JPS6233291B2 - - Google Patents

Info

Publication number
JPS6233291B2
JPS6233291B2 JP58982A JP58982A JPS6233291B2 JP S6233291 B2 JPS6233291 B2 JP S6233291B2 JP 58982 A JP58982 A JP 58982A JP 58982 A JP58982 A JP 58982A JP S6233291 B2 JPS6233291 B2 JP S6233291B2
Authority
JP
Japan
Prior art keywords
temperature
steel
hot rolling
drawability
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58982A
Other languages
Japanese (ja)
Other versions
JPS58117834A (en
Inventor
Takashi Sakata
Takashi Obara
Toshio Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58982A priority Critical patent/JPS58117834A/en
Publication of JPS58117834A publication Critical patent/JPS58117834A/en
Publication of JPS6233291B2 publication Critical patent/JPS6233291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、絞り性、延性、耐時効性の良好な冷
延鋼板を連続焼鈍により製造する方法に関するも
のである。 絞り性、延性の良好な冷延鋼板は従来箱焼鈍法
により製造されている。しかし箱焼鈍法は、処理
に数日を要するばかりでなく、コイル状態で熱処
理されるためコイルの半径方向で加熱、冷却速度
が異なり、コイル全体にわたつて均質な材質を得
ることが困難であつた。連続焼鈍法を用いると、
箱焼鈍法の持つこれらの欠点を解消することが可
能である。しかし連続焼鈍では、急速加熱・急速
冷却処理を伴なうため、結晶粒の成長性が悪く、
また鋼中に固溶しているCの析出が進まないため
硬質で絞り性、耐時効性が劣る。連続焼鈍性のこ
れらの欠点を解消するために、熱間圧延時高温で
巻取ることにより、絞り性に有利な方位の粒成長
を促進させ、かつ連続焼鈍中急速冷却後に300℃
〜500℃で数秒〜数分の過時効処理を行なうこと
により、未析出の固溶Cの析出を促進させ、時効
性の改善を行なう方法が提案されているが、熱延
時の高温巻取は酸洗性の低下を伴ない、かつこの
方法により製造された鋼板は、絞り性、延性、耐
時効性の点で未だ箱焼鈍材の材質より劣る。 一方、連続焼鈍材の耐時効性を悪化させている
主原因が固溶しているCということから、C含有
量を0.0050%以下に低減した極低炭素鋼の素材を
用いて耐時効性を向上させる方法が提案されてい
る。 一般に絞り用鋼板を製造するためには、熱延仕
上をAr3変態点以上で終了することが必須とされ
ているが、このようなC量の減少は、耐時効性の
面では有利であるが、Ar3変態点を上昇させるの
で、熱延仕上時にγ(オーステナイト)域で圧延
仕上を終了させるためには、スラブ加熱温度の上
昇や熱延の圧下スケジユールの変更を余儀なくさ
れ、省エネルギーの面から大きなマイナスとな
る。 連続焼鈍材の耐時効性を悪化させているもう一
つの原因は、鋼中に固溶しているNである。 固溶Nを低減するため、Alキルド鋼片を熱延
時高温巻取し、AlNとして固定する方法、及び高
温巻取せずともAlキルド鋼の高温巻取材と同等
の材質を得るため、Alキルド鋼に20〜50ppmの
Bを添加し、BNとしてNを固定する方法等が知
られている。 固溶C、Nによる時効性の改善、及び絞り性、
延性の向上を目的として、Alキルド鋼の高温巻
取材及びB添加Alキルド鋼のC量を0.01%以下の
極低C域に低減すること、及びこれらの鋼のスラ
ブ加熱温度を適当に組合せる方法が数多く開発さ
れているが、耐時効性、絞り性、延性とも良好な
鋼を製造する方法としては不充分であつた。 また、従来の連続焼鈍による冷延鋼板の製造法
の共通点は、絞り性の向上を目的とするため熱間
圧延の仕上温度をAr3点以上としていることであ
る。 本発明者らは、熱延仕上温度がAr3点以下にし
ても、絞り性、延性、耐時効性が従来Ar3点以上
の熱延仕上で製造されている鋼板と同程度又はそ
れ以上の材質となる鋼板を製造することを目的と
して、研究を重ねた結果、C、B、Nの成分範囲
を規定したB添加極低炭Alキルド鋼素材を用
い、スラブ加熱温度と熱延条件を組合せれば、熱
延時Ar3点以下の低温仕上でも絞り性、延性、耐
時効性の良好な鋼板が得られることを見出したの
である。 本発明は、これらの知見に基づいて創作したも
ので、その要旨とするところは、C:0.0040%以
下、Mn:0.40%以下、sol.Al:0.008〜0.090%、
N:0.0010〜0.0050%、B:0.0005〜0.0050%を
含み、かつB/N=0.2〜1.0であり、残部をFe及
び不可避的不純物とした鋼又はこの鋼の組成に対
して更にTi、Nb、V、Zrのいづれか一種又は2
種以上を0.002〜0.02%添加して成る鋼スラブを
1180℃以下の温度に加熱した後、仕上温度を680
〜800℃、巻取温度を580℃以下とする熱間圧延を
行ない、次いで冷間圧延した後、連続焼鈍を行な
うことを特徴とする、絞り性、延性かつ耐時効性
の良好な冷延鋼板の製造方法にある。 以下、本発明について詳細に説明する。 本発明者らは、下記の実験、に記載するよ
うに、C、Al、N、B量のそれぞれ異なる小型
鋼塊を実験室的に製作し、分塊圧延で30mm厚のス
ラブとし、スラブの加熱温度と熱延仕上温度を変
化させて2.8mmの熱延板とし、直ちに530℃の炉に
装入し、2時間保持後炉中で徐冷する熱延板の巻
取シミユレートを行なつた。 次いで酸洗後0.8mmに冷間圧延し、更に800℃の
流動層式熱処理炉に試験片を挿入し、板温が800
℃に到達後15秒保持し、その後急冷する連続焼鈍
を行ない(加熱速度約50℃/秒、冷却速度約20
℃/秒)、0.6%の調質圧延後材質を調べた。 実験 Mn:0.26%、P:0.015%、S:0.011%、Al:
0.035%、N:0.0028%、B:0.0013%(B/N=
0.464)のほか、C含有量を0.0005〜0.0080%に変
化させた組成の小型鋼塊を用い、スラブ加熱温
度:1250℃、1100℃、熱延仕上温度:890℃、760
℃に変化させ、巻取相当温度530℃で処理した
後、冷延、連続焼鈍してその材質を調べた。絞り
性、延性、耐時効性の尺度として値、全伸び、
A.I.(時効指数)を用いた。A.I.は7.5%の予歪み
を与えた後、100℃で30分の促進時効を行ない、
降伏応力の上昇量をもつてA.I.とした。A.I.≦3
Kg/mm2望ましくはA.I.≦2.5Kg/mm2になれば、耐
時効性は箱焼鈍材と同等であり、室温での時効は
ほとんど無視できる。第1図にその結果を示す。
C:0.0040%以下のとき、好ましくはC:0.0030
%以下のとき優れた値、全伸び、A.I.を示す
が、特にスラブ加熱温度が1100℃、熱延仕上温度
がAr3点以下の760℃のとき(図中〇印)、より一
層優れた材質を有す。 実験 C:0.0020%、Mn:0.24%、P:0.013%、
S:0.010%、Al:0.039%を基準として、N:
0.0010〜0.0080%、B:0.0003〜0.0080%に変化
させた鋼を実験室的に製作し、スラブ加熱温度
1100℃、熱延仕上温度760℃、巻取相当温度530℃
の条件で熱延を終了し、その後冷延、連続焼鈍し
て材質を調べた。第2図、第3図、第4図にその
結果を示す。これら図表内の点の数字は各測定値
である。 従来の箱焼鈍で得られる深絞り用非時効性鋼板
と同等の材質として、値≧1.6、全伸び≧49
%、A.I.≦3Kg/mm2を基準とし、これらをいづれ
も満たす領域を第2図、第3図、第4図に示し
た。この領域はN:0.0010〜0.0050%、B:
0.0005〜0.0050%、B/N:0.2〜1.0を満足する
領域である。これら成分の条件が本発明における
スラブ素材についての必須要件である。 しかして、Nの下限を0.0010%としたのは現在
の製鋼技術で実施可能な下限であるからである。
またNの上限を0.0050%としたのは、これを超え
る添加は、焼鈍時の結晶粒の成長を著しく抑制
し、絞り性、延性を低下させるからであり、延
性、絞り性の一層の向上のためには、好ましくは
