JPS6233723B2 - - Google Patents

Info

Publication number
JPS6233723B2
JPS6233723B2 JP11392382A JP11392382A JPS6233723B2 JP S6233723 B2 JPS6233723 B2 JP S6233723B2 JP 11392382 A JP11392382 A JP 11392382A JP 11392382 A JP11392382 A JP 11392382A JP S6233723 B2 JPS6233723 B2 JP S6233723B2
Authority
JP
Japan
Prior art keywords
temperature
winding
cooling medium
control circuit
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11392382A
Other languages
Japanese (ja)
Other versions
JPS595607A (en
Inventor
Katamasa Harumoto
Masanori Yamaguchi
Takao Kumasaka
Yoshiaki Inui
Yutaka Furuya
Yoshio Yoshida
Toshio Kusumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kansai Denryoku KK filed Critical Hitachi Ltd
Priority to JP11392382A priority Critical patent/JPS595607A/en
Publication of JPS595607A publication Critical patent/JPS595607A/en
Publication of JPS6233723B2 publication Critical patent/JPS6233723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 本発明は強制冷却式の静止誘導電器に係り、特
に巻線及び鉄心を有する静止誘導電器の負荷変動
に応じて前記静止誘導電器を冷却するクーラの運
転台数を変化させる強制冷却式の静止誘導電器に
用いて好適な巻線温度調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a forced cooling type stationary induction electric appliance, and in particular, the number of operating coolers for cooling the stationary induction electric appliance is changed in accordance with load fluctuations of the stationary induction electric appliance having windings and iron cores. The present invention relates to a winding temperature adjustment device suitable for use in forced cooling stationary induction appliances.

一般に、電気機器は、これを使用する際に発熱
を伴うものであることは周知の通りであり、電気
機器の種類や容量に応じて種々の冷却方式が提供
されている。この電気機器のうち、静止誘導電器
は、巻線と鉄心とを備えて構成されており、変圧
器やリアクトルがこれに相当する。ここでは、変
圧器を例にとつて以下に説明する。
It is generally known that electrical equipment generates heat when used, and various cooling methods are provided depending on the type and capacity of the electrical equipment. Among these electric devices, stationary induction electric devices include windings and iron cores, and correspond to transformers and reactors. Here, a description will be given below using a transformer as an example.

第1図は、従来の強制冷却変圧器の概略構成を
示す構成図である。第1図において、静止誘導電
器としての変圧器1は、鉄心2の周囲に巻回され
た巻線3を上部及び下部から支持すると共に前記
鉄心2を締付ける上部及び下部締付金具4及び5
を含んで構成されており、この変圧器1は冷却媒
体としての冷却油6と共にタンク7内に収容され
ている。このタンク7の上部ヘツダ及び下部ヘツ
ダには、上部配管9及び冷却油6を強制循環させ
るポンプ10を備えた下部配管11を介して冷却
油6を冷却するクーラ12が複数台接続されてい
る。前記クーラ12は、図示しないが多数の配管
にフインを設けると共に前記フインを強制冷却す
るフアンを設け、かつ前記ポンプ10を付属した
ものとして構成されている。また、前記クーラ1
2等は、タンク1台に付き、概ね10台位設けられ
ている。従つて、クーラ12等の各構成要素で同
一のものには同一の符号を付し、かつ同一系統の
ものには同一の添字を付して説明をする。前記タ
ンク7の上部には、ブツシング13が設けられて
おり、変圧器1からはブツシング13、配線14
を介して図示しない負荷に電力が供給されるよう
になつている。前記配線14には計器用変流器
(以下、CTという)15が設けられており、この
CT15によつて負荷変動が検出できるようにな
つている。前記CT15で検出された負荷変動
は、制御回路16に取り込まれており、ポンプ1
0及びクーラ12のフアン(図示せず)からなる
補機の損失を低減するため、負荷の変動に応じて
各クーラ12の運転台数を前記制御回路16から
の運転指令17に基づいて変更制御するようにな
つている。なお、運転指令17は、ポンプ10及
びクーラ12のフアンを運転停止させる信号であ
る。
FIG. 1 is a block diagram showing the schematic structure of a conventional forced cooling transformer. In FIG. 1, a transformer 1 as a stationary induction electric appliance supports a winding 3 wound around an iron core 2 from upper and lower sides, and upper and lower clamping fittings 4 and 5 for tightening the iron core 2.
The transformer 1 is housed in a tank 7 together with cooling oil 6 as a cooling medium. A plurality of coolers 12 for cooling the cooling oil 6 are connected to the upper and lower headers of the tank 7 via an upper piping 9 and a lower piping 11 equipped with a pump 10 for forcibly circulating the cooling oil 6. Although not shown, the cooler 12 is configured such that a large number of pipes are provided with fins, a fan is provided for forcibly cooling the fins, and the pump 10 is attached. In addition, the cooler 1
There are approximately 10 2nd class seats per tank. Therefore, the same components such as the cooler 12 are given the same reference numerals, and the same systems are given the same suffixes in the description. A bushing 13 is provided on the upper part of the tank 7, and the bushing 13 and wiring 14 are connected from the transformer 1.
Power is supplied to a load (not shown) through the power supply. The wiring 14 is provided with a current transformer (hereinafter referred to as CT) 15.
Load fluctuations can be detected by CT15. The load fluctuation detected by the CT 15 is taken into the control circuit 16, and the
In order to reduce the loss of auxiliary equipment consisting of fans (not shown) for the coolers 12 and 12, the number of operating coolers 12 is changed and controlled based on the operation command 17 from the control circuit 16 according to load fluctuations. It's becoming like that. Note that the operation command 17 is a signal for stopping the operation of the pump 10 and the fan of the cooler 12.

