JPH058782Y2 - - Google Patents

Info

Publication number
JPH058782Y2
JPH058782Y2 JP4207187U JP4207187U JPH058782Y2 JP H058782 Y2 JPH058782 Y2 JP H058782Y2 JP 4207187 U JP4207187 U JP 4207187U JP 4207187 U JP4207187 U JP 4207187U JP H058782 Y2 JPH058782 Y2 JP H058782Y2
Authority
JP
Japan
Prior art keywords
cooler
cooling water
cooling
conductivity
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4207187U
Other languages
Japanese (ja)
Other versions
JPS63153762U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4207187U priority Critical patent/JPH058782Y2/ja
Publication of JPS63153762U publication Critical patent/JPS63153762U/ja
Application granted granted Critical
Publication of JPH058782Y2 publication Critical patent/JPH058782Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本発明は、回転電機等の発熱部を有する電気機
器の冷却装置に係り、特にタービン発電機のよう
に固定子巻線の内部に冷却水を循環する冷却装置
の改良に関する。
[Detailed Description of the Invention] [Purpose of the Invention] (Industrial Application Field) The present invention relates to a cooling device for electrical equipment having a heat generating part such as a rotating electric machine, and in particular, a cooling device for an electric equipment having a heat generating part such as a rotating electric machine. This invention relates to an improvement in a cooling device that circulates cooling water inside a refrigerator.

(従来の技術) 一般にタービン発電機のような大容量回転電機
に於いては、その大電流により発生するジユール
熱のため回転電機全体の温度上昇を来たし、種々
の悪影響を及ぼす。そこで回転電機の温度上昇を
防止するための冷却装置が種々考案されている。
従来大容量タービン発電機は、発熱部である固定
子巻線に冷却水を循環させて直接冷却する方式が
とられている。
(Prior Art) Generally, in a large-capacity rotating electrical machine such as a turbine generator, the temperature of the entire rotating electrical machine increases due to the heat generated by the large current, which has various adverse effects. Therefore, various cooling devices have been devised to prevent the temperature of rotating electric machines from rising.
Conventionally, large-capacity turbine generators employ a method in which cooling water is circulated through the stator winding, which is a heat generating part, to directly cool the stator winding.

第2図は、このように固定子巻線を冷却するタ
ービン発電機冷却装置の系統の一例を示す。この
図に於いて、貯水槽3に貯えられた冷却水は、冷
却水ポンプ4によつて圧送されフイルター5を介
して圧力調整弁6により所定の流量に調整されて
回転電機1に至り、発熱部である固定子巻線を冷
却し高温となつた冷却水をクーラー2により所定
の温度に冷却し貯水槽3に戻るという循環回路に
なつている。
FIG. 2 shows an example of a system of a turbine generator cooling device that cools the stator windings in this manner. In this figure, cooling water stored in a water storage tank 3 is pumped by a cooling water pump 4, passes through a filter 5, is regulated to a predetermined flow rate by a pressure regulating valve 6, and reaches the rotating electric machine 1, where it generates heat. The cooling water that cools the stator windings, which are parts of the stator windings, reaches a high temperature, is cooled to a predetermined temperature by a cooler 2, and is then returned to a water storage tank 3.

この様に、回転電機の発熱体内に直接冷却水を
導入して冷却を行なうものにあつては、電気的絶
縁性を確保するため、高純度の冷却水が要求され
るため、通水路から冷却水中に溶出する不純物を
除去し冷却水の純度を維持するためのイオン交換
塔7が設けられている。この場合、冷却水を全量
イオン交換塔7に通さなくても純度は維持出来る
ことから主回路から冷却水の一部を分岐し絞り弁
8により流量を調整してイオン交換塔7に通水
し、浄化を行つた後、貯水槽に戻す純度維持回路
を主要構成部分としている。
In this way, when cooling is performed by directly introducing cooling water into the heating element of a rotating electric machine, high purity cooling water is required to ensure electrical insulation. An ion exchange tower 7 is provided to remove impurities eluted into the water and maintain the purity of the cooling water. In this case, since the purity can be maintained even if the entire amount of cooling water does not pass through the ion exchange tower 7, a part of the cooling water is branched from the main circuit and the flow rate is adjusted by the throttle valve 8, and the water is passed through the ion exchange tower 7. The main component is a purity maintenance circuit that returns the water to the storage tank after purification.