N:0.0040%以下が望ましい。 B量については、B添加の効果を出すため最低
0.0005%の添加を必要とする。B添加の効果は、
その理由は明らかではないが、Nと窒化物を形成
したBNの焼鈍時の結晶粒成長の抑制力が極めて
小さいことに起因するものと考えられる。更に焼
鈍時の結晶粒成長の促進に効果のあるBN量の範
囲が存在し、Bが0.0050%を越えるか又はB/N
が1.0を越えるとBN又は固溶しているBが増加し
焼鈍時の粒成長にかえつて有害となり良好な材質
が得られないと考えられる。またB/Nが0.2よ
り低いと、有効な析出物が極端に少なく、その効
果がない。スラブ加熱時にBと化合せずに残つた
Nは、スラブ加熱時及び熱間圧延時にAlと結合
してAlNとして析出するので耐時効性にとつて何
ら有害とならない。 Alは、Bにより固定されなかつたNを固定す
るために最低0.008%必要とする。しかしAlを過
剰に添加するとAlの固溶体強化が起るのでその
上限を0.080%とする。そのうち特にAl:0.015〜
0.060%が最も好ましい。 Mnの過剰添加は、焼鈍板の材質を著しく悪化
させるので上限を0.40%とする。 Si、P、Sの含有量については、特に規定する
ものではないが、通常の製鋼工程で不可避的に残
留する範囲である、Si:0.10%以下、P:0.030
%以下、S:0.020%以下であれば、本発明に何
ら悪影響を及ぼすものではない。 本発明の極低C鋼スラブのN、Bの有効量につ
いては、熱延段階の析出物の効果が大きいことか
ら明らかなように、スラブ加熱温度、熱延仕上温
度ともに特定の温度域にあるとき、初めて効果が
発揮される。 スラブの加熱温度としては、通常のスラブ加熱
温度である1250〜1300℃より低い1180℃以下の温
度で加熱するのが望ましい。この温度範囲は、
BNの溶解が起らず、Bは全量がBNとして固定さ
れていると考えられ、焼鈍時の粒成長にとつて好
ましい。かつ残部のNをAlで固定するために必
要な温度範囲である。その下限としては圧延性の
観点から950℃とする。材質的に最も好ましい範
囲は1000〜1160℃である。 次に、本発明で最も重要である熱延仕上げ温度
について説明する。 従来絞り用鋼板製造技術としては、箱焼鈍法、
連続焼鈍法とも熱延仕上げ温度をAr3点以上、す
なわち全オーステナイト域で熱延を終了するのが
望ましいとされている。熱延時Ar3点以下、すな
わちα(フエライト)+γ(オーステナイト)の
2相域又はα域で熱延を終了すると、絞り性に不
利な(110)(100)方位が板面に平行に発達し、
焼鈍時に絞り性に有利な(111)を板面に平行に
発達させるのを阻害するとされている。 これに対し本発明者らは、上記特定組成の鋼板
素材で焼鈍時の粒成長性、特に板面に平行に
(111)面を発達させるのに有効な熱延仕上温度が
あることを見出したのである。以下実験により説
明する。 実験 C:0.0023%、Mn:0.25%、P:0.019%、
S:0.018%、Al:0.023%、N:0.0038%、B:
0.0035%(B/N=0.92)の組成の小型鋼塊を用
い、スラブ加熱温度1120℃で加熱後仕上温度を
650〜930℃として2.8mmの熱延板とし、直ちに530
℃の炉に装入し2時間保持後炉中で冷却すること
により熱延板の低温巻取相当処理を行なつた。ま
た一部の試料については仕上熱延後680℃の炉中
に装入し2時間保持後炉中冷却する、熱延板の高
温巻取相当処理を行なつた。酸洗以後の工程は実
験、と同じである。第5図にその結果を示
す。図中の〇印が530℃の低CT巻取相当処理材の
結果である。 第5図によれば、熱延仕上温度として680℃以
上830℃以下で終了した場合、全伸び、値とも
良好となり、特に熱延仕上温度が700℃〜800℃の
場合に材質が著しく良好となることが分る。この
理由については明らかではないが、熱延仕上げ時
にAr3点以下の低温仕上げにより、仕上げ時に導
入された加工歪みの一部がそのまま常温になつた
後も保持され、これとBN析出物とが相互作用を
行なつて焼鈍時に板面に平行に(111)面を発達
させるので、絞り性が良くなり、かつ低温仕上げ
による粒成長により全伸びも良好になつたと考え
られる。そして、上限を800℃とすることにより
ストリツプ幅方向につき、冷却中に中央部と端部
との温度差が少なくなるので材質がより均一とな
ると共に低温加熱のため省エネルギー及び鋼板表
面への酸化スケールの付着量が減少し後工程の酸
洗コストの低減や鋼板自体の歩留り向上に役立つ
のである。このように、仕上げを低温で行ない、
かつ680℃の高温で巻取つた場合の材質は第5図
の図中の×印で示したが、高温で巻取つた場合の
材質は、低温で巻取つた場合と同等であり、高温
巻取による材質の改善は見られない。しかも高温
巻取材は酸洗時の脱スケールコストの上昇を伴な
う。 これに対し、本発明では、Ar3点以下の低温の
熱延仕上げを行なうことにより、低温で巻取つて
も高温巻取材と同等の材質を得ることができるの
で、酸洗コストの低減が可能となる。本発明の熱
延時の巻取温度としては酸洗時のコストアツプを
防ぐ目的でその上限を580℃とする。 実験 実験の鋼を基本成分とし、第1表に示す如く
実験の鋼の基本成分に近い鋼にTi、Nb、V、
Zrを微量添加した鋼を真空溶解で実験室的に鋳造
し、スラブ加熱温度1100℃で加熱後、仕上温度を
780℃として2.8mmの熱延板とし、直ちに530℃の
炉に装入し、2時間保持後炉中で冷却することに
より、熱延板の低温巻取相当処理を行なつた。酸
洗以後の工程は実験、、と同じである。結
果を第2表に示す。これによれば、Cとの原子比
で1より小さいようなTi=0.002(Ti/C=0.21
(原子比))のような微量の炭化物形成元素の添加
により、値、全伸びが変化せず、時効指数のみ
低下しており、さらに時効性の良好な鋼板を製造
する上で、好ましい材質が得られることが分る。
第1表に於てTi=0.001%含有の場合、A.I.の低
下が見られないが、これはTiが不可避的不純物
と化合することによりCと結合せず、A.I.の低下
に有効に働らかなかつたためと考えられる。よつ
て、Ti、Nb、V、Zrの1種または2種以上の合
計の下限としては、0.002%が適当である。次に
Ti、Nb、V、Zrの1種または2種以上の合計の
上限を0.02%としたのは、これ以上の添加をして
も効果が飽和され、かつコストアツプを伴うから
である。よつてTi、Nb、V、Zrの1種または2
種以上の合計の上限を0.02%とする。
The present invention relates to a method for producing cold rolled steel sheets with good drawability, ductility, and aging resistance by continuous annealing. Cold-rolled steel sheets with good drawability and ductility are conventionally manufactured by box annealing. However, the box annealing method not only takes several days to process, but because the coil is heat treated, the heating and cooling rates differ in the radial direction of the coil, making it difficult to obtain a homogeneous material over the entire coil. Ta. Using the continuous annealing method,
It is possible to eliminate these drawbacks of the box annealing method. However, continuous annealing involves rapid heating and cooling, which results in poor crystal grain growth.
Furthermore, since the precipitation of C dissolved in solid solution in the steel does not proceed, the steel is hard and has poor drawability and aging resistance. In order to eliminate these drawbacks of continuous annealing, we promote grain growth in an orientation that is advantageous for drawability by coiling at a high temperature during hot rolling, and after rapid cooling during continuous annealing, we
