JPS6232189B2 - - Google Patents

Info

Publication number
JPS6232189B2
JPS6232189B2 JP52105732A JP10573277A JPS6232189B2 JP S6232189 B2 JPS6232189 B2 JP S6232189B2 JP 52105732 A JP52105732 A JP 52105732A JP 10573277 A JP10573277 A JP 10573277A JP S6232189 B2 JPS6232189 B2 JP S6232189B2
Authority
JP
Japan
Prior art keywords
atomic ratio
cycloalkanone
ammonia
bis
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52105732A
Other languages
Japanese (ja)
Other versions
JPS5432475A (en
Inventor
Beshuke Herumuuto
Furiitoritsuhi Haintsu
Kureeman Akuseru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of JPS5432475A publication Critical patent/JPS5432475A/en
Publication of JPS6232189B2 publication Critical patent/JPS6232189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/16Ring systems of three rings containing carbocyclic rings other than six-membered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、2,3:5,6―ビス(シクロアル
ケノ)―ピリジンの製法に関する。この置換され
たピリジンは、医薬、植物保護剤及びプラスチツ
クの製造のための重要な中間体である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing 2,3:5,6-bis(cycloalkeno)-pyridine. This substituted pyridine is an important intermediate for the production of pharmaceuticals, plant protection agents and plastics.

適当なビス(2―オキソ―シクロアルキル)―
メタンと酢酸アンモニウムとを反応させる際に
2,3:5,6―ビス(シクロアルケノ)―ピリ
ジンが得られることは公知である。ビス(2―オ
キソ―シクロアルキル)―メタンも差当りオキシ
ム又はセミカルバゾンに変じられ、次いで、これ
を酸で加水分解して2,3:5,6―ビス(シク
ロアルケノ)―ピリジンにすることも公知である
(Bull.soc.chim.France5巻(1957年)、447〜449
頁参照)。このビス―(2―オキソ―シクロアル
キル)―メタンは、相応するシクロアルカノンと
ホルムアルデヒドとの縮合又は相応するシクロア
ルカノンとモルホリンとの縮合によりエナミンを
得、次いでこれとホルムアルデヒドとを反応させ
ることにより得られる(Ber.95巻(1962年)1495
〜1504頁参照)。
Suitable bis(2-oxo-cycloalkyl)-
It is known that 2,3:5,6-bis(cycloalkeno)-pyridine is obtained when methane and ammonium acetate are reacted. It is also known that bis(2-oxo-cycloalkyl)-methane is first converted into an oxime or semicarbazone, which is then hydrolyzed with acid to give 2,3:5,6-bis(cycloalkeno)-pyridine. (Bull.soc.chim.France vol. 5 (1957), 447-449
(see page). This bis-(2-oxo-cycloalkyl)-methane can be obtained by condensing the corresponding cycloalkanone with formaldehyde or by condensing the corresponding cycloalkanone with morpholine to obtain an enamine, which is then reacted with formaldehyde. (Ber.95 (1962) 1495
(See pages ~1504).

更に、2,3:5,6―ビス(シクロアルケ
ノ)―ピリジンは、シクロアルカノンと相応する
ヒドロキシメチレン―シクロアルカノン及び過塩
素酸との反応及び生じる2,3:5,6―ビス
(シクロアルケノ)―ピリリウム―ペルクロレー
トをアンモニアで処理することにより製造される
ことは公知である(Zhurnal Organ.Khim.2巻
(1966年)1864〜1869頁参照)。更に、シクロアル
カノンをヘキサメチル燐酸トリアミド中で加熱す
る際に、2,3:5,6―ビス(シクロアルケ
ノ)―ピリジンが形成されることは公知である。
アルキル置換されたシクロアルカノンから、同様
な方法で相応するアルキル置換された2,3:
5,6―ビス(シクロアルケノ)―ピリジンが生
じる(Tetrahedron Letters10巻(1972年)929
〜932頁参照)。
Furthermore, 2,3:5,6-bis(cycloalkeno)-pyridine can be synthesized by the reaction of a cycloalkanone with the corresponding hydroxymethylene-cycloalkanone and perchloric acid and the resulting 2,3:5,6-bis(cycloalkeno)-pyridine. )-pyrylium-perchlorate is known to be produced by treating it with ammonia (see Zhurnal Organ. Khim. Vol. 2 (1966), pp. 1864-1869). Furthermore, it is known that 2,3:5,6-bis(cycloalkeno)-pyridine is formed when cycloalkanones are heated in hexamethylphosphoric triamide.
From the alkyl-substituted cycloalkanone, the corresponding alkyl-substituted 2,3 in a similar manner:
5,6-bis(cycloalkeno)-pyridine is produced (Tetrahedron Letters Vol. 10 (1972) 929
(See pages ~932).

