JP2687538B2 - Zr alloy for nuclear reactor fuel assemblies - Google Patents

Zr alloy for nuclear reactor fuel assemblies

Info

Publication number
JP2687538B2
JP2687538B2 JP1010448A JP1044889A JP2687538B2 JP 2687538 B2 JP2687538 B2 JP 2687538B2 JP 1010448 A JP1010448 A JP 1010448A JP 1044889 A JP1044889 A JP 1044889A JP 2687538 B2 JP2687538 B2 JP 2687538B2
Authority
JP
Japan
Prior art keywords
alloy
reactor fuel
corrosion resistance
strength
relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1010448A
Other languages
Japanese (ja)
Other versions
JPH024937A (en
Inventor
裕 松尾
毅 磯部
数義 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to FR898900713A priority Critical patent/FR2626291B1/en
Publication of JPH024937A publication Critical patent/JPH024937A/en
Priority to US07/558,797 priority patent/US5017336A/en
Application granted granted Critical
Publication of JP2687538B2 publication Critical patent/JP2687538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〔産業上を利用分野〕 この発明は、特に高温高圧水や高温高圧水蒸気にさら
される原子炉燃料被覆管や上記原子炉燃料被覆管を多数
本一定間隔において支持する支持格子(以下、原子炉燃
料被覆管および上記原子炉燃料被覆管を支持する支持格
子を総称して原子炉燃料集合体という)に用いた場合
に、すぐれた耐食性、強度および耐緩和性を示すZr合金
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a reactor fuel cladding tube exposed to high-temperature and high-pressure water or high-temperature and high-pressure steam, and a support for supporting a large number of the reactor fuel cladding tubes at regular intervals. Zr showing excellent corrosion resistance, strength and relaxation resistance when used in a lattice (hereinafter, the reactor fuel cladding tube and the supporting lattice supporting the reactor fuel cladding tube are collectively referred to as a reactor fuel assembly) It concerns alloys.

〔従来の技術〕 従来、一般に、原子力発電プラントの原子炉に加圧水
型(PWR)のものがあり、この原子炉の原子炉燃料集合
体の製造にはZr合金が用いられ、このZr合金の代表的な
ものとして、重量%で(以下%は重量%を示す)、 Sn:1.2〜1.7%、Fe:0.18〜0.24%、Cr:0.07〜0.13%、 を含有し、残りがZrと不可避不純物からなる組成を有す
るジルカイロ−4が使用されていることは良く知られる
ところである。
[Prior Art] Conventionally, generally, there is a pressurized water type (PWR) reactor in a nuclear power plant, and a Zr alloy is used for manufacturing a reactor fuel assembly of this reactor. In terms of weight% (hereinafter% means% by weight), Sn: 1.2 to 1.7%, Fe: 0.18 to 0.24%, Cr: 0.07 to 0.13%, and the balance is Zr and inevitable impurities. It is well known that Zircairo-4 having the following composition is used.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

一方、近年、原子力発電プラントの経済性向上のため
の燃料の高燃焼度化に伴って、原子炉燃料集合体の炉内
滞在時間が長期化する傾向にあるが、上記従来のZr合金
で作られた原子炉燃料集合体では、耐食性、強度および
耐緩和性(クリープ特性)が十分でないことに原因に
て、これに対応することができないのが現状であった。
On the other hand, in recent years, there has been a tendency for the residence time in the reactor fuel assembly in the reactor to increase with the increase in burnup of fuel for improving the economic efficiency of nuclear power plants. In the present situation, it is impossible to deal with the above-mentioned reactor fuel assemblies due to insufficient corrosion resistance, strength and relaxation resistance (creep characteristics).

