JPS6233580A - Method and apparatus for heat treatment of high-polymer resin layer - Google Patents

Method and apparatus for heat treatment of high-polymer resin layer

Info

Publication number
JPS6233580A
JPS6233580A JP17135185A JP17135185A JPS6233580A JP S6233580 A JPS6233580 A JP S6233580A JP 17135185 A JP17135185 A JP 17135185A JP 17135185 A JP17135185 A JP 17135185A JP S6233580 A JPS6233580 A JP S6233580A
Authority
JP
Japan
Prior art keywords
resin layer
heat treatment
polymer resin
substrates
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17135185A
Other languages
Japanese (ja)
Inventor
Atsushi Endo
厚志 遠藤
Mitsuyuki Takada
高田 充幸
Hayato Takasago
高砂 隼人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17135185A priority Critical patent/JPS6233580A/en
Publication of JPS6233580A publication Critical patent/JPS6233580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Insulating Bodies (AREA)

Abstract

PURPOSE:To obtain high-polymer insulating films having uniform quality within substrates and between substrates by placing the substrates on which the high- polymer resin layers are formed, by each sheet, on a conveying belt at every formation of the substrates and successively carrying the same into a heating furnace by the movement of the conveying belt and subjecting the substrates to a heat treatment. CONSTITUTION:The substrate (sample) 2 is placed on the conveying belt 1 at every formation of the high-polymer resin layer (e.g., polyimide resin layer) on a sheet of the substrate 2, then the substrates 2 are automatically arrayed in one row on the belt 1 and are successively carried into the heating furnace 3. The substrates are subjected to the heat treatment in the preset required atmosphere. Since the moving speed of the belt 1 is constant, all the substrates are subjected to the uniform heat treatment and the temp. distribution on a sheet of the substrate in the furnace is maintained uniform. The heat treatment conditions within and between the substrates are made uniform and the high- polymer insulating films having the uniform quality are obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1回路基板の高分子樹脂層の熱処理方法および
その熱処理装置に係り、特に、混成集積回路2よびプリ
ント配線基板において、配線間に高分子絶縁被膜を有す
る多層構造配線体の絶縁層を形成するための熱処理装置
およびその熱処理方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a heat treatment method and a heat treatment apparatus for a polymer resin layer of a circuit board, and in particular, in a hybrid integrated circuit 2 and a printed wiring board, The present invention relates to a heat treatment apparatus and a heat treatment method for forming an insulating layer of a multilayer structure wiring body having a polymer insulating coating.

〔従来の技術〕[Conventional technology]

従来から所定の基板上に形成された高分子樹脂層を加熱
硬化させるには、熱風循環形のオープンが用いられ、こ
れにより高分子絶縁被膜を形成している。この方法によ
れば、高分子1脂層を形成した基板を予め所定の温度に
設定されたオープン内に所定の時間放置すれは、加熱硬
化された高分子絶縁膜を得ることができる。オープンを
用いて高分子樹脂層を加熱処理する方法は、処理温度と
、  時間をコントロールすれはよいので、比較的簡便
であるという利点をもつ。
Conventionally, a hot air circulating type opening is used to heat and cure a polymer resin layer formed on a predetermined substrate, thereby forming a polymer insulating film. According to this method, a heat-cured polymer insulating film can be obtained by leaving the substrate on which the polymer 1 resin layer has been formed in an open chamber preset at a predetermined temperature for a predetermined time. The method of heat-treating a polymer resin layer using an open method has the advantage of being relatively simple because the treatment temperature and time can be easily controlled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、基板上番こ形成された段階での高分子樹脂層
は、4剤等を含んでいるので不安定である。
By the way, the polymer resin layer at the stage where it is formed on the substrate is unstable because it contains four agents and the like.

従って、樹脂ノー形成直後に加熱処理を施し、揮発成分
を飛散させ樹脂層を安定化させる必要がある。
Therefore, it is necessary to perform heat treatment immediately after forming the resin layer to scatter volatile components and stabilize the resin layer.