これら公知の方法は、工業的規模での使用には
好適でない。これらは経費がかかり、取扱いが煩
雑で、僅かな収率のみを生じる。
These known methods are not suitable for use on an industrial scale. These are expensive, cumbersome to handle and give only poor yields.

ところで、シクロアルカノンからの2,3:
5,6―ビス(シクロアルケノ)―ピリジンの製
法が発見され、これは、ケト基に隣接して少なく
とも1個の反応性メチレン基を有するシクロアル
カノンと脂肪族アルデヒド及びアンモニアとを気
相で、脱水及び脱水素作用をする触媒の存在で、
約250〜550℃の温度で反応させることよりなる。
この方法では、2,3:5,6―ビス(シクロア
ルケノ)―ピリジンは、簡単で入手容易な物質か
ら1工程反応で得られる。この方法は、公知方法
とは反対に、工業的規模での使用に極めて好適で
ある。
By the way, 2,3 from cycloalkanone:
A process for the preparation of 5,6-bis(cycloalkeno)-pyridine has been discovered, which involves combining a cycloalkanone having at least one reactive methylene group adjacent to the keto group with an aliphatic aldehyde and ammonia in the gas phase. Due to the presence of a catalyst that performs dehydration and dehydrogenation,
It consists of reacting at a temperature of about 250-550°C.
In this method, 2,3:5,6-bis(cycloalkeno)-pyridine is obtained from simple and readily available materials in a one-step reaction. This method, in contrast to the known methods, is highly suitable for use on an industrial scale.

本発明により、一般式: 〔式中Zはメチル基で置換されていてもよい炭
素原子数3〜10の脂肪族連鎖を表わす〕のシクロ
アルカノンを一般式: O=CH−R () 〔式中Rは水素又は場合により分枝した炭素原
子数1〜6殊に1〜2のアルキル基を表わす〕の
アルデヒド及びアンモニアと反応させて、一般
式: 〔式中Z及びRは前記のものを表わす〕の化合
物にする。
According to the invention, the general formula: [In the formula, Z represents an aliphatic chain having 3 to 10 carbon atoms which may be substituted with a methyl group] A cycloalkanone of the general formula: O=CH-R () [In the formula, R is hydrogen or represents a branched alkyl group having 1 to 6 carbon atoms, especially an alkyl group having 1 to 2 carbon atoms] and ammonia to form a compound of the general formula: [In the formula, Z and R represent the above-mentioned compounds].

シクロアルカノン()の例としては、次のも
のが挙げられる:シクロブタノン、3,5,5―
トリメチルシクロヘキサノン、シクロオクタノ
ン、シクロデカノン、2―メチルシクロヘキサノ
ン、3―メチルシクロヘキサノン、4―メチルシ
クロヘキサノン、2,2,4―トリメチルシクロ
ペンタノン及び殊にシクロペンタノン、シクロヘ
キサノン、シクロヘプタノン及びシクロドデカノ
ン。
Examples of cycloalkanones () include: cyclobutanone, 3,5,5-
Trimethylcyclohexanone, cyclooctanone, cyclodecanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 2,2,4-trimethylcyclopentanone and especially cyclopentanone, cyclohexanone, cycloheptanone and cyclododecanone .

好適なアルデヒド()の例は次のものであ
る:プロピオンアルデヒド、ブチルアルデヒド、
イソブチルアルデヒド、アセトアルデヒド及び殊
にホルムアルデヒド。
Examples of suitable aldehydes () are: propionaldehyde, butyraldehyde,
Isobutyraldehyde, acetaldehyde and especially formaldehyde.

出発物質は、場合により溶液として、例えば水
もしくは低級アルコール例えばメタノール、エタ
ノール及びプロパノール―(2)中の溶液として使用
される。ケトン及びアルデヒドは、反応条件下で
それらが遊離される物質の形でも、例えば半アセ
タールとして、更にポリマーとしてのアルデヒド
例えばポリホルムアルデヒド又はトリオキサンと
してのホルムアルデヒドが使用される。
The starting materials are optionally used as solutions, for example in water or lower alcohols such as methanol, ethanol and propanol (2). Ketones and aldehydes are also used in the form of substances from which they are liberated under the reaction conditions, for example as semi-acetals, as well as aldehydes as polymers, such as polyformaldehyde or formaldehyde as trioxane.