このように構成された従来例によれば、変圧器
1に接続された負荷の変動をCT15によつて検
出し、この検出信号を制御回路16に取り込み、
制御回路16は前記変圧器1の定格に対する負荷
変動の割合に応じてクーラ12(ポンプ10を含
む)の運転台数を変更制御する運転指令信号17
を各クーラ12に出力する。このようにクーラ1
2の運転制御がされている場合、低減負荷状態か
ら負荷が急増したことにより巻線温度が著しく増
大するという問題がある。この問題について第2
図を参照して説明する。
According to the conventional example configured in this way, fluctuations in the load connected to the transformer 1 are detected by the CT 15, this detection signal is taken into the control circuit 16,
The control circuit 16 generates an operation command signal 17 that changes and controls the number of operating coolers 12 (including the pump 10) according to the ratio of load fluctuation to the rating of the transformer 1.
is output to each cooler 12. Cooler 1 like this
When the operation control described in No. 2 is performed, there is a problem in that the winding temperature increases significantly due to a sudden increase in load from a reduced load state. Regarding this issue, the second
This will be explained with reference to the figures.

第2図は、負荷電流に対する冷却油及び巻線温
度の関係を示す特性図であり、横軸に時間tを、
縦軸には負荷電流I、巻線温度許容値θP、巻線
温度θW及び冷却油温度θOをそれぞれ取つたもの
である。
FIG. 2 is a characteristic diagram showing the relationship between cooling oil and winding temperature with respect to load current, with time t plotted on the horizontal axis.
The vertical axis shows load current I, permissible winding temperature θ P , winding temperature θ W and cooling oil temperature θ O , respectively.

第2図において、時刻t1以前の負荷電流I10は、
変圧器1の定格容量に比較して小さいものとする
と、クーラ12は巻線3の温度が許容値を超えな
い程度まで低減された台数で運転されている。こ
のため、冷却油温度は、一般に定格運転状態の冷
却油温度と比較して高くなつている。
In FIG. 2, the load current I 10 before time t 1 is
Assuming that the capacity is small compared to the rated capacity of the transformer 1, the number of coolers 12 is reduced to such an extent that the temperature of the winding 3 does not exceed an allowable value. Therefore, the cooling oil temperature is generally higher than the cooling oil temperature in the rated operating state.