A method has been proposed in which overaging treatment is carried out at ~500°C for several seconds to several minutes to promote the precipitation of unprecipitated solid solution C and improve aging properties, but high temperature coiling during hot rolling is difficult. The steel sheet manufactured by this method is still inferior to the box-annealed material in terms of drawability, ductility, and aging resistance, which is accompanied by a decrease in pickling properties. On the other hand, since the main cause of deterioration of the aging resistance of continuously annealed materials is solid solution C, we have improved the aging resistance by using ultra-low carbon steel material with a reduced C content of 0.0050% or less. Methods to improve this have been proposed. In general, in order to produce steel sheets for drawing, it is essential to finish hot rolling at the Ar 3 transformation point or higher, but this reduction in C content is advantageous in terms of aging resistance. However, since it raises the Ar 3 transformation point, in order to finish rolling in the γ (austenite) region during hot rolling, it is necessary to increase the slab heating temperature and change the hot rolling reduction schedule, which leads to problems in terms of energy saving. This is a big minus. Another cause of deterioration of the aging resistance of continuously annealed materials is N dissolved in steel. In order to reduce solid solution N, we have developed a method of coiling Al-killed steel pieces at high temperatures during hot rolling and fixing them as AlN. A known method is to add 20 to 50 ppm of B to steel and fix N as BN. Improvement of aging property and drawability by solid solution C and N,
For the purpose of improving ductility, reduce the C content of high-temperature rolled material of Al-killed steel and B-added Al-killed steel to an extremely low C range of 0.01% or less, and appropriately combine the slab heating temperatures of these steels. Although many methods have been developed, they have not been sufficient to produce steel with good aging resistance, drawability, and ductility. Furthermore, a common feature of the conventional continuous annealing method for manufacturing cold rolled steel sheets is that the finishing temperature of hot rolling is set to Ar 3 or higher in order to improve drawability. The present inventors have discovered that even if the hot-rolling finishing temperature is set to Ar 3 points or lower, drawability, ductility, and aging resistance are comparable to or higher than conventional hot-rolled steel sheets manufactured at Ar 3 points or higher. As a result of repeated research with the aim of manufacturing steel sheets as materials, we used a B-added ultra-low carbon Al-killed steel material with a specified range of C, B, and N components, and combined the slab heating temperature and hot rolling conditions. They discovered that a steel sheet with good drawability, ductility, and aging resistance can be obtained even with low-temperature finishing at an Ar point of 3 or less during hot rolling. The present invention was created based on these findings, and its gist is that C: 0.0040% or less, Mn: 0.40% or less, sol.Al: 0.008 to 0.090%,
Steel containing N: 0.0010 to 0.0050%, B: 0.0005 to 0.0050%, and B/N = 0.2 to 1.0, with the balance being Fe and unavoidable impurities, or with respect to the composition of this steel, further Ti, Nb, One or two of V and Zr
A steel slab made by adding 0.002 to 0.02% of
After heating to a temperature below 1180℃, the finishing temperature is 680℃.