処理すべき基板が一枚の時は、上記の処理が可能である
が、多数の基板を処理する場合、一枚づつ樹脂層を形成
後火々に、熱処理を施すため、オープンの扉の開閉が頻
繁となる。これは、オーブン内の雰囲気Jよび温度が不
均一となるという現象をもたらす。この結果、加熱処理
によって得られる高分子絶縁膜の品質、例えば、被膜の
絶縁耐圧が不均一となる。
The above processing is possible when there is only one substrate to be processed, but when processing a large number of substrates, the resin layer is formed one by one and then heat treated, so opening and closing the door is not necessary. becomes frequent. This brings about a phenomenon in which the atmosphere J and temperature within the oven become non-uniform. As a result, the quality of the polymer insulating film obtained by the heat treatment, for example, the dielectric strength voltage of the film, becomes non-uniform.

更に、高分子樹脂として耐熱性高分子樹脂(例えばポリ
イミド樹脂)を用いる場合、電気絶縁性の優れた被膜を
得るため、処理温度を低い方(例えば150℃)からj
@次高い方(例えば300℃)に変え、熱処理を実質複
数回行わなければならない。
Furthermore, when using a heat-resistant polymer resin (for example, polyimide resin) as the polymer resin, in order to obtain a film with excellent electrical insulation, the processing temperature may be lowered (for example, 150°C).
It is necessary to change the temperature to the next higher temperature (for example, 300° C.) and perform the heat treatment multiple times.

すなわち、熱処理工程の厳密な管理が必要となる。That is, strict control of the heat treatment process is required.

又、高分子樹脂として感光性耐熱高分子樹脂(例えばフ
ォトニーズ、東し社製、商品名)を用いる場合、加熱硬
化処理を予めパターンを形成した樹脂層に施すので、熱
処理工程は、被膜の絶縁耐圧だけでなく、パターンの断
面形状にも影響を及ぼす。
In addition, when using a photosensitive heat-resistant polymer resin (for example, Photoneeds, manufactured by Toshisha Co., Ltd., trade name) as the polymer resin, heat curing treatment is applied to the resin layer on which a pattern has been formed in advance, so the heat treatment process This affects not only the dielectric strength but also the cross-sectional shape of the pattern.

例えば、オープンを用いて、パターンが形成された高分
子樹脂層を加熱硬化処理を施すと、パターン断面角度(
パターン断面の基板とのなす角度)がばらつ(こと、お
よびパターン周辺に盛り上がりが発生するなど、パター
ン形状の劣化を引きおこず。この結果、高分子絶縁被膜
上の導体層が断線しやすくなる。
For example, if a patterned polymer resin layer is heat-cured using an open pattern, the pattern cross-sectional angle (
This causes deterioration of the pattern shape, such as variations in the angle between the cross section of the pattern and the substrate, and the formation of bulges around the pattern.As a result, the conductor layer on the polymer insulation coating becomes easily disconnected. .

すなわち、従来のオープンによる高分子樹脂層の熱処理
方法では、被膜の基板内、基板間の不均一性、ばらつき
、および再現性の欠如という問題4C加え、パターン断
面形状がコントロールされた高分子絶縁被膜を形成し難
いという問題点があった0 この発明は以上のような問題点を解消するためになされ
たもので、高分子樹脂被膜を有する基板の上記被膜の熱
処理の基板内及び基板間の均一性再現性の良好な、パタ
ーンを有する場合はその断面形状をも保持可能な熱処理
方法及びその装置を提供することを目的とする。
In other words, in the conventional open heat treatment method for a polymer resin layer, in addition to the 4C problems of non-uniformity, variation, and lack of reproducibility within and between substrates, it is also possible to form a polymer insulating film with a controlled cross-sectional pattern shape. This invention has been made to solve the above-mentioned problems, and is aimed at improving the uniformity within and between substrates in the heat treatment of the coating on a substrate having a polymer resin coating. It is an object of the present invention to provide a heat treatment method and apparatus thereof that have good reproducibility and that can also maintain the cross-sectional shape of a pattern.

〔問題点を解決するための手段〕[Means for solving problems]

第1の発明の高分子樹お四層の熱処理方法では。 In the method for heat treatment of four layers of polymeric tree according to the first invention.