(考案が解決しようとする問題点) この従来の冷却水供給系統に於いては、回転電
機の発熱部である固定子巻線を冷却した後の冷却
水は、高温となる為、この高温から冷却水ポンプ
4やフイルター5等を保護する目的で循環冷却水
のクーラーは、前記冷却水ポンプ4の上流側に配
置すると同時に冷却装置をコンパクトにするため
貯水槽3とクーラー2を一体にした構造としてい
る。
(Problem to be solved by the invention) In this conventional cooling water supply system, the cooling water after cooling the stator winding, which is the heat generating part of the rotating electric machine, becomes high temperature. A circulating cooling water cooler for the purpose of protecting the cooling water pump 4, filter 5, etc. is placed upstream of the cooling water pump 4, and at the same time, the water storage tank 3 and the cooler 2 are integrated to make the cooling device compact. It is said that

しかしながらクーラー2で所定の温度に冷却さ
れた循環冷却水の圧力は、貯水槽3に貯留される
と大気圧となり、一方循環冷却水を冷却するため
の二次冷却水は、通常3〜6Kg/cm2の圧力を有し
ており万一クーラーの冷却管等が腐食や潰食によ
つて損傷した場合二次冷却水が循環冷却水側に漏
洩することになる。
However, the pressure of the circulating cooling water cooled to a predetermined temperature by the cooler 2 becomes atmospheric pressure when stored in the water storage tank 3, while the pressure of the secondary cooling water for cooling the circulating cooling water is usually 3 to 6 kg/ It has a pressure of cm 2 , so if the cooling pipes of the cooler are damaged due to corrosion or erosion, the secondary cooling water will leak to the circulating cooling water side.

つまり循環冷却水は、前述の如く電気的絶縁性
を確保するため導電率1μs/cm2以下の純水であり、
一方、この循環冷却水を冷却する二次冷却水は通
常淡水でありしかもクーラーや冷却水配管の腐食
を抑える為に亜硝酸ソーダ等の腐食抑制剤を添加
している。そのため二次冷却水の導電率は200〜
300μs/cm2と200〜300倍も高くなつている。
In other words, the circulating cooling water is pure water with a conductivity of 1 μs/cm 2 or less to ensure electrical insulation as described above.
On the other hand, the secondary cooling water that cools this circulating cooling water is usually fresh water, and a corrosion inhibitor such as sodium nitrite is added to prevent corrosion of the cooler and cooling water piping. Therefore, the conductivity of the secondary cooling water is 200~
It is 200 to 300 times higher at 300 μs/cm 2 .

従つて、二次冷却水が漏洩した場合、循環冷却
水の導電度が上昇し絶縁性が低下する為、回転電
機を停止させるか又は、冷却を必要としない程度
まで負荷を下げる等、回転電機の運転に支障を来
たす欠点があつた。
Therefore, if secondary cooling water leaks, the conductivity of the circulating cooling water will increase and the insulation will decrease. There was a defect that interfered with driving.

本考案の目的とするところは、上記不具合を防
止するために、クーラーの異常を早期に検出し速
やかに予備機に切替えることにより電気機器の安
定した運転を確保出来る信頼性の高い冷却装置を
提供することにある。
The purpose of this invention is to provide a highly reliable cooling system that can ensure stable operation of electrical equipment by detecting abnormalities in the cooler at an early stage and quickly switching to a standby unit in order to prevent the above-mentioned malfunctions. It's about doing.

〔考案の構成〕[Structure of the idea]

(問題点を解決するための手段) 本考案による電気機器の冷却装置は、第1図に
示す如く、常用クーラーと予備クーラー、これら
のクーラーへの流路を変える各切替弁9、クーラ
ー入口側の冷却水の純度を検出する導電率センサ
ー10とクーラー出口側の冷却水の純度を検出す
る導電率センサー11、及びこれらの純度を比較
し各切替弁9を制御するコントローラー14を備
えた構成とする。
(Means for Solving the Problems) As shown in Fig. 1, the cooling device for electrical equipment according to the present invention includes a regular cooler, a standby cooler, each switching valve 9 that changes the flow path to these coolers, and the cooler inlet side. A configuration including a conductivity sensor 10 for detecting the purity of cooling water on the cooler outlet side, a conductivity sensor 11 for detecting the purity of the cooling water on the outlet side of the cooler, and a controller 14 for comparing these purities and controlling each switching valve 9. do.