反応条件、例えば温度及び圧力及び反応物質の
量比及び帯留時間は、場合により特定の範囲で相
互に関連し、場合によつては、反応物質の種類及
び触媒の種類に依り決まる。
The reaction conditions, such as temperature and pressure and the quantity ratios of the reactants and the residence time, are optionally interrelated within certain ranges and are optionally dependent on the type of reactants and the type of catalyst.

一般に、この反応は約250〜550℃の温度で実施
される。大抵の場合には、約300〜500℃殊に350
〜450℃の温度が有利である。約1〜4バールの
圧力で操作するのが有利であるが、それより低い
圧力又は高い圧力も使用できる。但し簡単な装置
を使用するためには、あまり偏つた圧力を使用し
ないのが有利である。
Generally, this reaction is carried out at a temperature of about 250-550°C. In most cases about 300-500℃, especially 350℃
Temperatures of ~450°C are advantageous. It is advantageous to operate at pressures of about 1 to 4 bar, but lower or higher pressures can also be used. However, in order to use simple equipment, it is advantageous not to use too uneven a pressure.

シクロアルカノン()対アルデヒド()の
量比は広範に任意であつてよく、化学量論的、そ
れより低いか又は高いように選択することができ
る。一般に、シクロアルカノン()1モル当り
アルデヒド()約0.2〜2.0モルを使用するのが
有利である。シクロアルカノン()1モル当り
アルデヒド()約0.3〜1.0殊に0.4〜0.8モルが
有利である。
The quantitative ratio of cycloalkanone () to aldehyde () can be broadly arbitrary and can be selected to be stoichiometric, lower or higher. It is generally advantageous to use about 0.2 to 2.0 moles of aldehyde () per mole of cycloalkanone (). Approximately 0.3 to 1.0, especially 0.4 to 0.8 mol of aldehyde () per mole of cycloalkanone () is preferred.

アンモニアは、この反応の際に、化学量論的に
少ない量〜過剰の量で広範に任意に存在しうる。
大抵の場合、シクロアルカノン()1モル当り
アンモニア少なくとも0.5モル最高約100モル存在
するのが有利である。シクロアルカノン()各
1モル当りアンモニア約1〜20モル有利には2〜
15モル殊に3〜12モルが有利である。
Ammonia can optionally be present in this reaction in a wide range from substoichiometric to superstoichiometric amounts.
In most cases, it will be advantageous to have at least 0.5 moles and up to about 100 moles of ammonia per mole of cycloalkanone (). Approximately 1 to 20 moles of ammonia per each mole of cycloalkanone (), preferably 2 to 20 moles of ammonia
15 mol, especially 3 to 12 mol, is preferred.

反応は気相で行なう。場合により他の状態で存
在する出発物質をまずガス状に変える。シクロア
ルカノン()、アルデヒド()及びアンモニ
アからなるガスを不活性ガスで稀釈することによ
り使用するのが有利である。不活性ガスとしては
例えば水蒸気、空気及び殊に窒素がこれに該当す
る。出発物質を溶液の形で使用すると、溶剤で稀
釈されたガスが生じる。一般に、シクロアルカノ
ン()1モル当り不活性ガス合計20モル以下、
有利には約0.5〜10モル殊に5モルが存在するの
が有利である。
The reaction is carried out in the gas phase. The starting materials, which are optionally present in other states, are first converted into gaseous form. It is advantageous to use a gas consisting of a cycloalkanone (), an aldehyde () and ammonia diluted with an inert gas. Suitable inert gases are, for example, water vapor, air and, in particular, nitrogen. If the starting materials are used in the form of a solution, a gas diluted with a solvent is formed. Generally, a total of 20 moles or less of inert gas per mole of cycloalkanone (),
Preferably about 0.5 to 10 mol, especially 5 mol, are present.