A cold rolled steel sheet with good drawability, ductility and aging resistance, characterized by hot rolling at ~800°C and a coiling temperature of 580°C or less, followed by cold rolling and continuous annealing. It is in the manufacturing method. The present invention will be explained in detail below. As described in the following experiment, the present inventors produced small steel ingots with different amounts of C, Al, N, and B in the laboratory, and made them into slabs with a thickness of 30 mm by blooming rolling. A hot-rolled sheet of 2.8 mm was obtained by changing the heating temperature and hot-rolling finishing temperature, immediately charged into a furnace at 530°C, held for 2 hours, and then slowly cooled in the furnace to simulate winding of the hot-rolled sheet. . Next, after pickling, the test piece was cold rolled to 0.8 mm, and then inserted into a fluidized bed heat treatment furnace at 800°C until the plate temperature reached 800°C.
After reaching the temperature, continuous annealing is performed by holding the temperature for 15 seconds and then rapidly cooling it (heating rate of approximately 50℃/sec, cooling rate of approximately 20℃).
°C/sec) and 0.6% of the material after temper rolling. Experiment Mn: 0.26%, P: 0.015%, S: 0.011%, Al:
0.035%, N: 0.0028%, B: 0.0013% (B/N=
In addition to 0.464), small steel ingots with compositions varying in C content from 0.0005 to 0.0080% were used, slab heating temperature: 1250℃, 1100℃, hot rolling finishing temperature: 890℃, 760℃.
After processing at a coiling equivalent temperature of 530°C, cold rolling and continuous annealing were performed to examine the material properties. Value, total elongation, as a measure of drawability, ductility, and aging resistance.
AI (statute of limitations index) was used. AI is pre-strained to 7.5% and then accelerated aging at 100℃ for 30 minutes.
The amount of increase in yield stress was defined as AI. AI≦3
Kg/mm 2 Preferably, if AI≦2.5Kg/mm 2 , the aging resistance is equivalent to box annealed material, and aging at room temperature can be almost ignored. Figure 1 shows the results.
When C: 0.0040% or less, preferably C: 0.0030
% or less, it shows excellent values, total elongation, and AI, but it is an even better material especially when the slab heating temperature is 1100℃ and the hot rolling finishing temperature is 760℃, which is below Ar 3 points (marked with ○ in the figure). has. Experiment C: 0.0020%, Mn: 0.24%, P: 0.013%,
Based on S: 0.010%, Al: 0.039%, N:
Steel with B: 0.0010 to 0.0080% and B: 0.0003 to 0.0080% was manufactured in the laboratory, and the slab heating temperature was
1100℃, hot rolling finishing temperature 760℃, coiling equivalent temperature 530℃
Hot rolling was completed under these conditions, followed by cold rolling and continuous annealing to examine the material properties. The results are shown in FIGS. 2, 3, and 4. The numbers at the points in these charts are the respective measurements. Value ≧1.6, total elongation ≧49 as material equivalent to non-aging steel plate for deep drawing obtained by conventional box annealing.
%, AI≦3Kg/mm 2 as a standard, and the areas that satisfy all of these are shown in Figures 2, 3, and 4. This area is N: 0.0010-0.0050%, B:
This is a region that satisfies 0.0005 to 0.0050% and B/N: 0.2 to 1.0. These component conditions are essential requirements for the slab material in the present invention. Therefore, the reason why the lower limit of N is set to 0.0010% is because it is the lower limit that can be implemented using current steel manufacturing technology.
The upper limit of N was set at 0.0050% because adding more than this significantly suppresses the growth of crystal grains during annealing and reduces drawability and ductility. In order to achieve this, it is preferable that N: 0.0040% or less. The amount of B should be kept at a minimum in order to achieve the effect of B addition.
Requires addition of 0.0005%. The effect of B addition is