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、上述のような観点から、原子
炉燃料集合体として用いた場合に、一層すぐれた耐食
性、強度および耐緩和性(クリープ特性)を示すZr合金
を開発すべく研究を行なった結果、 上記従来のZr合金において、Sn含有量を相対的に低く
した状態で、Taを含有させると、一段と耐食性が向上す
るようになり、さらにVおよびMoを含有させると、強度
および耐緩和性(クリープ特性)の改善がみられるよう
になり、さらに必要に応じてNbを含有させると耐食性が
向上し、原子炉燃料集合体として用いた場合に長期に亘
る使用が可能になるという知見を得たのである。
Therefore, the inventors of the present invention, from the above-mentioned viewpoints, conduct research to develop a Zr alloy that exhibits superior corrosion resistance, strength, and relaxation resistance (creep characteristics) when used as a reactor fuel assembly. As a result, in the above-mentioned conventional Zr alloy, when Ta is contained in a state where the Sn content is relatively low, the corrosion resistance is further improved, and when V and Mo are further contained, the strength and the resistance are improved. It has been found that the relaxation property (creep property) has been improved, and if Nb is added as necessary, the corrosion resistance is improved and it can be used for a long time when used as a reactor fuel assembly. Is obtained.

したがって、この発明は、上記知見にもとづいてなさ
れたものであって、 (1) Sn:0.2〜1.7%、Fe:0.18〜0.6%、 Cr:0.07〜0.4%、 を含有し、 Ta:0.01〜0.2%、 を含有し、さらに、 V:0.05〜1%、Mo:0.05〜1%、 のうちの1種または2種を含有し、残りがZrと不可避不
純物からなる組成を有する耐食性、強度および耐緩和性
(クリープ特性)のすぐれた原子炉燃料集合体用Zr合
金、 (2) Sn:0.2〜1.7%、Fe:0.18〜0.6%、 Cr:0.07〜0.4%、 を含有し、 Ta:0.01〜0.2%、 を含有し、 V:0.05〜1%、Mo:0.05〜1%、 のうちの1種または2種を含有し、さらに、 Nb:0.05〜1%、 を含有し、残りがZrと不可避不純物からなる組成を有す
る耐食性、強度および耐緩和性(クリープ特性)のすぐ
れた原子炉燃料集合体用Zr合金に特徴を有するものであ
る。
Therefore, the present invention has been made based on the above findings, and contains (1) Sn: 0.2 to 1.7%, Fe: 0.18 to 0.6%, Cr: 0.07 to 0.4%, Ta: 0.01 to 0.2%, V: 0.05 to 1%, Mo: 0.05 to 1%, and one or two of them, with the balance being Zr and unavoidable impurities. Zr alloy for reactor fuel assemblies with excellent relaxation resistance (creep characteristics), (2) Sn: 0.2 to 1.7%, Fe: 0.18 to 0.6%, Cr: 0.07 to 0.4%, Ta: 0.01 To 0.2%, V: 0.05 to 1%, Mo: 0.05 to 1%, and 1 or 2 types, and Nb: 0.05 to 1%, and the rest is Zr. It is characterized by a Zr alloy for a nuclear reactor fuel assembly, which has a composition of unavoidable impurities and excellent corrosion resistance, strength, and relaxation resistance (creep characteristics).

つぎに、この発明のZr合金において、成分組成範囲を
上記の通りに限定した理由を説明する。
Next, in the Zr alloy of the present invention, the reason why the component composition range is limited as described above will be explained.

(a) Sn Sn成分には、合金の強度を向上させる作用があるが、
その含有量が0.2%未満では所定の強度および耐緩和性
(クリープ特性)を確保することができず、一方その含
有量が1.7%を越えると、耐食性の著しい低下をきたす
ようになることから、その含有量を0.2〜1.7%と定め
た。
(A) Sn The Sn component has the function of improving the strength of the alloy,
If the content is less than 0.2%, the specified strength and relaxation resistance (creep property) cannot be secured, while if the content exceeds 1.7%, the corrosion resistance will be significantly reduced. Its content was set to 0.2 to 1.7%.

(b) FeおよびCr これらの成分には、共存した状態で合金の耐食性と強
度を向上させる作用があるが、その含有量がそれぞれF
e:0.18%未満およびCr:0.07%未満では前記作用に所望
の効果が得られず、一方その含有量がFe:0.6%およびC
r:0.4%を越えると、耐食性が著しく低下するようにな
ることから、その含有量をそれぞれFe:0.18〜0.6%、C
r:0.07〜0.4%と定めた。
(B) Fe and Cr These components have the function of improving the corrosion resistance and strength of the alloy in the coexisting state, but their contents are F and F, respectively.
If e: less than 0.18% and Cr: less than 0.07%, the desired effect is not obtained on the other hand, while its content is Fe: 0.6% and C
If r: 0.4% is exceeded, the corrosion resistance will decrease significantly, so the content of Fe: 0.18-0.6%, C
r: 0.07 to 0.4%.

