their addition in large amounts is undesirable in terms of nuclear properties.In other words, the thermal neutron absorption cross section of these elements is significantly larger than that of Zr. This is because the neutron economy decreases. In particular, the amount of Mo added is preferably 0.2 to 1.0% by weight, and 0.2 to 0.0% by weight.
5% is particularly preferred. In addition, the amount of Nb and ■ added is 0.0
5-1.0% is preferable, and 0.1-0.3% is more preferable.
残部はジルコニウム及び不可避的な不純物、更に強度に
大きな影響を及ぼす酸素から成る。The remainder consists of zirconium, unavoidable impurities, and oxygen, which has a large effect on strength.
本発明の化学組成範囲では従来材に比べ塑性加工性、溶
接性に大幅な変化がなく、かつ耐食性に対しては通常の
製造工程で製造した燃料被覆管。Within the chemical composition range of the present invention, there is no significant change in plastic workability or weldability compared to conventional materials, and in terms of corrosion resistance, the fuel cladding tube is manufactured using a normal manufacturing process.
燃料スペーサ及び燃料チャンネルボックスの耐ノジュラ
腐食性を顕著に改善できることを見い出した。It has been found that the nodular corrosion resistance of fuel spacers and fuel channel boxes can be significantly improved.
本発明のジルコニウム基合金は、熱間加工後の冷間加工
と焼鈍との組返しを少なくとも3回繰返す加工を施すこ
とによって特に顕著な効果が発揮される。熱間加工及び
冷間加工後の焼鈍はいずれもジルコニウム合金中の添加
元素による金属間化合物が析出し、その過度な析出によ
って耐食性が低下する。しかし、本発明の合金はその析
出が抑制されるので、顕著な耐食性を有する。The zirconium-based alloy of the present invention exhibits particularly remarkable effects when it is processed by repeating cold working and annealing at least three times after hot working. In both hot working and annealing after cold working, intermetallic compounds due to added elements in the zirconium alloy precipitate, and the excessive precipitation reduces corrosion resistance. However, the alloy of the present invention has remarkable corrosion resistance because the precipitation is suppressed.
熱間加工温度は650〜750℃及び焼鈍温度は550
〜700℃で行うのが好ましい。特に。Hot working temperature is 650-750℃ and annealing temperature is 550℃
Preferably, the temperature is 700°C. especially.
最終焼鈍は500〜550℃で行うのが好ましい。The final annealing is preferably performed at 500-550°C.
また1本発明のジルコニウム基合金は特に突合せ溶接部
に対し顕著な効果を有する。溶接熱影響部は前述のよう
に祈出物が形成され耐食性が低下するので、そのような
場合に効果がある。Furthermore, the zirconium-based alloy of the present invention has a remarkable effect particularly on butt welds. As mentioned above, the welding heat affected zone is formed with debris and its corrosion resistance is reduced, so this method is effective in such cases.
実施例1
工業用綿Zrに重量で約0.15%S n 、 0.+
6%Fe、0.1.0%Cr、0.05%N1含む母合
金を溶製し、その母合金にさらにMOを約0.3%。Example 1 Industrial cotton Zr was coated with about 0.15% Sn, 0.15% by weight. +
A master alloy containing 6% Fe, 0.1.0% Cr, and 0.05% N1 was melted, and approximately 0.3% MO was further added to the master alloy.
0.5%、i、0%、5.0%、10% 添加シタ合金
を溶製した。各々の試料は1000℃溶体化処理しその
後750 ’Cで熱間圧延加工及び冷間圧延と600℃
焼なまし処理を3回繰返して薄板に加工した。冷間加工
率は断面減少率で70%ずつ行った。Sita alloys containing 0.5%, i, 0%, 5.0%, and 10% were melted. Each sample was solution treated at 1000°C, then hot rolled at 750'C and cold rolled at 600°C.
The annealing process was repeated three times and processed into a thin plate. The cold working rate was 70% in area reduction rate.