The reason for this is not clear, but it is thought to be due to the fact that the suppressing power of grain growth during annealing of BN in which nitrides are formed with N is extremely small. Furthermore, there is a range of BN content that is effective in promoting grain growth during annealing, and B exceeds 0.0050% or B/N
If the value exceeds 1.0, BN or B dissolved in solid solution increases and becomes harmful to grain growth during annealing, making it impossible to obtain a good material. Moreover, when B/N is lower than 0.2, the amount of effective precipitates is extremely small and there is no effect. N remaining without being combined with B during slab heating is not harmful to aging resistance since it combines with Al and precipitates as AlN during slab heating and hot rolling. A minimum of 0.008% of Al is required to fix N that was not fixed by B. However, if excessive Al is added, solid solution strengthening of Al will occur, so the upper limit is set at 0.080%. Especially Al: 0.015~
0.060% is most preferred. Excessive addition of Mn significantly deteriorates the material quality of the annealed plate, so the upper limit is set at 0.40%. The contents of Si, P, and S are not particularly stipulated, but are within the range that unavoidably remain in the normal steelmaking process, Si: 0.10% or less, P: 0.030
% or less and S: 0.020% or less does not have any adverse effect on the present invention. Regarding the effective amounts of N and B in the ultra-low C steel slab of the present invention, both the slab heating temperature and the hot rolling finishing temperature are within a specific temperature range, as is clear from the large effect of precipitates in the hot rolling stage. It is only when it becomes effective. The heating temperature of the slab is preferably 1180°C or lower, which is lower than the usual slab heating temperature of 1250 to 1300°C. This temperature range is
It is considered that BN does not dissolve and the entire amount of B is fixed as BN, which is favorable for grain growth during annealing. This is also the temperature range necessary to fix the remaining N with Al. The lower limit is set at 950°C from the viewpoint of rolling properties. The most preferable range in terms of material is 1000 to 1160°C. Next, the hot rolling finishing temperature, which is the most important in the present invention, will be explained. Conventional steel sheet manufacturing technologies for drawing include box annealing,
In both continuous annealing methods, it is desirable to finish the hot rolling at Ar 3 points or higher, that is, in the entire austenite region. If hot rolling is completed in the two-phase region of α (ferrite) + γ (austenite) or in the α region when the Ar is 3 points or less during hot rolling, the (110) (100) orientation, which is disadvantageous for drawability, develops parallel to the sheet surface. ,
It is said that this inhibits the development of (111), which is advantageous for drawability, in parallel to the sheet surface during annealing. In contrast, the present inventors have discovered that there is a hot rolling finishing temperature that is effective for grain growth during annealing, particularly for developing (111) planes parallel to the sheet surface, in steel sheet materials with the above-mentioned specific composition. It is. This will be explained below through experiments. Experiment C: 0.0023%, Mn: 0.25%, P: 0.019%,
S: 0.018%, Al: 0.023%, N: 0.0038%, B:
Using a small steel ingot with a composition of 0.0035% (B/N = 0.92), the finishing temperature was set after heating the slab at a temperature of 1120℃.
A 2.8mm hot-rolled plate is heated to 650-930℃, and immediately heated to 530℃.