触媒として、脱水作用及び脱水素作用を有する
物質がこれに該当する。これは例えばヒドロカー
ボン・プロセツシング(Hydrocarbon
Processing)47巻(1968年)103〜107頁に記載
の、アルミニウム化合物例えば酸化アルミニウム
及び珪酸アルミニウムを基礎とし、場合により他
の金属酸化物及び弗化物の添加物を有する触媒で
ある。有利に、西ドイツ特許出願公開第2151417
号、同第2224160号及び同第2239801号公報に記載
の方法で製造した触媒が使用される。これらは、
約550〜1200℃の温度で処理した組成物からなり
該組成物はAl,F及びO元素、更に付加的に a Si及びMg(この場合原子割合Al対Fは1000
対25〜1000対800であり、原子割合Al対Si及び
Mgは1000対5〜1000対200である)又は b Ma及びTi(この場合原子割合Al対Fは1000
対10〜1000対800であり、原子割合Al対Mg対
Tiは1000対5〜1000対200である)又は c Mg(この場合原子割合Al対Fは1000対10〜
1000対800であり、原子割合Al対Mgは1000対5
〜1000対200である) を含有する組成物である。これら触媒は、固定床
又は特に渦動床中で使用する。これは一般に約
0.2〜5.0秒の帯留時間で得られる。
Substances that have dehydration and dehydrogenation effects as catalysts fall under this category. This includes, for example, hydrocarbon processing.
47 (1968), pages 103-107, based on aluminum compounds such as aluminum oxide and aluminum silicate, optionally with additives of other metal oxides and fluorides. Advantageously, West German Patent Application Publication No. 2151417
Catalysts produced by the methods described in Japanese Patent No. 2224160 and Japanese Patent No. 2239801 are used. these are,
The composition comprises a composition treated at a temperature of about 550 to 1200°C containing the elements Al, F and O, and additionally a Si and Mg (in which case the atomic ratio Al to F is 1000
The ratio is 25 to 1000 to 800, and the atomic ratio is Al to Si and
Mg is 1000:5 to 1000:200) or b Ma and Ti (in this case the atomic ratio Al to F is 1000
vs. 10 to 1000 vs. 800, and the atomic ratio Al vs. Mg vs.
Ti is 1000:5 to 1000:200) or c Mg (in this case the atomic ratio Al to F is 1000:10 to
The ratio is 1000 to 800, and the atomic ratio Al to Mg is 1000 to 5.
~1000:200). These catalysts are used in fixed beds or especially in fluidized beds. This is generally about
Obtained with retention time of 0.2 to 5.0 seconds.

反応時に生じるガス混合物の後処理は、常法
で、ガスを液体殊に水又はメタノールで洗浄し、
かつ更に抽出による分離及び蒸溜により行なうこ
とができる。
The gas mixture produced during the reaction can be worked up in a conventional manner by washing the gas with a liquid, in particular water or methanol,
Furthermore, separation by extraction and distillation can be carried out.

特に有利に、西ドイツ特許出願公開第2554946
号公報に記載の方法が使用され、ここでは、ガス
混合物を洗浄せず、冷却し、この際部分的に凝縮
して、残留ガス中にいくらか過剰のアンモニアが
残り、これと共に直接、循環に案内される。
Particularly advantageously, West German Patent Application No. 2554946
The method described in that publication is used, in which the gas mixture is not washed but is cooled, with partial condensation leaving some excess ammonia in the residual gas, which is conducted directly into the circulation. be done.

例 1 内容100mlの固定床反応器に、後述する方法で
製造されたアルミニウム対マグネシウム対弗素の
原子割合1000対25対50を有する触媒を充填した。
この触媒の上に毎時、シクロヘキサノン49g
(0.50モル)、30%水溶液としてのホルムアルデヒ
ド25g(0.25モル)、アンモニア44.8Nl(2.0モ
ル)及び窒素22.4Nl(1.0モル)からなるガス混
合物を導入した。反応器中の温度を400℃で保持
した。シクロヘキサノン及びホルムアルデヒドを
完全に反応させた。毎時、2,3:5,6―ビス
(シクロヘキセノ)―ピリジン17.8gが得られ、
これは、使用したシクロヘキサノンに対して38%
の収率に相当する。生成物は、沸点124〜126℃/
2ミリバールを有し、石油エーテルからの再結晶
の後に融点74℃を有した。
Example 1 A fixed bed reactor with a content of 100 ml was charged with a catalyst having an atomic ratio of aluminum to magnesium to fluorine of 1000:25:50, prepared by the method described below.
49 g of cyclohexanone per hour on this catalyst
A gas mixture consisting of 25 g (0.25 mol) formaldehyde as a 30% aqueous solution, 44.8 Nl (2.0 mol) ammonia and 22.4 Nl (1.0 mol) nitrogen was introduced. The temperature in the reactor was maintained at 400°C. Cyclohexanone and formaldehyde were completely reacted. 17.8 g of 2,3:5,6-bis(cyclohexeno)-pyridine are obtained per hour,
This is 38% relative to the cyclohexanone used.
This corresponds to a yield of The product has a boiling point of 124-126℃/
2 mbar and had a melting point of 74° C. after recrystallization from petroleum ether.