(c) Ta Ta成分には、合金の耐食性を一段と向上させる作用が
あるが、その含有量がTa:0.01%未満では所望の耐食性
向上効果が得られず、一方Ta含有量が0.2%を越えても
耐食性向上があまりなく、中性子吸収が増大することか
ら、Ta:0.01〜0.2%と定めた。
(C) Ta The Ta component has the effect of further improving the corrosion resistance of the alloy, but if the Ta content is less than 0.01%, the desired corrosion resistance improving effect cannot be obtained, while the Ta content exceeds 0.2%. However, Ta: 0.01-0.2% was set because corrosion resistance does not improve so much and neutron absorption increases.

(d) VおよびMo これらの成分には、合金の強度および耐緩和性(クリ
ープ特性)を向上させる作用があるが、その含有量がそ
れぞれV:0.05%未満およびMo:0.05%未満では所望の強
度および耐緩和性(クリープ特性)向上効果が得られ
ず、一方その含有量がそれぞれV:1%およびMo:1%を越
えると耐食性が低下するようになることから、その含有
量をV:0.05〜1%、Mo:0.05〜1%と定めた。
(D) V and Mo These components have the effect of improving the strength and relaxation resistance (creep property) of the alloy, but if their contents are V: less than 0.05% and Mo: less than 0.05%, respectively, they are desirable. The effect of improving strength and relaxation resistance (creep property) cannot be obtained. On the other hand, if the content exceeds V: 1% and Mo: 1%, the corrosion resistance will decrease, so the content should be V: It was set to 0.05 to 1% and Mo: 0.05 to 1%.

(e) Nb Nb成分には、合金の耐食性を一段と向上させる作用が
あるので必要に応じて添加するが、その含有量がNb:0.0
5%未満では所望の耐食性向上効果が得られず、一方Nb
の含有量が1%を越えると耐食性が低下するようになる
ことからNb:0.05〜1%と定めた。
(E) Nb The Nb component has the action of further improving the corrosion resistance of the alloy, so it is added if necessary, but its content is Nb: 0.0
If it is less than 5%, the desired effect of improving corrosion resistance cannot be obtained, while Nb
When the content of Cr exceeds 1%, the corrosion resistance decreases, so Nb: 0.05-1% was set.

〔実施例〕〔Example〕

つぎに、この発明のZr合金を実施例により具体的に説
明する。
Next, the Zr alloy of the present invention will be specifically described by way of Examples.

溶解原料として、99.8%以上の各種の純度を有するZr
スポンジ、いずれも99.9%以上の純度を有するSn粉末、
Fe粉末、Cr粉末、Nb粉末、Ta粉末、V粉末、およびMo粉
末を用意し、これら原料を所定の配合組成に配合し、混
合した後、アーク炉にて溶解してボタン材とし、ついで
このボタン材に、温度:1010℃に15分間保持した後、熱
間鍛造を施し、再び1010℃に加熱後、水焼入れを行な
い、さらに機械加工により酸化スケールを除去した後、
温度:600℃、圧延率:50%の条件で熱間圧延を行ない、
引続いて酸洗して酸化スケールを除去した後、50%の圧
延率で冷間圧延を行ない、ついで温度:550〜750℃に2
時間保持の条件で再結晶焼鈍を行ない、再び50%の圧延
率で冷間圧延を行なうことによって、それぞれ第1表に
示される組成を有し、かつ厚さがいずれも0.5mmの本発
明Zr合金板材1〜3、比較Zr合金板材1〜14および従来
Zr合金(ジルカロイ −4)板材をそれぞれ製造した。
As a melting raw material, Zr with various purity of 99.8% or more
Sponge, Sn powder with a purity of 99.9% or higher,
Fe powder, Cr powder, Nb powder, Ta powder, V powder, and Mo powder were prepared, and these raw materials were mixed in a predetermined composition and mixed, and then melted in an arc furnace to form a button material. After holding the button material at a temperature of 1010 ° C for 15 minutes, hot forging was performed, heated again to 1010 ° C, water-quenched, and further, after removing oxide scale by machining,
Hot rolling is performed under the conditions of temperature: 600 ° C and rolling rate: 50%,
Then, after pickling to remove the oxide scale, cold rolling was performed at a rolling rate of 50%, and then the temperature was raised to 550 to 750 ° C.
By performing recrystallization annealing under the condition of holding time and cold rolling again at a rolling ratio of 50%, each of the Zr of the present invention having the composition shown in Table 1 and a thickness of 0.5 mm is obtained. Alloy sheet materials 1-3, comparative Zr alloy sheet materials 1-14 and conventional
Zr alloy (Zircaloy -4) Each plate material was manufactured.