(作用) 運転中に於いて、導電率センサー10でクーラ
ーの入口側の純度を検出し、導電率センサー11
ではクーラーの出口側の純度を検出している。そ
してコントローラー14では常時導電率センサー
10及び11で検出した純度の差を比較演算して
おり、万一二次冷却水が漏洩して、循環冷却水の
導電率にあらかじめ設定した値以上の差が生じる
か又はあらかじめ設定した以上の導電率になる
と、コントローラー14からの信号で各切替弁9
が動作し予備クーラーに切替わる。
(Function) During operation, the conductivity sensor 10 detects the purity of the inlet side of the cooler, and the conductivity sensor 11
In this case, the purity of the outlet side of the cooler is detected. The controller 14 constantly compares and calculates the difference in purity detected by the conductivity sensors 10 and 11, and in the unlikely event that the secondary cooling water leaks, the difference in conductivity of the circulating cooling water exceeds a preset value. When the conductivity occurs or the conductivity exceeds a preset value, each switching valve 9 is activated by a signal from the controller 14.
operates and switches to the backup cooler.

(実施例) 以下に本考案の一実施例を図面により説明す
る。第1図に於いて、1は、回転電機であつて、
この回転電機の発熱部に対する冷却水供給系統
は、クーラー2、貯水槽3、冷却水ポンプ4、フ
イルター5、及び圧力調整弁6と冷却水の純度を
検出する導電率センサー10,11、クーラーを
切替るための入口側と出口側の切替弁9を主構成
部分とする主回路部分と、イオン交換塔7と絞り
弁8から成る純度維持回路及び検出した導電率の
比較演算と各切替弁に信号を送り動作させる為の
コントローラー14の制御部分より構成されてい
る。
(Example) An example of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a rotating electric machine,
The cooling water supply system for the heat generating part of this rotating electric machine includes a cooler 2, a water storage tank 3, a cooling water pump 4, a filter 5, a pressure regulating valve 6, conductivity sensors 10 and 11 that detect the purity of the cooling water, and a cooler. A main circuit section mainly consisting of switching valves 9 on the inlet side and outlet side for switching, a purity maintenance circuit consisting of an ion exchange column 7 and a throttle valve 8, and a comparison calculation of detected conductivity and each switching valve. It consists of a control section of a controller 14 for sending signals and operating.

貯水槽3に貯えられた循環冷却水は、冷却水ポ
ンプ4により圧送されフイルター5を介して圧力
調整弁6により所定の流量に調整されて回転電機
1に至り、発熱部である固定子巻線を冷却し高温
となつた冷却水をクーラー2により冷却して貯水
槽3に戻るという循環回路になつている。
The circulating cooling water stored in the water storage tank 3 is pumped by a cooling water pump 4, passed through a filter 5, and adjusted to a predetermined flow rate by a pressure regulating valve 6, and reaches the rotating electric machine 1, where it is delivered to the stator winding, which is the heat generating part. The cooling water is cooled to a high temperature by the cooler 2, and then returned to the water storage tank 3, forming a circulation circuit.

一方冷却水ポンプ4により圧送される循環冷却
水の一部は主回路より分岐し、絞り弁8により流
量調整した後イオン交換塔7へ導かれ、ここで冷
却水を浄化したのち貯水槽へ戻る回路を形成して
いる。
On the other hand, a part of the circulating cooling water pumped by the cooling water pump 4 is branched from the main circuit, and after its flow rate is adjusted by the throttle valve 8, it is guided to the ion exchange tower 7, where the cooling water is purified and then returned to the water storage tank. forming a circuit.

次に作用について説明する。運転中のクーラー
入口側の循環冷却水の導電率を導電率センサー1
0で検出し、この導電率を導電率伝送器12でア
ナログ信号(4〜20mADC)に変換しコントロ
ーラー14に入力信号として送る。
Next, the effect will be explained. Conductivity sensor 1 measures the conductivity of the circulating cooling water on the inlet side of the cooler during operation.
0, and this conductivity is converted into an analog signal (4 to 20 mADC) by the conductivity transmitter 12 and sent to the controller 14 as an input signal.