The hot-rolled sheet was charged into a furnace at a temperature of 0.degree. In addition, some samples were subjected to a treatment equivalent to high-temperature coiling of hot-rolled sheets, in which the samples were placed in a furnace at 680°C after finishing hot rolling, held for 2 hours, and then cooled in the furnace. The steps after pickling were the same as in the experiment. Figure 5 shows the results. The circle mark in the figure is the result of the material treated at 530°C and equivalent to low CT winding. According to Figure 5, when hot rolling is finished at a finishing temperature of 680°C to 830°C, both the total elongation and the value are good, and especially when the hot rolling finishing temperature is 700°C to 800°C, the material quality is extremely good. I know it will happen. The reason for this is not clear, but due to low-temperature finishing at Ar 3 points or less during hot rolling finishing, part of the processing strain introduced during finishing is retained even after reaching room temperature, and this and BN precipitates are It is thought that this interaction causes the development of (111) planes parallel to the sheet surface during annealing, resulting in better drawability and better overall elongation due to grain growth caused by low-temperature finishing. By setting the upper limit to 800°C, the temperature difference between the center and the ends in the strip width direction is reduced during cooling, making the material more uniform, and low-temperature heating saves energy and reduces oxidation scale on the surface of the steel sheet. This reduces the amount of adhesion, which helps reduce the cost of pickling in the post-process and improves the yield of the steel sheet itself. In this way, finishing is done at low temperature,
The material when wound at a high temperature of 680°C is indicated by the x mark in Figure 5, but the material when wound at a high temperature is the same as that when wound at a low temperature. There is no improvement in the quality of the material due to removal. Moreover, high-temperature web material is accompanied by an increase in descaling costs during pickling. In contrast, in the present invention, by performing hot-rolling at a low temperature of Ar 3 or less, it is possible to obtain a material equivalent to that of a high-temperature rolled material even if it is rolled at a low temperature, so it is possible to reduce pickling costs. becomes. The upper limit of the coiling temperature during hot rolling in the present invention is 580°C in order to prevent cost increases during pickling. Experiment Using the experimental steel as the basic composition, as shown in Table 1, Ti, Nb, V,
Steel with a small amount of Zr added was cast in a laboratory using vacuum melting, and after heating at a slab heating temperature of 1100℃, the finishing temperature was
A hot-rolled sheet of 2.8 mm was prepared at 780°C, immediately charged into a furnace at 530°C, held for 2 hours, and then cooled in the furnace to perform a treatment equivalent to low-temperature coiling of the hot-rolled sheet. The steps after pickling were the same as in the experiment. The results are shown in Table 2. According to this, Ti = 0.002 (Ti/C = 0.21
By adding a small amount of carbide-forming elements such as (atomic ratio), the value and total elongation do not change, and only the aging index decreases. I know what I can get.
In Table 1, no decrease in AI is observed when Ti is contained at 0.001%, but this may be because Ti does not combine with C and does not effectively reduce AI due to its combination with unavoidable impurities. It is thought that this was due to a dry spell. Therefore, the appropriate lower limit for the total amount of one or more of Ti, Nb, V, and Zr is 0.002%. next
The reason why the upper limit of the total amount of one or more of Ti, Nb, V, and Zr is set to 0.02% is that even if more than this is added, the effect will be saturated and the cost will increase. Therefore, one or two of Ti, Nb, V, and Zr
The upper limit for the total of species and above is set at 0.02%.