高分子4tI!i脂層力i形成さrした基板を一枚づつ
基板の形成の都度搬送ベルト上に置き、上記搬送ベルト
の移動につれて加熱炉内へ順次搬入して、炉内を移動さ
せながら上記被成に熱処理分施すものである0 第2の発明の高分子樹脂層の熱処理装置は、第1の発明
の方法を実施するための装置で、上記基板試料をbt定
速度で炉外から炉内へ更に炉外へ搬送する試料搬送ベル
ト、炉内で上記ヘルド上の基板を加熱する複数の発熱体
ユニット、並ひに炉内を所要雰囲気に保持するガス導入
口およびガス排出口を設けたものである。
Polymer 4tI! The substrates on which the fat layer force has been formed are placed one by one on a conveyor belt each time a substrate is formed, and as the conveyor belt moves, they are sequentially carried into a heating furnace, and the substrates are heated as they are moved through the furnace. The heat treatment apparatus for a polymer resin layer according to the second invention is an apparatus for implementing the method according to the first invention, in which the substrate sample is further transferred from outside the furnace to inside the furnace at a bt constant speed. It is equipped with a sample transport belt for transporting the sample to the outside of the furnace, a plurality of heating element units for heating the substrate on the heald inside the furnace, and a gas inlet and a gas exhaust port for maintaining the required atmosphere inside the furnace. .

〔作 用〕[For production]

この発明では一枚の基板上に高分子樹脂層を形成するS
度、その基板を試料搬送ベルトの上へ置くと、それらの
基板は自動的にベルトの上に】7列に並んで、順次加熱
炉中へ搬入され、予め設定されている所要の雰囲気中で
熱処理を受けるが、ベルトの移送速度が一定であるので
、各基板とも一様な熱処理を受け、勿論炉内での一枚の
基板上での温度分布は均一に保たれており、基板内及び
基板間の熱処理条件は均一となる。
In this invention, a polymer resin layer is formed on a single substrate.
When the substrates are placed on the sample transport belt, they are automatically placed on the belt in seven rows and are sequentially carried into the heating furnace where they are placed in a preset required atmosphere. However, since the conveyance speed of the belt is constant, each substrate undergoes uniform heat treatment, and of course the temperature distribution on one substrate in the furnace is kept uniform, and the temperature distribution within the substrate and The heat treatment conditions between the substrates become uniform.

〔実施例〕〔Example〕

第1図はこの発明(こ保る高分子1封脂層の熱処理装置
とこれを用いた熱処理状況を示す断面図で、(1)は試
料搬送用ベル) 、+21はそのベル) (1) f:
に置かれた基板(試料’) 、(3)は加熱炉、(4)
は加熱炉(3)の入口、(5)は加熱炉(3)の出口、
(6)は力a熱炉13)の内部に配設された発熱体ユニ
ツ)、(7)は加熱炉(3)の内部へのガス導入口、(
8)は加熱炉13)の内部からのガス排出口である。
Figure 1 is a cross-sectional view showing the heat treatment apparatus for a single polymer sealing layer according to the present invention and the heat treatment situation using the same. (1) is a sample transport bell, +21 is the bell) f:
(3) is the heating furnace, (4) is the substrate (sample') placed in
is the inlet of the heating furnace (3), (5) is the outlet of the heating furnace (3),
(6) is a heating element unit disposed inside the heating furnace 13), (7) is a gas inlet into the inside of the heating furnace (3), (
8) is a gas exhaust port from inside the heating furnace 13).

試料搬送用ベルト(1)は環状をなすとともに、入口(
4)から加熱炉(3)の中に入り、発熱体ユニット(6
)の列番こ添って通り、出口(5)から出て再ひ入口(
4)に戻っている。この実施例では、ベルト(1)は1
本、発熱体ユニット(6)は上下両面にそれぞれ4個設
けた場合を示している。
The sample transport belt (1) has an annular shape and has an entrance (
4) into the heating furnace (3) and the heating element unit (6).
), go out from exit (5) and go back to the entrance (
It is back to 4). In this example, the belt (1) is 1
The case is shown in which four heating element units (6) are provided on each of the upper and lower surfaces.

試料(2)が受ける温度プロフィルは、発熱体ユニット
(6)の設定温度及びその総配役長、ベル) fl)の
搬送4度、ガス導入口(7)及び排出口(8)からのガ
ス導入及び排出方法によって定まるので、各条件を正確
に設定する必要かある。
The temperature profile that the sample (2) undergoes is the set temperature of the heating element unit (6), its total cast length, the conveyance of the bell) fl) at 4 degrees, and the gas introduction from the gas inlet (7) and outlet (8). It is determined by the discharge method and discharge method, so it is necessary to set each condition accurately.