なお、比較Zr合金板材1〜14は、いずれも構成成分の
うちのいずれの成分含有量(第1表に※印を付す)がこ
の発明の範囲から外れた組成をもつものである。
Each of the comparative Zr alloy sheet materials 1 to 14 has a composition in which any of the constituent contents (marked with * in Table 1) is out of the range of the present invention.

ついで、この結果得られた各種の板材から、20mm×25
mmの寸法を有し、かつ長手方向片側から5mmのところに
直径:3mmの小孔を有する試験片を切り出し、通常の静置
式オートクレーブ装置を用い、温度:400℃、圧力:105kg
/cm2の高温高圧水蒸気中の原子炉燃料集合体がさらされ
る条件で炉外腐食試験を行ない、120日経過後の腐食増
量を測定した。
Then, from the various plate materials obtained as a result, 20 mm × 25
Cut out a test piece having a size of mm and a small hole with a diameter of 3 mm at 5 mm from one side in the longitudinal direction and using a normal static autoclave device, temperature: 400 ° C, pressure: 105 kg
An external corrosion test was conducted under the condition that the reactor fuel assembly in high temperature / high pressure steam of / cm 2 was exposed, and the corrosion increase after 120 days was measured.

また、上記の各種の板材から、平行部長さ:32mm、平
行部幅:6.25±0.05mm、長さ:100mmの寸法をもった試験
片を切り出し、インストロン型引張試験装置を用いて、
常温引張強さを測定した。
Further, from the above various plate materials, the parallel portion length: 32 mm, the parallel portion width: 6.25 ± 0.05 mm, length: cut out a test piece having a dimension of 100 mm, using an Instron type tensile tester,
The room temperature tensile strength was measured.

さらに、上記各種の板材から、幅:5±0.01mm、長さ:1
00±0.2mmの寸法をもった試験片を、上記幅が圧延方向
に平行にかつ上記長さが圧延方向に垂直になるように切
り出し、上記切り出した試験片に曲げの初期応力σ0:2
4.6kg/mm2を付与しながら温度:400℃、240時間保持の応
力緩和試験したのち、再び試験片の曲げ応力σを測定
し、応力緩和試験後の曲げ応力:σに対する初期曲げ応
力:σの比; をもって耐緩和性を評価した。この非応力緩和比が1.0
に近いほど耐緩和性がすぐれていることになり、原子炉
燃料集合体の材料としてすぐれていることを示す。
Furthermore, from the above various plate materials, width: 5 ± 0.01 mm, length: 1
A test piece having a dimension of 00 ± 0.2 mm was cut out so that the width was parallel to the rolling direction and the length was perpendicular to the rolling direction, and the initial stress of bending σ 0 : 2 was applied to the cut out test piece.
After applying a stress of 4.6 kg / mm 2 for 400 hours at a temperature of 400 ° C for a stress relaxation test, measure the bending stress σ of the test piece again, and after the stress relaxation test, the bending stress: σ initial bending stress: σ Ratio of 0 ; Was evaluated for relaxation resistance. This non-stress relaxation ratio is 1.0
The closer it is to, the better the relaxation resistance is, which means that it is the better material for the reactor fuel assembly.

上記腐食増量、常温引張強さおよび非応力緩和比の測
定結果を第1表に示した。
Table 1 shows the measurement results of the corrosion weight increase, the room temperature tensile strength and the non-stress relaxation ratio.