本例で使用した触媒は次のようにして製造し
た: 直径2mm、長さ4〜6mm及び表面積300m2/g
(BET)の押出成形品の形の酸化アルミニウム
1300gに、水1000ml及び濃硝酸30mlに溶けた分析
純度の硝酸マグネシウム―6水和物〔Mg
(NO32・6H2O〕160g(0.62モル)の溶液を加え
た。引続き混合物を100℃で8時間保つことによ
つて乾燥した。得られた乾燥物質を水1000ml中の
弗化水素アンモニア35.6g(0.62モル)の溶液と
撹拌した。混合物を100℃で8時間保つことによ
つて乾燥した。得られた乾燥物質を水1000ml中の
弗化水素アンモニウム35.6g(0.62モル)の溶液
と撹拌した。混合物を100℃で12時間保つことに
よつて乾燥した。引続き乾燥物質を空気流中で
700℃で4時間加熱した。原子割合Al対Mg対Fは
1000対25対50であつた。
The catalyst used in this example was prepared as follows: diameter 2 mm, length 4-6 mm and surface area 300 m 2 /g.
(BET) aluminum oxide in the form of extrusions
1300 g of analytically pure magnesium nitrate hexahydrate [Mg
A solution of 160 g ( 0.62 mol) of (NO 3 ) 2.6H 2 O was added. The mixture was then dried by keeping it at 100° C. for 8 hours. The resulting dry material was stirred with a solution of 35.6 g (0.62 mol) of hydrofluoric ammonia in 1000 ml of water. The mixture was dried by keeping it at 100°C for 8 hours. The resulting dry material was stirred with a solution of 35.6 g (0.62 mol) ammonium hydrogen fluoride in 1000 ml water. The mixture was dried by keeping at 100°C for 12 hours. Continue drying the substance in a stream of air.
Heated at 700°C for 4 hours. The atomic ratio Al to Mg to F is
It was 1000 to 25 to 50.

次例を例1と同様に実施した: 例 2 出発物質:シクロドデカノン、ホルムアルデヒ
ド、アンモニア及び窒素;モル比6対3
対24対12(ホルムアルデヒドはトリオキ
サンとして使用) 触 媒:後述する方法で酸化アルミニウム、硝酸
マグネシウム及び四弗化チタンから、ア
ルミニウム対マグネシウム対チタン対弗
素の原子割合1000対25対25対100で製造
したもの 反応温度:420℃ 変換率:シクロドデカノンの82% 生成物:2,3:5,6―ビス(シクロドデセ
ノ)―ピリジン 融点(トリオールから再結晶後)155℃ 収 率:使用シクロドデカノンに対して34% 本例で使用した触媒は次のようにして製造し
た: 直径2mm、長さ4〜6mm及び表面積(BET)
300m2/gの抽出成形品の形の酸化アルミニウム
1300gに、水1000ml及び濃硝酸30mlに溶けた分析
純度の硝酸マグネシウム―6水和物〔Mg
(NO32・6H2O〕160g(0.62モル)の溶液を加え
た。引続き混合物を100℃で8時間保つことによ
つて乾燥した。乾燥物質を水900ml中の弗化チタ
ン()(TiF4)77.5g(0.62モル)の溶液と撹
拌した。この混合物を100℃で12時間保つことに
よつて乾燥した。引続き乾燥物質を空気流中で
700℃で4時間加熱した。原子割合Al:Mg:
Ti:Fは1000:25:25:100であつた。
The following example was carried out analogously to Example 1: Example 2 Starting materials: cyclododecanone, formaldehyde, ammonia and nitrogen; molar ratio 6:3
24:12 (formaldehyde is used as trioxane) Catalyst: Manufactured from aluminum oxide, magnesium nitrate, and titanium tetrafluoride by the method described below in an atomic ratio of aluminum:magnesium:titanium:fluorine: 1000:25:25:100 Reaction temperature: 420°C Conversion rate: 82% of cyclododecanone Product: 2,3:5,6-bis(cyclododeceno)-pyridine Melting point (after recrystallization from triol) 155°C Yield: Conversion rate: 82% of cyclododecanone The catalyst used in this example was prepared as follows: diameter 2 mm, length 4-6 mm and surface area (BET)
300m 2 /g aluminum oxide in the form of extrusion moldings
1300 g of analytically pure magnesium nitrate hexahydrate [Mg
A solution of 160 g ( 0.62 mol) of (NO 3 ) 2.6H 2 O was added. The mixture was then dried by keeping it at 100° C. for 8 hours. The dry material was stirred with a solution of 77.5 g (0.62 mol) of titanium fluoride (TiF 4 ) in 900 ml of water. The mixture was dried by keeping at 100°C for 12 hours. Continue drying the substance in a stream of air.
Heated at 700°C for 4 hours. Atomic ratio Al:Mg:
Ti:F was 1000:25:25:100.