具体的な設定温度は高分子樹脂層の特性(特に耐熱性)
によって定まるが、ポリイミド樹脂の場合は、最高熱処
理温度が400℃程度が一般的である。最高温度での熱
処理時間は、高分子樹脂層の安定化のために必要を時間
で決まり、ポリイミドで、同図Aで示す条件で鍋分子樹
脂層を加熱処理すると、発熱体(6)に対するベルト(
1)の搬送速度の高速化が図れるので、試料(2)の処
理枚数を多くできるという利点かある。一方、第2図B
で示す条件で高分子樹脂層を熱処理すると、試料(2)
は段階的に熱処理を受けるので、被膜の膜質および安建
性が一層向上するという利点がある。
The specific temperature setting depends on the characteristics of the polymer resin layer (especially heat resistance)
However, in the case of polyimide resin, the maximum heat treatment temperature is generally about 400°C. The heat treatment time at the maximum temperature is determined by the time needed to stabilize the polymer resin layer. When the pot molecular resin layer is heat treated with polyimide under the conditions shown in A in the same figure, the belt against the heating element (6) (
Since the transport speed of 1) can be increased, there is an advantage that the number of samples (2) to be processed can be increased. On the other hand, Fig. 2B
When the polymer resin layer is heat-treated under the conditions shown in , sample (2)
Since the film is subjected to heat treatment in stages, it has the advantage that the film quality and stability of the film are further improved.

第3図は基板表面−ご多層構造配線体を形成した混成集
積回路基板の断面図で、以下、この基板の製造番ここの
発明の熱処理方法を適用した実施例(こついて説明する
。第3図において、(6)はアルミナ基板、aカは酸化
ルテニウム(Rust)からなる抵抗体、(至)は銅(
Cu)からなる第1の導体層、α4J、αQは感光性ポ
リイミド樹脂からなる感光性耐熱高分子樹脂層、に)は
Cuからなる第2の導体層、(ロ)ははんだ。
FIG. 3 is a sectional view of a hybrid integrated circuit board on which a multilayer structure wiring body is formed on the surface of the board. In the figure, (6) is an alumina substrate, a is a resistor made of ruthenium oxide (Rust), and (to) is a resistor made of ruthenium oxide (Rust).
α4J and αQ are photosensitive heat-resistant polymer resin layers made of photosensitive polyimide resin, d) is a second conductive layer made of Cu, and (b) is solder.

(ト)はチップ製品、α9.[は貫通孔である。(G) is a chip product, α9. [ is a through hole.

まず、アルミナ基板(11)の上に抵抗体Uを形成し。First, a resistor U is formed on an alumina substrate (11).

次いで、所定パターンの第1の導体層(2)を形成し。Next, a first conductor layer (2) having a predetermined pattern is formed.

その上に感光性耐熱高分子樹脂層α青を形成する〇この
樹脂層α噂には所定パターンの露光を行い、その−後に
現像処理して不要部を溶解除去し1貫通孔a9を設は硬
化して絶縁層αぐを完成させる。次いで貫通孔四を通し
て、第2の導体層(ト)を形成し、その上に上述と同様
にして、絶縁層σ・及び貫通孔ωを設ける。そして、貫
通孔凹、圓を通して、アルミナ回路基板の配線導体がは
んだ(X7)によってチップ部品叫と電気的に接続され
る。
On top of that, a photosensitive heat-resistant polymer resin layer α blue is formed. This resin layer α is exposed to light in a predetermined pattern, and then developed and unnecessary parts are dissolved and removed to form one through hole A9. It hardens to complete the insulating layer α. Next, a second conductor layer (G) is formed through the through hole 4, and an insulating layer σ and a through hole ω are provided thereon in the same manner as described above. Then, the wiring conductor of the alumina circuit board is electrically connected to the chip component by solder (X7) through the through hole.

この熱処理方法の実施例ICオいて、ポリイミド樹脂層
α4.α呻の加熱硬化処理は次のようにして行った。す
なわち、所定のパターンが形成されたポリイミド樹脂層
を第1図に示した装置で熱処理を施した。そして、その
熱処理温度プロフィルは第2図Bのようになるように、
各発熱体ユニット(6)の温度及び搬送ベルト(1)の
速度を設定した。第1゜第2及び第30熱処理温度をそ
れぞれ160’C1200℃及び350℃とし、処理時
間をそれぞれ30分間。
In Example IC of this heat treatment method, polyimide resin layer α4. The heat curing treatment of α-moon was carried out as follows. That is, the polyimide resin layer on which a predetermined pattern was formed was heat-treated using the apparatus shown in FIG. Then, the heat treatment temperature profile is as shown in Figure 2B.
The temperature of each heating element unit (6) and the speed of the conveyor belt (1) were set. 1st° 2nd and 30th heat treatment temperatures were 160'C, 1200°C and 350°C, respectively, and the treatment time was 30 minutes, respectively.