時刻t1において、負荷が急増した場合、CT1
5によつて負荷電流I20が検出されるので、この
電流値を取り込んだ制御回路16は、クーラ12
a,12b,…,(ポンプ10a,10b,…)
を一斉に運転する。しかしながら、この時点t1
降に、全クーラ12a,12bを一斉運転しても
冷却油温度の時定数が、数時間と長いため、冷却
油温度θOは、図に示す曲線Aのように徐々にし
か低下しない。この結果、時刻t1以降の巻線3の
巻線温度θWは、図に示す曲線Bのように急激に
上昇し、巻線許容温度θPを超えてしまい、冷却
油温度θOが一定値θO1に低下するまでの期間t1
〜t2は許容温度θP以下にならないという不都合
な現象が生じる。従つて、この期間t1〜t2におい
て、変圧器1の巻線3は、熱的に著しく劣化する
という欠点があつた。
At time t 1 , if the load suddenly increases, CT1
Since the load current I20 is detected by the cooler 12, the control circuit 16 that has taken in this current value
a, 12b,..., (pump 10a, 10b,...)
drive all at once. However, after this time t1 , even if all the coolers 12a and 12b are operated at the same time, the time constant of the cooling oil temperature is as long as several hours, so the cooling oil temperature θ O gradually decreases as shown in the curve A shown in the figure. It only decreases. As a result, the winding temperature θ W of the winding 3 after time t 1 rises rapidly as shown by curve B shown in the figure, exceeding the permissible winding temperature θ P , and the cooling oil temperature θ O remains constant. The period t 1 until it drops to the value θ O1
An inconvenient phenomenon occurs in that the temperature does not fall below the allowable temperature θ P at ~t 2 . Therefore, during this period t 1 to t 2 , the winding 3 of the transformer 1 had the disadvantage of being significantly thermally degraded.

本発明の目的は、上記従来技術の欠点を解消
し、負荷急増時の巻線温度上昇を防止して巻線の
熱的劣化の防止を図ると共に、低負荷時にクーラ
の運転台数を低減して省エネルギー化を図つた巻
線温度調整装置を提供するにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to prevent the winding temperature from rising when the load suddenly increases, to prevent thermal deterioration of the winding, and to reduce the number of coolers in operation at low loads. An object of the present invention is to provide a winding temperature regulating device that saves energy.

本発明は、上記目的を達成するため、負荷変動
及び冷却媒体からの検出信号に基づいて巻線温度
を検出し、あるいは負荷変動に応じて発熱する巻
線温度モニタを冷却媒体中に配置してこの巻線温
度モニタの温度を検出し、この検出巻線温度が巻
線許容温度を超えると判定された場合、強制循環
されている冷却媒体に、この冷却媒体温度より充
分低い温度の冷却媒体を混合して巻線温度の上昇
を抑制するようにしたものである。
In order to achieve the above object, the present invention detects the winding temperature based on load fluctuations and detection signals from the cooling medium, or arranges a winding temperature monitor in the cooling medium that generates heat in response to load fluctuations. The temperature of this winding temperature monitor is detected, and if it is determined that the detected winding temperature exceeds the permissible winding temperature, a coolant with a temperature sufficiently lower than this coolant temperature is added to the forcedly circulated coolant. This mixture suppresses the rise in winding temperature.

以下、本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第3図は、本発明に係る巻線温度調整装置の第
1実施例の要部を示す構成図である。第3図にお
いて、第1図に示す構成要素と同一のものには同
一の符号を付し説明を省略する。第3図に示す第
1実施例が第1図の構成と異なるところは、ポン
プ10によりタンク7の上部ヘツダ、上部配管
9、クーラ12、下部配管11及びタンク7の下
部ヘツダという径路を通つてタンク7内に強制循
環される冷却油6の油温度より充分低い温度の冷
却媒体としての冷却油6′を所定量貯蔵できる冷
媒貯蔵槽18を設けると共に、前記冷媒貯蔵槽1
8内の冷却油6′を制御回路100からの混合指
令101があるときに前記強制循環されている冷
却油6に混合する混合手段20を設け、かつ負荷
変動をCT15を介して制御回路100に取り込
むと共に、タンク7の上部あるいは上部配管9付
近に取り付けた温度検出器19からの冷却油温度
を制御回路100に取り込み、この制御回路10
0は、両検出器からの負荷変動及び冷却油温度に
基づいて下記(1)式により巻線温度θWを検出し、
この巻線温度θWが巻線許容温度θPを超えると判
定したときに混合指令信号101を出力できるよ
うにした点にある。
FIG. 3 is a configuration diagram showing the main parts of the first embodiment of the winding temperature adjusting device according to the present invention. In FIG. 3, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted. The difference between the configuration of the first embodiment shown in FIG. 3 and the configuration shown in FIG. A refrigerant storage tank 18 is provided which can store a predetermined amount of cooling oil 6' as a cooling medium whose temperature is sufficiently lower than the oil temperature of the cooling oil 6 forcedly circulated in the tank 7.
A mixing means 20 is provided for mixing the cooling oil 6' in the forcibly circulated cooling oil 6 when there is a mixing command 101 from the control circuit 100, and the load fluctuation is sent to the control circuit 100 via the CT 15. At the same time, the cooling oil temperature from the temperature sensor 19 attached to the upper part of the tank 7 or near the upper pipe 9 is also taken into the control circuit 100.
0 detects the winding temperature θ W using the following formula (1) based on the load fluctuation and cooling oil temperature from both detectors,
The main feature is that the mixing command signal 101 can be output when it is determined that the winding temperature θ W exceeds the permissible winding temperature θ P.