例 3 出滲発物質:シクロペンタノン、ホルムアルデヒ
ド、アンモニア及び窒素;モル比2対1
対8対4(ホルムアルデヒドはホルムア
ルデヒド30%と水70%との混合物として
使用) 触 媒:後述する方法で酸化アルミニウム硝酸マ
グネシウム及びフルオル珪酸から、アル
ミニウム対マグネシウム対珪素対弗素の
原子割合1000対24対25対156で製造した
もの 反応温度:390℃ 変換率:シクロペンタノンの75% 生成物:2,3:5,6―ビス(シクロペンテ
ノ)―ピリジン 融点(トリオールから再結晶後)90℃ 収 率:使用したシクロペンタノンに対して2.7
% 本例で使用した触媒は次のようにして製造し
た: 直径2mm、長さ4〜6mm及び表面積(BET)
300m2/gの押出成形品の形の酸化アルミニウム
1300gに、水1000ml及び濃硝酸30mlに溶けた分析
純度の硝酸マグネシウム―6水和物〔Mg
(NO32・6H2O〕161gの溶液と共に、加熱下に
全液体が吸収されるまで撹拌した。物質を乾燥す
るために12時間100℃に保持した。引続き水400ml
中の34%フルオロ珪酸210mlの溶液を加え、乾燥
のために8時間100℃に加熱し、引続き空気流中
750℃に4時間保持した。
Example 3 Extracting substances: cyclopentanone, formaldehyde, ammonia and nitrogen; molar ratio 2:1
8:4 (Formaldehyde is used as a mixture of 30% formaldehyde and 70% water) Catalyst: Aluminum oxide magnesium nitrate and fluorosilicic acid are prepared using the method described below in an atomic ratio of aluminum:magnesium:silicon:fluorine: 1000:24: Produced with 25:156 Reaction temperature: 390°C Conversion rate: 75% of cyclopentanone Product: 2,3:5,6-bis(cyclopenteno)-pyridine Melting point (after recrystallization from triol) 90°C Yield :2.7 for the cyclopentanone used
% The catalyst used in this example was prepared as follows: diameter 2 mm, length 4-6 mm and surface area (BET)
300m 2 /g aluminum oxide in the form of an extrusion
1300 g of analytically pure magnesium nitrate hexahydrate [Mg
(NO 3 ) 2 ·6H 2 O] and stirred under heat until all the liquid was absorbed. The material was kept at 100°C for 12 hours to dry. Continue with 400ml of water
Add a solution of 210 ml of 34% fluorosilicic acid in the solution and heat to 100 °C for 8 hours for drying, followed by drying in a stream of air.
It was held at 750°C for 4 hours.

例 4 出発物質:シクロヘプタノン、ホルムアルデヒ
ド、アンモニア及び窒素;モル比2対1
対8対4(ホルムアルデヒドはホルムア
ルデヒド30%と水70%との混合物として
使用) 触 媒:例1と同じ 反応温度:400℃ 変換率:シクロヘプタノンの72% 生成物:2,3:5,6―ビス(シクロヘプテ
ノ)―ピリジン 融点112℃ 収 率:使用シクロヘプタノンに対して25% 例 5 出発物質:2,4,4―トリメチルシクロペンタ
ノン、ホルムアルデヒド、アンモニア及
び窒素;モル比2対1対8対4(ホルム
アルデヒドはトリオキサンとして使用) 触 媒:例1と同じ 反応温度:410℃ 変換率:2,4,4―トリメチルシクロペンタノ
ンの65% 生成物:2,3:5,6―ビス(トリメチルシク
ロペンテノ)―ピリジン、沸点94〜96
℃/1mバール 収 率:使用した2,4,4―トリメチルシクロ
ペンタノンに対して21%。
Example 4 Starting materials: cycloheptanone, formaldehyde, ammonia and nitrogen; molar ratio 2:1
8:4 (formaldehyde is used as a mixture of 30% formaldehyde and 70% water) Catalyst: Same as Example 1 Reaction temperature: 400°C Conversion: 72% of cycloheptanone Product: 2,3:5, 6-Bis(cyclohepteno)-pyridine Melting point: 112°C Yield: 25% based on the cycloheptanone used Example 5 Starting materials: 2,4,4-trimethylcyclopentanone, formaldehyde, ammonia and nitrogen; molar ratio 2:1 8:4 (formaldehyde used as trioxane) Catalyst: Same as Example 1 Reaction temperature: 410°C Conversion: 65% of 2,4,4-trimethylcyclopentanone Product: 2,3:5,6- Bis(trimethylcyclopenteno)-pyridine, boiling point 94-96
°C/1 mbar Yield: 21% based on the 2,4,4-trimethylcyclopentanone used.