【表】【table】

【表】【table】

【表】 以上の事実に基づいて本発明は、上記組成の鋼
スラブを低温加熱、熱延低温仕上げ及び低温巻取
により熱延板として酸洗後冷延して冷延鋼板と
し、連続焼鈍するのである。連続焼鈍条件として
は、特に規定する必要はなく、鋼板の最高到達温
度が再結晶温度以上あれば、加熱速度、冷却速度
また過時効の有無については特に制限しない。 以下、本発明の実施例を比較例と併せて述べ
る。 実施例 転炉出鋼後20分のRH脱ガスを施すことにより
成分の異なる5種の鋼を出鋼し、連続鋳造により
板厚200mmのスラブとした。これらのスラブを加
熱炉で1050〜1150℃に加熱し、60分保たした後、
熱間圧延で720〜800℃で仕上げ圧延を終了し、
530℃で巻取り3.2mmの熱延コイルとした。 第3表に鋼成分、スラブ加熱温度、熱延仕上温
度を示す。 比較のため符号4の鋼については、スラブ加熱
温度と熱延仕上温度が本発明の条件外の温度でも
行なつた。 該コイルを酸洗後0.8mmに冷間圧延し、引続き
連続焼鈍を施した。連続焼鈍の条件としては、加
熱速度が約20℃/秒、均熱は800℃で20秒保持、
冷却速度は約50℃/秒である。その後0.6%の調
質圧延を施した。 このようにして製造された鋼板の材質を第4表
に示す。この表から明らかなように、本発明によ
り製造された冷延鋼板は、その絞り性(値)、
延性(全伸び)、耐時効性(A.I.)がいづれも優
れている。 以上詳細に述べてきたとおり、本発明は、B及
びN含有の特定組成の鋼スラブを用い、特に熱延
前の加熱を1180℃とし、仕上圧延温度680〜800
℃、巻取温度580℃以下とする熱間圧延を行な
い、続いて冷間圧延した後、急速加熱、急速冷却
の連続焼鈍を行なうことから成る冷延鋼板の製造
方法であり、この方法により絞り性、延性かつ耐
時効性が優れた冷延鋼板を製造することができる
のである。
[Table] Based on the above facts, the present invention is based on the above-mentioned method, in which a steel slab having the above composition is heated at a low temperature, hot-rolled at a low-temperature finish, and coiled at a low temperature to produce a hot-rolled sheet, which is then pickled and then cold-rolled into a cold-rolled steel sheet, which is then continuously annealed. It is. Continuous annealing conditions do not need to be particularly specified, and as long as the maximum temperature of the steel plate is equal to or higher than the recrystallization temperature, there are no particular restrictions on the heating rate, cooling rate, or presence or absence of overaging. Examples of the present invention will be described below along with comparative examples. Example Five types of steel with different compositions were tapped by performing RH degassing for 20 minutes after tapping from a converter, and were made into slabs with a thickness of 200 mm by continuous casting. After heating these slabs in a heating furnace to 1050-1150℃ and keeping it for 60 minutes,
Finish rolling with hot rolling at 720~800℃,
It was wound at 530°C to form a 3.2 mm hot rolled coil. Table 3 shows the steel composition, slab heating temperature, and hot rolling finishing temperature. For comparison, steel No. 4 was also subjected to slab heating and hot rolling finishing temperatures outside the conditions of the present invention. The coil was pickled, cold-rolled to 0.8 mm, and then continuously annealed. The conditions for continuous annealing are a heating rate of approximately 20°C/sec, soaking at 800°C for 20 seconds,
The cooling rate is approximately 50°C/sec. After that, it was subjected to 0.6% temper rolling. Table 4 shows the materials of the steel plates manufactured in this manner. As is clear from this table, the cold-rolled steel sheet manufactured by the present invention has a drawability (value) of
Both ductility (total elongation) and aging resistance (AI) are excellent. As described above in detail, the present invention uses a steel slab with a specific composition containing B and N, and in particular, heats the slab before hot rolling to 1180°C, and the finish rolling temperature ranges from 680 to 800°C.
This is a method for producing cold rolled steel sheets, which consists of hot rolling at a coiling temperature of 580°C or less, followed by cold rolling, followed by continuous annealing of rapid heating and rapid cooling. This makes it possible to produce cold-rolled steel sheets with excellent toughness, ductility, and aging resistance.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、冷延鋼板の値、全伸び及びA.I.と
素材C量、スラブ加熱温度及び熱延仕上温度との
関係を示す図表、第2図は、同じく値とB、N
量との関係を示す図表、第3図は、同じく全伸び
とB、N量との関係を示す図表、第4図は、同じ
くA.I.とB、N量との関係を示す図表、第5図
は、冷延鋼板の値及び全伸びと熱延仕上温度及
び熱延巻取温度との関係を示す図表である。
Figure 1 is a chart showing the relationship between the value, total elongation, and AI of a cold rolled steel sheet and the amount of material C, slab heating temperature, and hot rolling finishing temperature.
Figure 3 is a diagram showing the relationship between total elongation and B and N quantities, Figure 4 is a diagram showing the relationship between AI and B and N quantities, and Figure 5 is a diagram showing the relationship between AI and B and N quantities. is a chart showing the relationship between the value and total elongation of a cold rolled steel sheet, the hot rolling finishing temperature, and the hot rolling winding temperature.