さらに詳説すると、前記混合手段100は、バ
イパス配管21を設け、このバイパス配管21を
図示のように前記冷媒貯蔵槽18に接続し、バイ
パス配管21と下部配管11との接続点を分岐部
22、及び合流部23とし、この分岐部22に分
流弁24を設けて構成されている。なお、分流弁
24は、駆動装置25によつて駆動されるように
なつている。
More specifically, the mixing means 100 is provided with a bypass pipe 21, which is connected to the refrigerant storage tank 18 as shown in the figure, and the connection point between the bypass pipe 21 and the lower pipe 11 is connected to a branch part 22, and a merging section 23, and a branching section 22 is provided with a diverting valve 24. Note that the flow dividing valve 24 is adapted to be driven by a driving device 25.

また、制御回路100は、次に示す第(1)式を記
憶すると共に、CT15からの負荷電流、温度検
出器19からの検出温度と第(1)式により巻線温度
θWを算出できるようになつている。すなわち、
巻線温度θWは、タンク7の周囲温度をθT、タン
ク7内の冷却油温度をθO、巻線3の温度上昇に
よる冷却油温度をθOW、及び巻線3の部分におけ
る温度のばらつきを見込んだ温度余裕をθfとす
ると、 θW=(θT+θO+θOW+θf) ……(1) ここで、巻線3の温度上昇による冷却油温度θ
OWは温度検出器19で検出するものであり、この
温度θOWは、例えば、θOW=C/√(ただし、
Cは定数であり、Vは巻線3を流れる冷却油6の
流速である。)で与えられる。なお、θT,θO
θfは、予め定数として与えられているのが一般
的である。
Further, the control circuit 100 stores the following equation (1) and is capable of calculating the winding temperature θ W using the load current from the CT 15, the detected temperature from the temperature detector 19, and the equation (1). It's getting old. That is,
The winding temperature θ W is defined as θ T which is the ambient temperature of the tank 7, θ O which is the temperature of the cooling oil in the tank 7, θ OW which is the temperature of the cooling oil due to the temperature rise of the winding 3, and the temperature of the part of the winding 3. If the temperature margin considering the variation is θ f , θ W = (θ T + θ O + θ OW + θ f )...(1) Here, the cooling oil temperature θ due to the temperature rise of winding 3
OW is detected by the temperature detector 19, and this temperature θ OW is, for example, θ OW =C/√ (however,
C is a constant, and V is the flow rate of the cooling oil 6 flowing through the winding 3. ) is given by Note that θ T , θ O ,
Generally, θ f is given in advance as a constant.

上述のように構成された第1実施例の動作につ
いて以下に第2図を参照しながら説明する。
The operation of the first embodiment configured as described above will be explained below with reference to FIG.