薄板より腐食試験片を採取して高温水蒸気中で腐食試験
を行った。試験条件は510℃、105kg/at!過
熱蒸気中に20h保持した。試験後、試験片の重量測定
、外観々察を行った。A corrosion test piece was taken from the thin plate and subjected to a corrosion test in high temperature steam. Test conditions were 510℃ and 105kg/at! It was kept in superheated steam for 20 hours. After the test, the weight of the test piece was measured and the appearance was inspected.
第1図は腐食増量とMO含有量の関係゛を示す線図であ
る。図よりMOを添加すると著しく腐食増量が減少する
ことが知られた。特に、微量の含有量で効果が現われ、
約0.5%で効果が飽和する腐食試験後の試験片外観を
観察した結果、Moを含まない試験片は白色のノジュラ
腐食がみられるが、MOを0.5%添加した試験片は黒
色の均一酸化皮膜を呈していた。FIG. 1 is a diagram showing the relationship between corrosion weight gain and MO content. From the figure, it was found that addition of MO significantly reduced corrosion weight gain. In particular, the effect appears with a trace amount of content,
As a result of observing the appearance of the test piece after the corrosion test where the effect is saturated at about 0.5%, the test piece that does not contain Mo shows white nodular corrosion, but the test piece with 0.5% MO added is black. It exhibited a uniform oxide film.
なお1Moを0.5%以上を含有したものも同様な外観
であった。このようにZr基合金はMOを含有すること
により耐ノジュラ腐食が顕著に向上することが判った。Note that those containing 0.5% or more of 1Mo also had a similar appearance. It has thus been found that the nodular corrosion resistance of Zr-based alloys is significantly improved by containing MO.
一方、前述の薄板より引張試験片を採取し、室温で試験
を行った伸びの結果を第3図に示す。On the other hand, a tensile test piece was taken from the above-mentioned thin plate and tested at room temperature. The elongation results are shown in FIG.
M o J量添加した試験片の伸びはMo添加しない試
験片の値と同等であるが、5%越えると、漸次伸び率が
低下する。従って延性の面で、Mo添加量を5%以下と
すべきである。The elongation of the test piece to which Mo is added is equivalent to the value of the test piece to which Mo is not added, but when it exceeds 5%, the elongation rate gradually decreases. Therefore, in terms of ductility, the amount of Mo added should be 5% or less.
実施例2 実施例1で用いた母合金(0,15%Sn。Example 2 Master alloy used in Example 1 (0.15% Sn.
0.16%Fe、0.10%Cr、0.05%Ni)に
約0.1%MO及び0.5%■を添加した合金を溶製し
た。試料は750℃で熱間加工後冷間加工と600℃焼
なまし処理を繰返して1 、5 nu t 板材に加工
した。An alloy was prepared by adding approximately 0.1% MO and 0.5% ■ to 0.16% Fe, 0.10% Cr, 0.05% Ni). The sample was hot worked at 750°C, followed by cold working and annealed at 600°C, and processed into a 1.5 nut plate.
薄板より腐食試験片を採取し、510℃、105kg/
ffl蒸気中に20h保持して耐食性を評価した。Corrosion test pieces were taken from thin plates and tested at 510℃ and 105kg/
Corrosion resistance was evaluated by holding in ffl steam for 20 hours.
本発明材の腐食増量は50 m g / d m 2で
あり、従来材の1050m g / d m2に比べ著
しく低く、また、その試験片外観は黒色の均一酸化皮膜
を呈しており、耐ノジュラ腐食性にすぐれていることが
判る。The corrosion weight increase of the material of the present invention is 50 mg/dm2, which is significantly lower than the 1050 mg/dm2 of the conventional material, and the appearance of the test piece shows a black uniform oxide film, making it resistant to nodular corrosion. It turns out that she has excellent sex.