30分間及び1時間とし、昇温速度は10℃/分とした
The heating time was 30 minutes and 1 hour, and the heating rate was 10°C/min.

炉内雰囲気は被膜の膜質を保持するため窒素(N、)と
した。更に導体層(2)、(ト)が酸化し易いCuから
なるので、N、ガス導入量をコントロールして残存酸素
(0り量が20ppm以下となるようCζしてCu導体
層0、(至)の表面酸化を防止した。更に、試料が加熱
炉(3)の出口(5)において冷却されているようにす
るために発熱体ユニット(6)の最終端と加熱炉(3)
の出口(5)との間の距離りを十分(この例では1m 
)+ことった。勿論、試料を連続的に熱処理するため、
ベルトC1)の搬送速度は一定(この例では20ras
/分)とした。
The atmosphere in the furnace was nitrogen (N) in order to maintain the film quality of the film. Furthermore, since the conductor layers (2) and (g) are made of Cu, which is easily oxidized, the amount of nitrogen and gas introduced is controlled so that the amount of residual oxygen (0) is 20 ppm or less. ).Furthermore, in order to ensure that the sample is cooled at the outlet (5) of the heating furnace (3), the final end of the heating element unit (6) and the heating furnace (3)
(1m in this example)
) + Kotatta. Of course, since the sample is continuously heat-treated,
The conveyance speed of the belt C1) is constant (20ras in this example).
/min).

この結果、回路基板上のポリイミド絶縁被膜は。This results in a polyimide insulation coating on the circuit board.

電気絶縁性に優れ、しかもパターン断面形状の正常なも
のが得られ、その結果、所望の特性をもつ混成集積回路
基板の!産が可能である。
A hybrid integrated circuit board with excellent electrical insulation and a normal cross-sectional pattern shape can be obtained, resulting in a hybrid integrated circuit board with the desired characteristics! production is possible.

なお、上記実施例装置では、発熱体ユニット数を4ユニ
ット/片而としたが、被膜の膜質および試料処理枚数が
確保されるならばよく、上記実施例に固執する必要はな
い。同様f工理由で、試料搬送用ベルトも1本とする必
要はなく、並行番ご2本以上設けても何ら問題はtiい
。又、試料を室温付近まで冷却させるために、最終の発
熱体ユニットから加熱炉出口までの距離を十分にとった
が、例んば、冷却ゾーンを発熱体ユニットのある加熱ゾ
ーンの直後に設置することにより距離を短くしてもよい
。結果的に、試料が加熱炉出口付近で室温程度に冷えて
いれば、本発明の目的を十分(こ達する0ガス導入系忘
よび排出系については、特にその具体構成を述べなかっ
たが、その主旨は、炉内の雰囲気を一定番こ保ち、X1
l)つ、温度分布を厳密≦こコントロールするところに
あるので、熱処理装置設計4こあたっては、適宜その方
法を定めればよい。炉内の残存02量コントロールは、
例えは銅のような極めて熱配化し易い配線層付基板を処
理する際に極めてM効である。
In the apparatus of the above embodiment, the number of heating element units was set to 4 units/unit, but it is not necessary to stick to the above embodiment as long as the quality of the coating and the number of samples to be processed are ensured. For the same reason, it is not necessary to use only one sample conveying belt, and there is no problem even if two or more belts are provided in parallel. In addition, in order to cool the sample to near room temperature, a sufficient distance was provided from the final heating element unit to the heating furnace outlet, but for example, the cooling zone was installed immediately after the heating zone where the heating element unit was located. The distance may be shortened by this. As a result, if the sample is cooled to about room temperature near the heating furnace outlet, it is sufficient to achieve the purpose of the present invention. The main idea is to maintain the atmosphere inside the furnace at a certain level,
1) Since the temperature distribution must be strictly controlled, the method can be determined as appropriate when designing the heat treatment equipment. The amount of remaining 02 in the furnace is controlled by
For example, it is extremely effective when processing a substrate with a wiring layer, such as copper, which is extremely susceptible to heat distribution.