第2図において、時刻t1以前の動作は第1図の
動作と同一なので省略し、時刻t1以降の動作につ
いて説明する。時刻t1において、負荷電流Iが、
I10からI20に急増した場合、制御回路100は、
CT15からの検出信号に基づいて当該負荷の状
態に応じた運転台数でクーラ12(ポンプ10を
含む)を運転するように運転指令17を出力す
る。次いで、冷却油温度θOWを温度検出器19を
介して取り込んだ制御回路100は、第(1)式で巻
線温度θWを求め、この巻線温度θWを予め設定さ
れている巻線許容温度θPと比較し、巻線温度θW
が温度θPを超えると判定たときに、混合手段2
0の駆動装置25に混合指令101を出力する。
すると、駆動装置25により分流弁24がバイパ
ス配管21側に切り換わり、前記冷媒貯蔵槽18
内の冷却油6′が強制循環されている冷却油6に
混合される。つまり、循環経路は、下部配管11
の分岐部21、バイパス配管21、冷媒貯蔵槽1
8、合流部23、ポンプ10、タンク下部ヘツダ
というように変更されるものである。このよう
に、冷媒貯蔵槽18からの冷却油6′が、直ちに
変圧器1の巻線3に供給されるので、冷却油6の
温度は第2図に示す曲線Cのように低下する。従
つて、巻線温度θWは、第2図に示す曲線Dの如
くなり、巻線許容温度θPを超えることがなくな
り、巻線3の熱的劣化を防止することができる。
さらに、直ちに巻線温度θWを低下できるので、
低負荷時のクーラ12の運転台数を必要最小限に
できる。従つて、補機の運転台数を減少できるの
で、省エネルギーを図れる利点がある。
In FIG. 2, the operation before time t1 is the same as the operation in FIG. 1, so it will be omitted, and the operation after time t1 will be explained. At time t1 , the load current I is
When I suddenly increases from I 10 to I 20 , the control circuit 100
Based on the detection signal from the CT 15, an operation command 17 is output to operate the cooler 12 (including the pump 10) in the number of units in operation according to the state of the load. Next, the control circuit 100 that receives the cooling oil temperature θ OW via the temperature detector 19 calculates the winding temperature θ W using equation (1), and sets this winding temperature θ W to the preset winding temperature. Compared to the allowable temperature θ P , the winding temperature θ W
When it is determined that the temperature exceeds the temperature θ P , the mixing means 2
A mixing command 101 is output to the drive device 25 of No. 0.
Then, the drive device 25 switches the flow dividing valve 24 to the bypass pipe 21 side, and the refrigerant storage tank 18
The cooling oil 6' inside is mixed with the cooling oil 6 that is being forcedly circulated. In other words, the circulation route is the lower piping 11
branch part 21, bypass piping 21, refrigerant storage tank 1
8, a confluence section 23, a pump 10, and a tank lower header. In this way, since the cooling oil 6' from the refrigerant storage tank 18 is immediately supplied to the winding 3 of the transformer 1, the temperature of the cooling oil 6 decreases as shown by the curve C shown in FIG. Therefore, the winding temperature θ W becomes like the curve D shown in FIG. 2, and does not exceed the permissible winding temperature θ P , so that thermal deterioration of the winding 3 can be prevented.
Furthermore, since the winding temperature θ W can be immediately reduced,
The number of operating coolers 12 during low load can be minimized. Therefore, the number of operating auxiliary machines can be reduced, which has the advantage of saving energy.

第4図は、本発明に係る第2実施例の要部を示
す構成図である。第4図に示す第2実施例が第1
実施例と異なるところは、負荷変動を検出する
CT15からの電流により負荷変動に応じて発熱
する巻線温度モニタ30をタンク7内の冷却油6
中に配設し、該巻線温度モニタ30の温度θWW
温度検出器19で検出して制御回路100に取り
込み、前記検出温度θWWが巻線3の巻線温度θW
と対応することを利用して、この温度θWWと巻線
許容温度θPとを比較し、前記温度θWWが巻線許
容温度θPを超えたときに混合手段20に混合指
令101を出力するようにした点にあり、他の構
成要素には変更がない。従つて、第2実施例と第
1実施例と同一構成要素には同一の符号を付し、
構成の説明は省略する。この第2実施例は第1実
施例と同様の作用・効果を有し、特に第(1)式の演
算が不要となるので、制御回路100が簡単にな
るという利点がある。
FIG. 4 is a configuration diagram showing main parts of a second embodiment of the present invention. The second embodiment shown in FIG.
The difference from the example is that load fluctuations are detected.
The winding temperature monitor 30, which generates heat according to load fluctuations due to the current from the CT 15, is connected to the cooling oil 6 in the tank 7.
The temperature θ WW of the winding temperature monitor 30 is detected by the temperature detector 19 and taken into the control circuit 100, and the detected temperature θ WW is the winding temperature θ W of the winding 3.
This temperature θ WW is compared with the permissible winding temperature θ P by using the correspondence between There are no changes to other components. Therefore, the same components as in the second embodiment and the first embodiment are given the same reference numerals.
A description of the configuration will be omitted. This second embodiment has the same functions and effects as the first embodiment, and has the advantage that the control circuit 100 is simplified because the calculation of equation (1) is not required.