例 6 出発物質:シクロヘキサノン、プロピオンアルデ
ヒド、アンモニア及び窒素;モル比2対
1対8対4 触 媒:例2と同じもの 反応温度:410℃ 変換率:シクロヘキサノンの92% 生成物:4―エチル―2,3,5,6―ビス(シ
クロヘキセノ)―ピリジン、沸点138〜
142℃/1mバール 収 率:使用したシクロヘキサノンに対して 36
% 例 7 出発物質:シクロヘキサノン、アセトアルデヒ
ド、アンモニア及び窒素;モル比2対1
対8対4 触 媒:例2と同じもの 反応温度:410℃ 変換率:シクロヘキサノンの88% 生成物:4―メチル―2,3,5,6―ビス(シ
クロヘキセノ)ピリジン、沸点132〜135
℃/1mバール 収 率:使用したシクロヘキサノンに対して 24
Example 6 Starting materials: cyclohexanone, propionaldehyde, ammonia and nitrogen; molar ratio 2:1:8:4 Catalyst: same as in Example 2 Reaction temperature: 410°C Conversion rate: 92% of cyclohexanone Product: 4-ethyl- 2,3,5,6-bis(cyclohexeno)-pyridine, boiling point 138~
142°C/1 mbar Yield: 36 based on the cyclohexanone used
% Example 7 Starting materials: cyclohexanone, acetaldehyde, ammonia and nitrogen; molar ratio 2:1
8 to 4 Catalyst: Same as Example 2 Reaction temperature: 410°C Conversion rate: 88% of cyclohexanone Product: 4-methyl-2,3,5,6-bis(cyclohexeno)pyridine, boiling point 132-135
°C/1 mbar Yield: 24 based on the cyclohexanone used
%

Claims (1)

【特許請求の範囲】 1 一般式(): [式中Zはメチル基で置換されていてもよい炭
素原子数3〜10の脂肪族連鎖を表わす]のシクロ
アルカノンと式: O=CH−R () [式中Rは水素又は分枝していてよい炭素原子
数1〜6のアルキル基を表わす]の脂肪族アルデ
ヒド及びアンモニアとを高めた温度で、気相で、
接触的に反応させることによつて2,3:5,6
―ビス(シクロアルケノ)―ピリジンを製造する
方法において、反応を約250〜550℃の温度で触媒
の存在下に行ない、該触媒は約550〜1200℃の温
度で酸素で処理した組成物から成り、該組成物は
Al,F及びO元素、更に付加的に a Si及びMg(この場合原子割合Al対Fは1000
対25〜1000対800であり、原子割合Al対Si及び
Mgは1000対5〜1000対200である)又は b Mg及びTi(この場合原子割合Al対Fは1000
対10〜1000対800であり、原子割合Al対Mg対
Tiは1000対5〜1000対200である)又は c Mg(この場合原子割合Al対Fは1000対10〜
1000対800であり、原子割合Al対Mgは1000対5
〜1000対200である) を含むことを特徴とする、2,3:5,6―ビス
(シクロアルケノ)―ピリジンの製法。 2 約300〜500℃の温度で反応を実施する。特許
請求の範囲第1項記載の方法。 3 シクロアルカノン()1モル当り、アルデ
ヒド()約0.2〜2.0モルを使用する、特許請求
の範囲第1項又は第2項記載の方法。 4 シクロアルカノン()1モル当り、アンモ
ニア約1〜20モルを存在せしめる、特許請求の範
囲第1項から第3項までのいずれか1項記載の方
法。 5 不活性ガスを導入する、特許請求の範囲第1
項から第4項までのいずれか1項記載の方法。
[Claims] 1 General formula (): [In the formula, Z represents an aliphatic chain having 3 to 10 carbon atoms which may be substituted with a methyl group] and a cycloalkanone of the formula: O=CH-R () [In the formula, R is hydrogen or a branched an aliphatic aldehyde [representing an alkyl group having 1 to 6 carbon atoms] and ammonia at elevated temperature in a gas phase,
2,3:5,6 by catalytic reaction
-bis(cycloalkeno)-pyridine, wherein the reaction is carried out at a temperature of about 250-550°C in the presence of a catalyst, the catalyst comprising a composition treated with oxygen at a temperature of about 550-1200°C; The composition is
Al, F and O elements, and additionally a Si and Mg (in this case the atomic ratio Al to F is 1000
The ratio is 25 to 1000 to 800, and the atomic ratio is Al to Si and
Mg is 1000:5 to 1000:200) or b Mg and Ti (in this case the atomic ratio Al to F is 1000
vs. 10 to 1000 vs. 800, and the atomic ratio Al vs. Mg vs.
Ti is 1000:5 to 1000:200) or c Mg (in this case the atomic ratio Al to F is 1000:10 to
The ratio is 1000 to 800, and the atomic ratio Al to Mg is 1000 to 5.
~1000:200). 2. Carry out the reaction at a temperature of about 300-500°C. A method according to claim 1. 3. The method according to claim 1 or 2, wherein about 0.2 to 2.0 moles of aldehyde () are used per mole of cycloalkanone (). 4. A process according to any one of claims 1 to 3, wherein about 1 to 20 moles of ammonia are present per mole of cycloalkanone (). 5 Claim 1 introducing an inert gas
The method described in any one of paragraphs to paragraphs 4 to 4.
JP10573277A 1977-08-16 1977-09-02 Production of bis *cycloalkeno**pyridine Granted JPS5432475A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2736888A DE2736888C2 (en) 1977-08-16 1977-08-16 Process for the preparation of 2,3: 5,6-bis (cycloalkeno) pyridines