〔発明の効果〕〔The invention's effect〕

第1表に示される結果から、本発明Zr合金板材1〜3
は、いずれも従来Zr合金(ジルカロイ−4)板材よりも
すぐれた耐食性、強度および耐緩和性を示し、さらに、
比較的Zr合金板材1〜14にみられるように、構成成分の
うちのいずれかの成分含有量でもこの発明の範囲から外
れると、耐食性、強度および耐緩和性のうちの少なくと
もいずれかが低下するようになることが明らかである。
From the results shown in Table 1, the present invention Zr alloy sheet materials 1 to 3
Shows superior corrosion resistance, strength and relaxation resistance to the conventional Zr alloy (Zircaloy-4) plate material.
As is seen in the Zr alloy sheet materials 1 to 14, if the content of any one of the constituents deviates from the scope of the present invention, at least one of corrosion resistance, strength and relaxation resistance decreases. It is clear that

上述のように、この発明のZr合金は、原子炉燃料集合
がさらされる条件下ですぐれた耐食性、強度および耐緩
和性を示すので、これを実用に供した場合には著しく長
期に亘っての使用が可能となるなど工業上有用な特性を
有するものである。
As described above, the Zr alloy of the present invention exhibits excellent corrosion resistance, strength, and relaxation resistance under the conditions to which the reactor fuel assembly is exposed. It has industrially useful properties such that it can be used.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Sn:0.2〜1.7%、Fe:0.18〜0.6%、Cr:0.07
〜0.4%、 を含有し、 Ta:0.01〜0.2%、 を含有し、さらに、 V:0.05〜1%、Mo:0.05〜1%、 のうちの1種または2種を含有し、残りがZrと不可避不
純物からなる組成(以下重量%)を有することを特徴と
する原子炉燃料集合体用Zr合金。
1. Sn: 0.2 to 1.7%, Fe: 0.18 to 0.6%, Cr: 0.07
~ 0.4%, Ta: 0.01 ~ 0.2%, V: 0.05 ~ 1%, Mo: 0.05 ~ 1%, and 1 or 2 of the following, the balance Zr A Zr alloy for a nuclear reactor fuel assembly, characterized by having a composition (hereinafter referred to as “wt%”) composed of and unavoidable impurities.
【請求項2】Sn:0.2〜1.7%、Fe:0.18〜0.6%、Cr:0.07
〜0.4%、 を含有し、 Ta:0.01〜0.2%、 を含有し、 V:0.05〜1%、Mo:0.05〜1%、 のうちの1種または2種を含有し、さらに、 Nb:0.05〜1%を含有し、残りがZrと不可避不純物から
なる組成(以下重量%)を有することを特徴とする原子
炉燃料集合体用Zr合金。
2. Sn: 0.2 to 1.7%, Fe: 0.18 to 0.6%, Cr: 0.07
~ 0.4%, Ta: 0.01 ~ 0.2%, V: 0.05 ~ 1%, Mo: 0.05 ~ 1%, and 1 or 2 kinds of Nb: 0.05 A Zr alloy for a reactor fuel assembly, characterized in that it contains ˜1%, and the balance is Zr and unavoidable impurities (hereinafter referred to as “wt%”).
JP1010448A 1988-01-22 1989-01-19 Zr alloy for nuclear reactor fuel assemblies Expired - Lifetime JP2687538B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR898900713A FR2626291B1 (en) 1988-01-22 1989-01-20 ZIRCONIUM-BASED ALLOY FOR USE AS A FUEL ASSEMBLY IN A NUCLEAR REACTOR
US07/558,797 US5017336A (en) 1988-01-22 1990-07-26 Zironium alloy for use in pressurized nuclear reactor fuel components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-12324 1988-01-22
JP1232488 1988-01-22

Publications (2)

Publication Number Publication Date
JPH024937A JPH024937A (en) 1990-01-09
JP2687538B2 true JP2687538B2 (en) 1997-12-08

Family

ID=11802133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010448A Expired - Lifetime JP2687538B2 (en) 1988-01-22 1989-01-19 Zr alloy for nuclear reactor fuel assemblies

Country Status (1)