同様にクーラー出口側の循環冷却水の導電率を
導電率センサー11で検出し導電率伝送器13を
介してコントローラー14に入力信号として送
る。
Similarly, the conductivity of the circulating cooling water on the outlet side of the cooler is detected by a conductivity sensor 11 and sent as an input signal to the controller 14 via a conductivity transmitter 13.

そしてこのコントローラー14は、クーラー入
口側と出口側から送られた信号の絶対値と差をあ
らかじめ設定された値と比較演算し、もし検出し
た値が設定値より大きい場合はコントローラー1
4から各切替弁9に信号を送り各切替弁9を動作
させて冷却水の流路を切替ることによりクーラー
を切替える。
Then, this controller 14 compares and calculates the absolute value and difference of the signals sent from the cooler inlet side and the outlet side with a preset value, and if the detected value is larger than the set value, the controller 1
The cooler is switched by sending a signal from 4 to each switching valve 9 and operating each switching valve 9 to switch the cooling water flow path.

すなわち、冷却管が腐食等によつて損傷し、二
次冷却水が漏洩するとクーラー出口側の循環冷却
水の導電率が上昇し入口側の導電率との差が広が
り異常を検知することが出来る。又、微少な漏洩
でクーラー出入口の差が設定値以下であつても二
次冷却水の導電率は200〜300倍も高いため、循環
冷却水の導電率の絶対値が上昇するので異常を検
知出来る。
In other words, if the cooling pipe is damaged due to corrosion or the like and secondary cooling water leaks, the conductivity of the circulating cooling water on the outlet side of the cooler will increase, and the difference between the conductivity on the inlet side will widen and an abnormality can be detected. . In addition, even if the difference between the entrance and exit of the cooler is less than the set value due to a small leak, the conductivity of the secondary cooling water is 200 to 300 times higher, so the absolute value of the conductivity of the circulating cooling water increases, so an abnormality can be detected. I can do it.

以上のようにクーラーの異常(漏洩)を早期に
検知することが出来クーラーを切替える事が出来
る為、回転電機の負荷を下げたり停止することな
く安定した運転を保つことが可能になる。
As described above, since abnormality (leakage) in the cooler can be detected early and the cooler can be switched, stable operation can be maintained without reducing the load on the rotating electric machine or stopping it.

しかも二次冷却水の漏洩を生じたクーラーはそ
の循環冷却水の出入口共しや断されるので、循環
冷却水が過度に汚染されることなく、また、冷却
装置の運転中に故障したクーラーを修理すること
も可能となる。
In addition, since both the inlet and outlet of the circulating cooling water of a cooler that has leaked secondary cooling water are cut off, the circulating cooling water is not excessively contaminated, and if a cooler malfunctions while the cooling system is in operation, it can be removed. It is also possible to repair it.

なお、本考案は、回転電機のほか、変圧器、強
磁場発生用の大電流コイル、交直変換装置等の電
気機器の冷却に用いることができる。
In addition to rotating electric machines, the present invention can be used to cool electrical equipment such as transformers, large current coils for generating strong magnetic fields, and AC/DC converters.

〔考案の効果〕[Effect of idea]