実施例3
材料は、工業用綿Zrを用い、所定の合金元素を添加し
アーク溶解でインゴットにm製した。第1表はその化学
成分を示す。それぞれのインボッは第錫図に示す素材製
造工程を実施して管材に加工した。なお試料は製造工程
の中で熱間加工温度を2種に分けて加工温度の影響の有
無を確認できるようにした。Example 3 Industrial cotton Zr was used as the material, predetermined alloying elements were added, and an ingot was made by arc melting. Table 1 shows its chemical composition. Each ingot was processed into a pipe material by carrying out the material manufacturing process shown in Fig. In addition, the samples were divided into two types of hot working temperatures during the manufacturing process so that it was possible to confirm the presence or absence of the influence of the working temperature.
耐食性の評価として長尺の管材から約50an長さに切
断して腐食試験片を採取し、その後、530℃、105
kg/−蒸気中20hの腐食試験を行った。第2表にそ
の試験結果を示す、比較材の腐食特性はNα1のA加工
材で腐食増量が450mg/dm”、3加工材で100
0m g / d m”以上を示し、また試験片外観a
mではノジュラ腐食が著しく多く認められる。なおA加
工材の特性は腐食増量がB加工材に比べて低い、しかし
、ノジュラ腐食感受性としてみれば大差ない。To evaluate the corrosion resistance, a long pipe material was cut into a length of about 50an to take a corrosion test piece, and then it was heated at 530°C and 105°C.
A corrosion test was conducted for 20 hours in kg/- steam. The test results are shown in Table 2. The corrosion characteristics of the comparison materials are as follows: The corrosion increase is 450 mg/dm for the Nα1 A-processed material, and 100 mg/dm for the 3-processed material.
0m g/dm” or more, and the specimen appearance a
Nodular corrosion is observed in a significantly large amount in m. Note that the characteristic of processed material A is that the corrosion weight gain is lower than that of processed material B, but when viewed in terms of nodular corrosion susceptibility, there is not much difference.
第 2 表
これに対し本発明材はいずれの試料でも加工法によらず
腐食増量が50〜60mg/dm”の低水準にあり、ま
た試験片外観々察結果でも黒色の均一酸化を示し、ノジ
ュラ腐食は全く認められない。Table 2 In contrast, the corrosion weight increase of all samples of the present invention material was at a low level of 50 to 60 mg/dm'' regardless of the processing method, and the external observation results of the test pieces also showed black uniform oxidation and nodularity. No corrosion is observed.
このように本発明の化学組成で製造した燃料被覆管は従
来材に比べてすぐれた耐ノジュラ腐食性を示す。As described above, the fuel cladding tube manufactured with the chemical composition of the present invention exhibits superior nodular corrosion resistance compared to conventional materials.
〔実施例4〕
製品板材の評価については実施例3で溶製したインゴッ
トから一部切出し第4図に示す燃料スペーサの製造工程
、並びに燃料チャンネルボックスの製造工程でそれぞれ
板材に加工した。腐食試験はこれら板材から30nm幅
X50m長さX板厚のままの腐食試験片を採取し、実施
例3で行った腐食条件とした。その結果、比較材はノジ
ュラ腐食が著しく起こすのに対し、本発明材ではノジュ
ラ腐食が全く詔められない、このように燃料スペーサ及
びチャンネルボックスの耐食性は本発明材を用いること
によって飛躇的に向上することがわかった。[Example 4] Regarding the evaluation of product plates, a portion was cut out from the ingot produced in Example 3 and processed into plates in the fuel spacer manufacturing process and the fuel channel box manufacturing process shown in FIG. 4, respectively. For the corrosion test, corrosion test pieces with a width of 30 nm, a length of 50 m, and thickness as they were were taken from these plates, and the corrosion conditions used in Example 3 were used. As a result, nodular corrosion occurred significantly in the comparative material, whereas nodular corrosion was not observed in the inventive material at all.As seen above, the corrosion resistance of fuel spacers and channel boxes was dramatically improved by using the inventive material. I found that it improved.
本発明によれば、耐ノジュラ腐食性の著しくすくれたジ
ルコニウム合金が得られるので、それを使用した燃料被
覆管、燃料スペーサ、燃料チャンネルボックスの信頼性
の高いものが期待できる。According to the present invention, a zirconium alloy with extremely low nodular corrosion resistance can be obtained, so it is expected that highly reliable fuel cladding tubes, fuel spacers, and fuel channel boxes using the same can be obtained.