Country Link
JP (1) JP2687538B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261666B1 (en) * 1998-02-04 2000-07-15 장인순 Composition of zirconium alloy having low corrosion rate and high strength
JP2006028553A (en) * 2004-07-13 2006-02-02 Toshiba Corp Zirconium alloy and channel box utilizing the same
JP5551869B2 (en) * 2008-12-22 2014-07-16 株式会社グローバル・ニュークリア・フュエル・ジャパン Zirconium-based alloy, water-cooled nuclear reactor fuel assembly and channel box using the same
US8043637B2 (en) 2009-06-15 2011-10-25 The Dial Corporation Combinations of herb extracts having synergistic antioxidant effect, and methods relating thereto
CN105543560B (en) * 2016-01-06 2018-09-11 中国核动力研究设计院 A kind of nuclear-used zirconium alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170552A (en) * 1985-01-22 1986-08-01 ウエスチングハウス エレクトリック コ−ポレ−ション Production of article comprising zirconium-niobium alloy containing tin and third alloy element
JPS61174347A (en) * 1985-01-30 1986-08-06 Hitachi Ltd Nodular corrosion resisting zirconium-base alloy
JPS6233734A (en) * 1985-08-05 1987-02-13 Hitachi Ltd Zirconium alloy having high corrosion resistance
JPH01149932A (en) * 1987-10-28 1989-06-13 Westinghouse Electric Corp <We> Production of zirconium alloy for liner of fuel element
JPH01301830A (en) * 1988-05-30 1989-12-06 Sumitomo Metal Ind Ltd High corrosion-resistant zirconium alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170552A (en) * 1985-01-22 1986-08-01 ウエスチングハウス エレクトリック コ−ポレ−ション Production of article comprising zirconium-niobium alloy containing tin and third alloy element
JPS61174347A (en) * 1985-01-30 1986-08-06 Hitachi Ltd Nodular corrosion resisting zirconium-base alloy
JPS6233734A (en) * 1985-08-05 1987-02-13 Hitachi Ltd Zirconium alloy having high corrosion resistance
JPH01149932A (en) * 1987-10-28 1989-06-13 Westinghouse Electric Corp <We> Production of zirconium alloy for liner of fuel element
JPH01301830A (en) * 1988-05-30 1989-12-06 Sumitomo Metal Ind Ltd High corrosion-resistant zirconium alloy

Also Published As

Publication number Publication date
JPH024937A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
EP0475159B1 (en) Zirlo material composition and fabrication processing
US20060243358A1 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion
JP4536119B2 (en) Elements for use in nuclear reactors, comprising a zirconium-based alloy having creep resistance and corrosion resistance to water and water vapor, and a method for producing the same
JP2914457B2 (en) ZIRLO type material
US5985211A (en) Composition of zirconium alloy having low corrosion rate and high strength
US5017336A (en) Zironium alloy for use in pressurized nuclear reactor fuel components
KR101604105B1 (en) Zirconium alloy having excellent corrosion resistance and creep resistance and method of manufacturing for it
US5972288A (en) Composition of zirconium alloy having high corrosion resistance and high strength
JPS63303038A (en) Core of light water furnace increased in resistance against stress corrosion cracking
JP2687538B2 (en) Zr alloy for nuclear reactor fuel assemblies
EP0776379B1 (en) Nuclear fuel element for a pressurized-water reactor
JP4982654B2 (en) Zirconium alloy with improved corrosion resistance and method for producing zirconium alloy with improved corrosion resistance
US9725791B2 (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
EP3064605A1 (en) Zirconium alloys with improved creep resistance due to final heat treatments
US10221475B2 (en) Zirconium alloys with improved corrosion/creep resistance
KR940010230B1 (en) Improvement in structural parts of austenitic nichel-chromium-iron alloy
JP2674052B2 (en) Zr alloy with excellent corrosion resistance for reactor fuel cladding
JPH076018B2 (en) Zr alloy with excellent corrosion resistance for reactor fuel cladding
JPH01301830A (en) High corrosion-resistant zirconium alloy
US5122334A (en) Zirconium-gallium alloy and structural components made thereof for use in nuclear reactors
US7627075B2 (en) Zirconium-based alloy and method for making a component for nuclear fuel assembly with same
US3431104A (en) Zirconium base alloy
JPS6335749A (en) Zr alloy for nuclear reactor fuel clad pipe excellent in corrosion resistance
JPH076019B2 (en) Zr alloy with excellent corrosion resistance for reactor fuel cladding
JPS6233734A (en) Zirconium alloy having high corrosion resistance