本発明の変形例としては、混合手段20の分流
弁24を下部配管17とバイパス配管21との合
流部23に設けるか、あるいは分岐部22と合流
部23との双方に設けてもよいものである。
As a modification of the present invention, the dividing valve 24 of the mixing means 20 may be provided at the confluence section 23 of the lower pipe 17 and the bypass pipe 21, or at both the branch section 22 and the confluence section 23. be.

次に、他の変形例としては、冷媒貯蔵槽18及
び混合手段20を上部配管9を取り付けてもよ
い。このようにしても、前述した第1及び第2実
施例と同様の効果が得られる。
Next, as another modification, the refrigerant storage tank 18 and the mixing means 20 may be attached to the upper pipe 9. Even in this case, the same effects as in the first and second embodiments described above can be obtained.

さらに、他の変形例としては、冷媒貯蔵槽18
からの冷却油6′を巻線3の冷却油だけに混合さ
せて冷却効果を増大させるため、第3図及び第4
図に示すように巻線上部空間における冷却油6と
下部空間の冷却油6とを断熱性の仕切板31で分
離して構成してもよい。このような構成によれ
ば、冷却効果が増大するほか、冷却貯蔵槽の冷却
油6′の量を減少することができるという利点が
ある。
Furthermore, as another modification, the refrigerant storage tank 18
In order to increase the cooling effect by mixing the cooling oil 6' from the winding 3 only with the cooling oil of the winding 3,
As shown in the figure, the cooling oil 6 in the upper space of the windings and the cooling oil 6 in the lower space may be separated by a heat-insulating partition plate 31. Such a configuration has the advantage that in addition to increasing the cooling effect, the amount of cooling oil 6' in the cooling storage tank can be reduced.

なお、冷媒貯蔵槽18には、冷却フインを取り
付けておき、冷却油6′の温度を低下させておく
ことが望ましい。もちろん、冷媒貯蔵槽18の冷
却は、他の方法であつてもよい。
Note that it is desirable to attach cooling fins to the refrigerant storage tank 18 to lower the temperature of the cooling oil 6'. Of course, the refrigerant storage tank 18 may be cooled by other methods.

第5図は、本発明に係る第3実施例を示す構成
図である。この第3実施例が第1実施例と異なる
ところは、冷媒貯蔵槽18として、該巻線3の下
部とタンク7との間に断熱性の下部仕切板32を
設けて貯蔵槽とし、かつ下部配管11と下部締付
金具5との接続部に分流弁24を設けて、この分
流弁24によつて下部締付金具5側またはタンク
7の下部側に開放するようにし、かつ下部締付金
具5の下部に弁33,33を設け、前記弁33,
33は分流弁24がタンク7の下部側に開放され
るときに開放されるように混合手段20を構成し
た点にある。なお、分流弁32及び33は、制御
回路100からの混合指令101によつてタンク
7の下部側に接続されるようになつている。
FIG. 5 is a configuration diagram showing a third embodiment according to the present invention. This third embodiment differs from the first embodiment in that a heat insulating lower partition plate 32 is provided between the lower part of the winding 3 and the tank 7 as the refrigerant storage tank 18, and the lower part of the refrigerant storage tank 18 is A diversion valve 24 is provided at the connection between the piping 11 and the lower clamping bracket 5, and the flow is opened to the lower clamping bracket 5 side or the lower side of the tank 7 by the diverting valve 24, and the lower clamping bracket 5 are provided with valves 33, 33 at the lower part of the valve 33,
33 is that the mixing means 20 is configured to be opened when the diverter valve 24 is opened to the lower side of the tank 7. Note that the flow dividing valves 32 and 33 are connected to the lower side of the tank 7 by a mixing command 101 from a control circuit 100.

この第3実施例によれば、第1及び第2実施例
と同様の作用・効果を有すると共に、冷媒貯蔵槽
18及びバイパス配管21とを省略できるという
利点もある。なお、上記実施例は変圧器1を例と
して説明したが他の静止誘導電器に適用できるこ
とはいうまでもない。
According to the third embodiment, it has the same functions and effects as the first and second embodiments, and also has the advantage that the refrigerant storage tank 18 and the bypass pipe 21 can be omitted. Although the above embodiment has been described using the transformer 1 as an example, it goes without saying that it can be applied to other stationary induction electric appliances.