第1図は腐食増量とMo添加量との関係を示す線図、第
2図は伸びとMo添加量の関係を示す線図、第3図は燃
料集合体の断面図、第4図は燃料集合体各部材の製造工
程図、第5図は燃料棒の分解図、第6図は燃料スペーサ
の平面図、第7図は燃料スペーサ側面図、第8図は燃料
チャンネルボックスの斜視図、第9図は管材の製造工程
図である。
1・・・燃料ペレット、2・・・燃料被覆管、3・・・
端栓、4・・・燃料スペーサ、5・・・燃料チャンネル
ボックス、6・・・スペーサブリット、7・・・ランタ
ン型板バネ、8・・・上部タイプレート、9・・・下部
タイプレート1、′□
m、 木カ01ト (−′10)
招2図
f”lo環トカロ量 (wtγ。)
纂(+図Figure 1 is a diagram showing the relationship between corrosion weight increase and Mo addition amount, Figure 2 is a diagram showing the relationship between elongation and Mo addition amount, Figure 3 is a cross-sectional view of the fuel assembly, and Figure 4 is the fuel Figure 5 is an exploded view of the fuel rod, Figure 6 is a plan view of the fuel spacer, Figure 7 is a side view of the fuel spacer, Figure 8 is a perspective view of the fuel channel box, FIG. 9 is a diagram of the manufacturing process of the tube material. 1...Fuel pellets, 2...Fuel cladding tube, 3...
End plug, 4...Fuel spacer, 5...Fuel channel box, 6...Spacer brit, 7...Lantern type leaf spring, 8...Upper tie plate, 9...Lower tie plate 1 ,'□ m, wood 01t (-'10) Invitation 2 figure f"lo ring tocal quantity (wtγ.) 纂(+ figure
Claims (1)
0.05〜0.2%及びモリブデン0.05〜5.0%
含み、残部ジルコニウムからなることを特徴とする高耐
食性ジルコニウム基合金。 2、前記合金は冷間塑性加工及び該加工後の焼鈍が施さ
れ、祈出物を有する特許請求の範囲第1項に記載の高耐
食性ジルコニウム基合金。 3、前記合金は溶接接合され、所望の形状を有する特許
請求の範囲第1項又は第2項に記載の高耐食性ジルコニ
ウム基合金。 4、重量で、錫1〜2%、鉄0.1〜0.3%、クロム
0.05〜0.2%及びモリブデン0.05〜5.0%
と、ニッケル0.03〜0.1%、ニオブ0.05〜
5.0%及びバナジウム0.05〜5.0重の1種以上
とを含む、残部ジルコニウムからなることを特徴とする
高耐食性ジルコニウム基合金。[Claims] 1. By weight: 1-2% tin, 0.1-0.3% iron, 0.05-0.2% chromium, and 0.05-5.0% molybdenum.