Claims (1)

【特許請求の範囲】 1 重量%で、C≦0.0040%、Mn≦0.40%、sol.
Al:0.008〜0.090%、N:0.0010〜0.0050%、
B:0.0005〜0.0050%を含み、かつB/N=0.2〜
1.0であり、残部がFe及び不可避的不純物からな
る鋼スラブを、950℃〜1180℃の温度に加熱した
後、仕上温度を680℃〜800℃、巻取温度を580℃
以下とする熱間圧延を行ない、次いで冷間圧延し
た後、再結晶温度以上で連続焼鈍を行なうことを
特徴とする連続焼鈍による絞り性、延性かつ耐時
効性の良好な冷延鋼板の製造方法。 2 重量%で、C≦0.0040%、Mn≦0.40%、sol.
Al:0.008〜0.090%、N:0.0010〜0.0050%、
B:0.0005〜0.0050%を含み、更にTi、Nb、Vお
よびZrのいずれか1種または2種以上を0.002〜
0.02%含有し、かつB/N=0.2〜1.0であり残部
がFe及び不可避的不純物からなる鋼スラブを、
950℃〜1180℃の温度に加熱した後、仕上温度を
680℃〜800℃、巻取温度を580℃以下とする熱間
圧延を行ない、次いで冷間圧延した後、再結晶温
度以上で連続焼鈍を行なうことを特徴とする連続
焼鈍による絞り性、延性かつ耐時効性の良好な冷
延鋼板の製造方法。
[Claims] 1% by weight, C≦0.0040%, Mn≦0.40%, sol.
Al: 0.008~0.090%, N: 0.0010~0.0050%,
B: Contains 0.0005 to 0.0050%, and B/N = 0.2 to
1.0, with the balance consisting of Fe and unavoidable impurities, is heated to a temperature of 950°C to 1180°C, then the finishing temperature is 680°C to 800°C, and the coiling temperature is 580°C.
A method for producing a cold-rolled steel sheet with good drawability, ductility, and aging resistance by continuous annealing, which comprises hot rolling as described below, followed by cold rolling, and then continuous annealing at a temperature higher than the recrystallization temperature. . 2 In weight%, C≦0.0040%, Mn≦0.40%, sol.
Al: 0.008~0.090%, N: 0.0010~0.0050%,
B: Contains 0.0005 to 0.0050%, and further contains 0.002 to 0.002 or more of Ti, Nb, V, and Zr.
A steel slab containing 0.02%, B/N = 0.2 to 1.0, and the balance consisting of Fe and unavoidable impurities,
After heating to a temperature of 950℃~1180℃, finish temperature
Drawability, ductility and A method for producing cold-rolled steel sheets with good aging resistance.
JP58982A 1982-01-07 1982-01-07 Production of cold-rolled steel plate having good deep drawability, ductility and aging resistance by continuous annealing Granted JPS58117834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58982A JPS58117834A (en) 1982-01-07 1982-01-07 Production of cold-rolled steel plate having good deep drawability, ductility and aging resistance by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58982A JPS58117834A (en) 1982-01-07 1982-01-07 Production of cold-rolled steel plate having good deep drawability, ductility and aging resistance by continuous annealing

Publications (2)

Publication Number Publication Date
JPS58117834A JPS58117834A (en) 1983-07-13
JPS6233291B2 true JPS6233291B2 (en) 1987-07-20

Family

ID=11477909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58982A Granted JPS58117834A (en) 1982-01-07 1982-01-07 Production of cold-rolled steel plate having good deep drawability, ductility and aging resistance by continuous annealing

Country Status (1)

Country Link
JP (1) JPS58117834A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530068B1 (en) * 2001-12-17 2005-11-22 주식회사 포스코 Steel strip for the automotive reinforcement parts and method of manufacturing thereof

Also Published As

Publication number Publication date
JPS58117834A (en) 1983-07-13

Similar Documents

Publication Publication Date Title
JP3152576B2 (en) Method for producing Nb-containing ferrite steel sheet
JP3448454B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and formability, and method for producing the same
JP3394598B2 (en) Packing band and manufacturing method thereof
JPS6111294B2 (en)
JP3194120B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing excellent in material uniformity in coil by continuous annealing
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPS6233291B2 (en)
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JPH01275736A (en) Continuously cast steel plate for enameling having excellent workability and its manufacture
JP2971192B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPS60190521A (en) Manufacture of nonoriented electrical steel sheet
JPH07118755A (en) Production of steel sheet for porcelain enameling excellent in deep drawability
JP3704790B2 (en) Cold-rolled steel sheet with good aging resistance
JP2608508B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JPH02415B2 (en)
JPH0137454B2 (en)
JPH05179357A (en) Production of cold rolled ferritic stainless steel sheet
JPH10265845A (en) Production of hot rolled alloy steel sheet excellent in cold workability
JPS6153411B2 (en)
JPH06279865A (en) Production of cold rolled steel sheet for porcelain enameling
JPH0545652B2 (en)
JPS6112007B2 (en)
JPS6323248B2 (en)
JPH07242949A (en) Production of cold rolled steel sheet for deep drawing excellent in baking hardenability