以上述べたように本発明によれば、巻線温度が
巻線許容温度を超えたときに、強制循環される冷
却媒体に低い温度の冷却媒体を混合させて巻線温
度の上昇を抑制するようにしたので、補機損失の
低減が図れると共に、静止誘導電器の巻線の熱的
劣化を防止できるという効果がある。
As described above, according to the present invention, when the winding temperature exceeds the permissible winding temperature, a low temperature cooling medium is mixed with the forcedly circulated cooling medium to suppress the increase in the winding temperature. This has the effect of reducing auxiliary equipment loss and preventing thermal deterioration of the windings of stationary induction appliances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の強制冷却変圧器の概略構成を示
す構成図、第2図は負荷電流、巻線温度及び冷却
油の関係を示す特性図、第3図は本発明に係る第
1実施例を示す構成図、第4図は本発明に係る第
2実施例を示す構成図、第5図は本発明に係る第
3実施例を示す構成図である。 1…変圧器、2…鉄心、3…巻線、4及び5…
上部及び下部締付金具、6及び6′…冷却油、7
…タンク、10…ポンプ、12…クーラ、15…
計器用変流器(CT)、18…冷媒貯蔵槽、19…
温度検出器、20…混合手段、30…巻線温度モ
ニタ、31及び32…上部及び下部仕切板。
Fig. 1 is a block diagram showing the schematic structure of a conventional forced cooling transformer, Fig. 2 is a characteristic diagram showing the relationship between load current, winding temperature, and cooling oil, and Fig. 3 is a first embodiment according to the present invention. FIG. 4 is a block diagram showing a second embodiment according to the present invention, and FIG. 5 is a block diagram showing a third embodiment according to the present invention. 1...Transformer, 2...Iron core, 3...Winding, 4 and 5...
Upper and lower fasteners, 6 and 6'...Cooling oil, 7
...Tank, 10...Pump, 12...Cooler, 15...
Instrument current transformer (CT), 18... Refrigerant storage tank, 19...
Temperature detector, 20... Mixing means, 30... Winding temperature monitor, 31 and 32... Upper and lower partition plates.

Claims (1)

【特許請求の範囲】 1 巻線及び鉄心を有する静止誘導電器を冷却媒
体と共に収容するタンクの上下部ヘツダに、前記
冷却媒体を冷却しかつ該冷却媒体を上部ヘツダか
ら下部ヘツダに強制的に循環させるポンプを備え
たクーラを複数台接続し、前記静止誘導電器の負
荷変動を制御回路に取り込みかつ前記負荷変動に
基づいて前記各クーラの運転台数を該制御回路に
よつて制御するように構成した巻線温度調整装置
において、所定量の冷却媒体を貯蔵する冷媒貯蔵
槽と、前記冷媒貯蔵槽内の冷却媒体を混合指令信
号があるときに前記強制循環されている冷却媒体
に混合する混合手段と、前記タンク上部付近の冷
却媒体温度を検出する温度検出器とを設け、前記
制御回路は前記負荷変動及び温度検出器からの冷
却媒体温度に基づいて前記巻線温度を検出しかつ
この巻線温度が巻線の許容温度を超えると判定し
たときに前記混合手段に混合指令を出力するよう
に構成してなる巻線温度調整装置。 2 巻線及び鉄心を有する静止誘導電器を冷却媒
体と共に収容するタンクの上下部ヘツダに、前記
冷却媒体を冷却しかつ該冷却媒体を上部ヘツダか
ら下部ヘツダに強制的に循環させるポンプを備え
たクーラを複数台接続し、前記静止誘導電器の負
荷変動を制御回路に取り込みかつ前記負荷変動に
基づいて前記各クーラの運転台数を該制御回路に
よつて制御するように構成した巻線温度調整装置
において、所定量の冷却媒体を貯蔵する冷媒貯蔵
槽と、前記冷媒貯蔵槽内の冷却媒体を混合指令信
号があるときに前記強制循環されている冷却媒体
に混合する混合手段と、前記タンク上部付近の冷
却媒体内で負荷変動に応じて発熱する巻線温度モ
ニタと、該巻線温度モニタの温度を検出する温度
検出器とを設け、前記制御回路は前記温度検出器
からの温度が巻線の許容温度を超えると判定した
ときに前記混合手段に混合指令を出力するように
構成してなる巻線温度調整装置。
[Scope of Claims] 1. Cooling the cooling medium in the upper and lower headers of a tank that accommodates a stationary induction electric appliance having windings and an iron core together with a cooling medium, and forcibly circulating the cooling medium from the upper header to the lower header. A plurality of coolers equipped with pumps are connected to each other, load fluctuations of the stationary induction electric appliance are taken into a control circuit, and the number of operating coolers is controlled by the control circuit based on the load fluctuations. In the winding temperature adjustment device, a refrigerant storage tank stores a predetermined amount of cooling medium, and mixing means mixes the cooling medium in the refrigerant storage tank with the forcedly circulated cooling medium when a mixing command signal is received. , a temperature detector for detecting the coolant temperature near the top of the tank, and the control circuit detects the winding temperature based on the load fluctuation and the coolant temperature from the temperature detector, and detects the winding temperature. A winding temperature adjustment device configured to output a mixing command to the mixing means when it is determined that the temperature exceeds the permissible temperature of the winding. 2. A cooler equipped with a pump that cools the cooling medium and forcibly circulates the cooling medium from the upper header to the lower header, in the upper and lower headers of a tank that houses a stationary induction electric appliance having windings and an iron core together with a cooling medium. In a winding temperature adjustment device, a plurality of coolers are connected, load fluctuations of the stationary induction electric appliances are taken into a control circuit, and the number of operating units of each cooler is controlled by the control circuit based on the load fluctuations. , a refrigerant storage tank for storing a predetermined amount of refrigerant; a mixing means for mixing the refrigerant in the refrigerant storage tank with the forcibly circulated refrigerant when a mixing command signal is received; A winding temperature monitor that generates heat in response to load fluctuations in a cooling medium and a temperature detector that detects the temperature of the winding temperature monitor are provided, and the control circuit is configured to detect whether the temperature from the temperature detector is within the permissible range of the winding. A winding temperature adjustment device configured to output a mixing command to the mixing means when it is determined that the temperature exceeds the temperature.
JP11392382A 1982-07-02 1982-07-02 Adjuster for temperature of winding Granted JPS595607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11392382A JPS595607A (en) 1982-07-02 1982-07-02 Adjuster for temperature of winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11392382A JPS595607A (en) 1982-07-02 1982-07-02 Adjuster for temperature of winding