A highly corrosion-resistant zirconium-based alloy characterized by containing zirconium and the remainder zirconium. 2. The highly corrosion-resistant zirconium-based alloy according to claim 1, wherein the alloy is subjected to cold plastic working and annealing after the working, and has a prayer object. 3. The highly corrosion-resistant zirconium-based alloy according to claim 1 or 2, wherein the alloy is welded and joined and has a desired shape. 4. By weight, tin 1-2%, iron 0.1-0.3%, chromium 0.05-0.2% and molybdenum 0.05-5.0%
, nickel 0.03~0.1%, niobium 0.05~
A highly corrosion-resistant zirconium-based alloy characterized by comprising 5.0% of vanadium and one or more of 0.05 to 5.0 parts of vanadium, the balance being zirconium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60171076A JPS6233734A (en) | 1985-08-05 | 1985-08-05 | Zirconium alloy having high corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60171076A JPS6233734A (en) | 1985-08-05 | 1985-08-05 | Zirconium alloy having high corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6233734A true JPS6233734A (en) | 1987-02-13 |
JPH0510415B2 JPH0510415B2 (en) | 1993-02-09 |
Family
ID=15916568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60171076A Granted JPS6233734A (en) | 1985-08-05 | 1985-08-05 | Zirconium alloy having high corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6233734A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024937A (en) * | 1988-01-22 | 1990-01-09 | Mitsubishi Metal Corp | Zr alloy for reactor fuel assembled body |
US5017336A (en) * | 1988-01-22 | 1991-05-21 | Mitsubishi Kinzoku Kabushiki Kaisha | Zironium alloy for use in pressurized nuclear reactor fuel components |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5137398A (en) * | 1974-09-27 | 1976-03-29 | Tokyo Daigaku |
-
1985
- 1985-08-05 JP JP60171076A patent/JPS6233734A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5137398A (en) * | 1974-09-27 | 1976-03-29 | Tokyo Daigaku |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024937A (en) * | 1988-01-22 | 1990-01-09 | Mitsubishi Metal Corp | Zr alloy for reactor fuel assembled body |
US5017336A (en) * | 1988-01-22 | 1991-05-21 | Mitsubishi Kinzoku Kabushiki Kaisha | Zironium alloy for use in pressurized nuclear reactor fuel components |
JP2687538B2 (en) * | 1988-01-22 | 1997-12-08 | 三菱マテリアル株式会社 | Zr alloy for nuclear reactor fuel assemblies |
Also Published As
Publication number | Publication date |
---|---|
JPH0510415B2 (en) | 1993-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4536119B2 (en) | Elements for use in nuclear reactors, comprising a zirconium-based alloy having creep resistance and corrosion resistance to water and water vapor, and a method for producing the same | |
JP4099493B2 (en) | Zirconium alloy composition with excellent creep resistance | |
US20060243358A1 (en) | Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion | |
JP5933640B2 (en) | Zirconium alloy resistant to shadow corrosion for parts of boiling water reactor nuclear fuel assemblies, parts made of the alloys, nuclear fuel assemblies, and uses thereof | |
US8070892B2 (en) | High Fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof | |
US5190721A (en) | Zirconium-bismuth-niobium alloy for nuclear fuel cladding barrier | |
US5972288A (en) | Composition of zirconium alloy having high corrosion resistance and high strength | |
JPH11101887A (en) | Zirconium alloy for use in aqueous environment subject to high fluence, corrosion-resistant nuclear reactor component, structural nuclear fuel assembly parts, and nuclear reactor fuel rod cladding consisting of the alloy | |
JP4982654B2 (en) | Zirconium alloy with improved corrosion resistance and method for producing zirconium alloy with improved corrosion resistance | |
JPH0371507B2 (en) | ||
JPH01119650A (en) | Manufacture of channel box for nuclear reactor fuel assembly | |
JPS6233734A (en) | Zirconium alloy having high corrosion resistance | |
JPH01301830A (en) | High corrosion-resistant zirconium alloy | |
JP2023525484A (en) | Cladding tubes, fuel rods and fuel assemblies for fuel rods for nuclear reactors | |
US5122334A (en) | Zirconium-gallium alloy and structural components made thereof for use in nuclear reactors | |
Besch et al. | Corrosion behavior of duplex and reference cladding in NPP Grohnde | |
JPS61184485A (en) | Fuel channel box | |
KR20010001111A (en) | Process for manufacturing a Zr-Nb-Sn-Fe-O alloy with high corrosion resistance,lowhydrogen pick-up rate and high strength, and articles resulting therefrom | |
JPS62180027A (en) | Zirconium alloy member | |
JPH07173587A (en) | Production of zirconium alloy welded member | |
JPH0762225B2 (en) | Manufacturing method of highly corrosion resistant zirconium alloy products | |
JPH04224648A (en) | High corrosion resistant and high strength zirconium alloy | |
JPS61164185A (en) | High corrosion-resistance fuel spacer | |
JPS6196048A (en) | Zirconium-base alloy and fuel assembly | |
JPS6335751A (en) | Zr alloy for nuclear reactor fuel clad pipe excellent in corrosion resistance |