同じ理由で1発熱体ユニット、ベルト、炉等の材質及び
構成は任意でよく、高分子樹脂層により絶縁被膜を形成
するため、500〜600℃の熱安定性をもった材料、
構成を保持していればよい0〔発明の効果〕 以上詳述したように、この発明では、高分子樹脂層を形
成しf−基板を順次搬送ベルトのよdこ置き。
For the same reason, the material and structure of the heating element unit, belt, furnace, etc. may be arbitrary.In order to form an insulating coating with a polymer resin layer, materials with thermal stability of 500 to 600°C,
[Effects of the Invention] As detailed above, in the present invention, a polymer resin layer is formed and the F-substrates are sequentially placed on the conveyor belt.

この搬送ベルトの移動1こつれで加熱炉の中へ搬入して
、炉内を移動させながら上記被膜に熱処理を施すので、
一枚の6板内は勿論、各基板相互間でも熱処理条件は一
様に保たれ均質な高分子絶縁膜が得られる。
One movement of this conveyor belt transports it into the heating furnace, and heat treatment is applied to the coating while moving inside the furnace.
The heat treatment conditions are kept uniform not only within one six-board board, but also between each board, and a homogeneous polymer insulating film can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明になる高分子樹脂層の熱処理装置の一
実施例の模式構成を示す断面図、第2図はその熱処理温
度グロフィルを示す図、第3図はこの発明の方法を適用
した混成集積回路基板の一例を示す断面図である。 図−こ2いて、(1)は試料搬送ベルト、(2)は試料
。 (3)は加熱?、(6)は発熱体ユニット、(7)はガ
ス導入系、(8)はガス排出系である。 なお、図中同一符号は同一、または相当部分を示す。
Fig. 1 is a cross-sectional view showing a schematic configuration of an embodiment of a heat treatment apparatus for a polymer resin layer according to the present invention, Fig. 2 is a view showing a heat treatment temperature profile thereof, and Fig. 3 is a diagram showing the heat treatment temperature profile of the polymer resin layer heat treatment apparatus according to the present invention. 1 is a cross-sectional view showing an example of a hybrid integrated circuit board. In Figure 2, (1) is the sample transport belt, and (2) is the sample. Is (3) heating? , (6) is a heating element unit, (7) is a gas introduction system, and (8) is a gas exhaust system. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (6)

【特許請求の範囲】[Claims] (1)高分子樹脂層が形成された基板を搬送ベルト上に
置き、加熱炉内を通過する上記搬送ベルトとともに上記
基板を上記加熱炉内を移動させながら、上記高分子樹脂
層に熱処理を施して高分子絶縁被膜を得ることを特徴と
する高分子樹脂層の熱処理方法。
(1) Place the substrate on which the polymer resin layer is formed on a conveyor belt, and heat-treat the polymer resin layer while moving the substrate in the heating furnace together with the conveyor belt passing through the heating furnace. 1. A method for heat treating a polymer resin layer, the method comprising: obtaining a polymer insulation coating.
(2)高分子樹脂層は銅からなる導体層を有する基板上
に形成されたことを特徴とする特許請求の範囲第1項記
載の高分子樹脂層の熱処理方法。
(2) The method for heat treatment of a polymer resin layer according to claim 1, wherein the polymer resin layer is formed on a substrate having a conductor layer made of copper.
(3)高分子樹脂層がポリイミド樹脂層であることを特
徴とする特許請求の範囲第1項または第2項記載の高分
子樹脂層の熱処理方法。
(3) The method for heat treatment of a polymer resin layer according to claim 1 or 2, wherein the polymer resin layer is a polyimide resin layer.
(4)加熱炉内で室温以上500℃以下の温度で熱処理
することを特徴とする特許請求の範囲第1項ないし第3
項のいずれかに記載の高分子樹脂層の熱処理方法。
(4) Claims 1 to 3, characterized in that the heat treatment is performed in a heating furnace at a temperature above room temperature and below 500°C.
A method for heat treatment of a polymer resin layer according to any one of the above.
(5)加熱炉内の雰囲気を酸素濃度100ppm以下と
することを特徴とする特許請求の範囲第1項ないし第4
項のいずれかに記載の高分子樹脂層の熱処理方法。
(5) Claims 1 to 4 characterized in that the atmosphere in the heating furnace has an oxygen concentration of 100 ppm or less.
A method for heat treatment of a polymer resin layer according to any one of the above.
(6)加熱炉を縦貫して定速で駆動されその上に置かれ
、表面に高分子樹脂層を有する試料を搬送する試料搬送
用ベルト、上記加熱炉内にあつて上記試料搬送用ベルト
に沿つて配設されそれぞれ温度を設定可能な複数個の発
熱体ユニット、並びに上記加熱炉内を所望雰囲気に保つ
ためのガス導入系およびガス排出系を備えた高分子樹脂
層の熱処理装置。
(6) A sample conveying belt that runs longitudinally through the heating furnace, is driven at a constant speed, is placed on top of the heating furnace, and conveys the sample having a polymer resin layer on its surface; A heat treatment apparatus for a polymer resin layer, comprising a plurality of heating element units arranged along the line and each having a temperature settable, and a gas introduction system and a gas exhaust system for maintaining the inside of the heating furnace in a desired atmosphere.
JP17135185A 1985-08-02 1985-08-02 Method and apparatus for heat treatment of high-polymer resin layer Pending JPS6233580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17135185A JPS6233580A (en) 1985-08-02 1985-08-02 Method and apparatus for heat treatment of high-polymer resin layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17135185A JPS6233580A (en) 1985-08-02 1985-08-02 Method and apparatus for heat treatment of high-polymer resin layer