Publications (2)

Publication Number Publication Date
JPS595607A JPS595607A (en) 1984-01-12
JPS6233723B2 true JPS6233723B2 (en) 1987-07-22

Family

ID=14624570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11392382A Granted JPS595607A (en) 1982-07-02 1982-07-02 Adjuster for temperature of winding

Country Status (1)

Country Link
JP (1) JPS595607A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417354A (en) * 2018-05-03 2018-08-17 林春芳 A kind of temperature-adjustable transformer
CN108666090B (en) * 2018-05-03 2019-10-08 陈幸 A method of improving transformer service life

Also Published As

Publication number Publication date
JPS595607A (en) 1984-01-12

Similar Documents

Publication Publication Date Title
US6909349B1 (en) Apparatus and method for cooling power transformers
EP1238398B1 (en) Apparatus and method for cooling power transformers
US4216398A (en) Arrangement for cooling an electric machine
US5669228A (en) System for utilizing exhaust heat of stationary induction apparatus
JP3619522B2 (en) Substation cooling system
JPS6233723B2 (en)
JPS58225617A (en) Transformer cooling apparatus
JP2000277349A (en) Circulating oil transformer
JPH0869921A (en) Cooling device for gas insulated stationary induction electric equipment
JPH0681450B2 (en) Cooling water supply device for rotating electric machine
JPS58212342A (en) Cooler for synchronous rotary electric machine
JPH0343693Y2 (en)
JPH09190927A (en) Exhaust heat recovery equipment
JPH04340348A (en) Apparatus for controlling stator cooling for generator
JPH08111321A (en) Forced convection cooling transformer
JPS6057603A (en) Control circuit of cooling device for transformer
JPS58173813A (en) Motor control device of cooler for stationary electric induction apparatus
JPH0118607Y2 (en)
JPS6150314A (en) Controlling method for cooling of transformer
JP2004032845A (en) Cooling device for generator
JPH058782Y2 (en)
JP2778475B2 (en) Cooling device for power semiconductor device
JPS58202512A (en) Gas-insulated electrical apparatus
JPH0875220A (en) Inlet temperature control method of cold water for refrigerator in water heat accumulating system
JPS595608A (en) Cooler for transformer