以上述べたように本考案によれば、腐食等の要
因によつてクーラーの二次冷却水が循環冷却水中
へ漏洩しても早期に検出することが出来、しかも
自動的に予備クーラーに切替えることが可能とな
るため、電気機器の負荷を変動させることなく安
定した運転が期待出来る。
As described above, according to the present invention, even if the secondary cooling water of the cooler leaks into the circulating cooling water due to factors such as corrosion, it can be detected at an early stage, and it can be automatically switched to the backup cooler. This makes it possible to expect stable operation without changing the load on electrical equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示すタービン発電
機の冷却装置の系統図、第2図は従来のタービン
発電機の冷却装置を示す系統図である。 1……回転電機、2……クーラー、3……貯水
槽、4……冷却水ポンプ、5……フイルター、6
……圧力調整弁、7……イオン交換塔、8……絞
り弁、9……切替弁、10……導電率センサー、
11……導電率センサー、12……導電率伝送
器、13……導電率伝送器、14……コントロー
ラー。
FIG. 1 is a system diagram of a cooling system for a turbine generator showing an embodiment of the present invention, and FIG. 2 is a system diagram showing a conventional cooling system for a turbine generator. 1... Rotating electric machine, 2... Cooler, 3... Water tank, 4... Cooling water pump, 5... Filter, 6
...Pressure regulating valve, 7...Ion exchange tower, 8...Throttle valve, 9...Switching valve, 10...Conductivity sensor,
11... Conductivity sensor, 12... Conductivity transmitter, 13... Conductivity transmitter, 14... Controller.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電気機器の発熱部に純水からなる冷却液を供給
して液体冷却する循環流路の途中に、冷却液を二
次冷却水によつて冷却するクーラーを設けた冷却
装置において、クーラーは常用クーラーと予備ク
ーラーを備え、常用クーラーと予備クーラーの前
後の冷却液流路を各切替弁を介して接続し、各切
替弁の前後において冷却液の導電率を検出する各
センサーを設け、各センサーの検出結果にもとづ
いて各切替弁を動作させるコントローラを設け、
常用クーラーにおける二次冷却水の漏洩を検知し
て自動的に予備クーラーに切替えるようにしたこ
とを特徴とする電気機器の冷却装置。
In a cooling system that is equipped with a cooler that cools the cooling liquid with secondary cooling water in the middle of a circulation path that supplies cooling liquid made of pure water to the heat generating parts of electrical equipment and cools the liquid, the cooler is a regular cooler. The cooling fluid flow paths before and after the regular cooler and the backup cooler are connected via each switching valve, and each sensor is installed to detect the conductivity of the cooling fluid before and after each switching valve. A controller is installed to operate each switching valve based on the detection results.
A cooling device for electrical equipment characterized by detecting leakage of secondary cooling water from a regular cooler and automatically switching to a backup cooler.
JP4207187U 1987-03-24 1987-03-24 Expired - Lifetime JPH058782Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207187U JPH058782Y2 (en) 1987-03-24 1987-03-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207187U JPH058782Y2 (en) 1987-03-24 1987-03-24

Publications (2)

Publication Number Publication Date
JPS63153762U JPS63153762U (en) 1988-10-07
JPH058782Y2 true JPH058782Y2 (en) 1993-03-04

Family

ID=30857648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207187U Expired - Lifetime JPH058782Y2 (en) 1987-03-24 1987-03-24

Country Status (1)

Country Link
JP (1) JPH058782Y2 (en)

Also Published As

Publication number Publication date
JPS63153762U (en) 1988-10-07

Similar Documents

Publication Publication Date Title
JPH0350959B2 (en)
JPH058782Y2 (en)
KR920004275B1 (en) Method and system for operating a cooling plant
CN109584950B (en) Cooling system for instrument
CN204771234U (en) Cooling system of response welding machine
US6334331B1 (en) Uninterrupted sub-loop water cooling system equipped with buffer tank
US3935488A (en) Method of operating a fluid-cooled hydropower generator
JPH0714020B2 (en) Electronic device cooling method
JP3577196B2 (en) Semiconductor cooling device and power conversion device having semiconductor cooling device
CN109585031A (en) A kind of water quality managing and control system based on Superconducting tokamak device
CN117979661B (en) Liquid cooling circulation liquid supply system and liquid cooling circulation liquid supply method
JP2568929B2 (en) Engine power supply system for multiple demand facilities
JP2726463B2 (en) Fuel cell power generation system
JPH0681450B2 (en) Cooling water supply device for rotating electric machine
JPH0553283B2 (en)
JPH10233224A (en) Fuel cell power generator
JP2526773B2 (en) Power control device in refrigerant circulation power generation system
JPS6233723B2 (en)
JPS5818067Y2 (en) Tower bottom oil waste heat recovery equipment
CN118073725A (en) Modularized energy storage battery cooling system and control method thereof
JPH09190927A (en) Exhaust heat recovery equipment
CN104923998A (en) System and method for cooling induction welder
JPH01141396A (en) Protective device for nuclear fusion system
JPH07133944A (en) Control of heat source device in ice storage type heat source apparatus
JPH07189610A (en) Cooling water device in steam electric power plant and control method for its cooling water temperature