Publications (1)

Publication Number Publication Date
JPS6233580A true JPS6233580A (en) 1987-02-13

Family

ID=15921591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17135185A Pending JPS6233580A (en) 1985-08-02 1985-08-02 Method and apparatus for heat treatment of high-polymer resin layer

Country Status (1)

Country Link
JP (1) JPS6233580A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102806671A (en) * 2012-07-14 2012-12-05 泰州科世茂工程设备有限公司 Belt-type tempering device for plastic floor
CN102806672A (en) * 2012-08-17 2012-12-05 张李忠 Device and processing method for off-line heat treatment of plastic section material
CN102886905A (en) * 2012-10-24 2013-01-23 张家港市锦明机械有限公司 Tempering equipment for plastic floor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102806671A (en) * 2012-07-14 2012-12-05 泰州科世茂工程设备有限公司 Belt-type tempering device for plastic floor
CN102806672A (en) * 2012-08-17 2012-12-05 张李忠 Device and processing method for off-line heat treatment of plastic section material
CN102886905A (en) * 2012-10-24 2013-01-23 张家港市锦明机械有限公司 Tempering equipment for plastic floor

Similar Documents

Publication Publication Date Title
DE3217851A1 (en) DEVICE FOR HEATING COVER COVERS ON SEMICONDUCTOR BOARDS
JPH02260534A (en) Hardening method for spin-on-glass film making use of ultraviolet rays
US5408074A (en) Apparatus for the selective control of heating and irradiation of materials in a conveying path
KR20140019407A (en) Polyimide film production method, polyimide film production apparatus, and polyimide film
US3183604A (en) Apparatus and process for removing solvents from coatings on metal
JPS6233580A (en) Method and apparatus for heat treatment of high-polymer resin layer
JP2000124206A (en) Coating film forming apparatus and hardening apparatus
US4311458A (en) Tunnel furnace for fabricating plate-like flat structures, especially printed circuit boards coated at both sides with a curable material
JPS6331568A (en) Apparatus for hardening high-molecular resin layer
EP0108314A2 (en) Method for manufacturing multi-layered, thick film circuits
US5797539A (en) Circuit board reflow ovens
JPH08254392A (en) Method and apparatus for heat treatment of substrate
US4851022A (en) Method and oven for ceramising glass plates
DE3329923C2 (en)
JPH0193121A (en) Semiconductor wafer baking device
JPS6138985B2 (en)
JPH04297025A (en) Semiconductor production device
US3220889A (en) Electrical circuit components
US3185597A (en) Metal oxidizing process
US5876198A (en) Sequential step belt furnace with individual concentric heating elements
US3160403A (en) Furnace construction and method of operating the construction
JPS63299230A (en) Heat treatment furnace
JPS59232483A (en) Heater
JPH01233063A (en) Soldering device
JPH1067541A (en) Burning of base plate containing film-forming raw material and apparatus therefor