Publications (2)

Publication Number Publication Date
JPS5432475A JPS5432475A (en) 1979-03-09
JPS6232189B2 true JPS6232189B2 (en) 1987-07-13

Family

ID=6016504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10573277A Granted JPS5432475A (en) 1977-08-16 1977-09-02 Production of bis *cycloalkeno**pyridine

Country Status (11)

Country Link
JP (1) JPS5432475A (en)
BE (1) BE858391A (en)
BR (1) BR7705883A (en)
CA (1) CA1088941A (en)
CH (1) CH631708A5 (en)
DE (1) DE2736888C2 (en)
FR (1) FR2400510A1 (en)
GB (1) GB1550726A (en)
IL (1) IL52887A (en)
IT (1) IT1143598B (en)
NL (1) NL184002C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495690B2 (en) * 2001-03-27 2002-12-17 Council Of Scientific And Industrial Research Process for the synthesis of an annulated pyridine base
EP1373213B1 (en) * 2001-03-30 2006-09-20 Council of Scientific and Industrial Research A process for the synthesis of an annulated pyridine base

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR875010A (en) * 1939-01-06 1942-09-03 Schering Ag Process for the preparation of heterocyclic compounds of the pyridine series
US3020282A (en) * 1957-07-22 1962-02-06 Reilly Tar & Chem Corp Process of preparing quinoline
US3501479A (en) * 1967-05-19 1970-03-17 American Cyanamid Co Dihydroquinolines and substituted dihydroquinolines and method of preparing the same
BE790121A (en) * 1971-10-15 1973-02-01 Degussa CATALYSTS FOR THE PREPARATION OF PYRIDINE AND 3-METHYLPYRIDINE
DE2224160C3 (en) * 1972-05-18 1979-10-04 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Process for the production of catalysts for the production of pyridine and 3-methylpyridine
DE2239801C3 (en) * 1972-08-12 1979-08-23 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Process for the manufacture of catalysts

Also Published As

Publication number Publication date
NL184002C (en) 1989-03-16
IL52887A0 (en) 1977-11-30
JPS5432475A (en) 1979-03-09
CA1088941A (en) 1980-11-04
DE2736888C2 (en) 1984-03-08
NL7709708A (en) 1979-02-20
BE858391A (en) 1978-03-02
GB1550726A (en) 1979-08-22
DE2736888A1 (en) 1979-03-01
FR2400510B1 (en) 1982-07-16
IL52887A (en) 1980-01-31
IT1143598B (en) 1986-10-22
NL184002B (en) 1988-10-17
BR7705883A (en) 1979-08-07
FR2400510A1 (en) 1979-03-16
CH631708A5 (en) 1982-08-31

Similar Documents

Publication Publication Date Title
JPH0427969B2 (en)
Hatanaka et al. Palladium-catalyzed carbonylative coupling of arylfluorosilanes with aryl iodides. A convenient synthesis of diaryl ketones.
JPS6046104B2 (en) Method for producing butene derivatives
JPS6232189B2 (en)
JPS5811846B2 (en) Resorcinol Resorcinol
JP6001780B2 (en) Method for producing allyl alcohol
JPS6130659B2 (en)
JPS6287543A (en) Condensation of aldehyde
JPS6023345A (en) Manufacture of glyoxylic acid ester
JP2829116B2 (en) Process for producing unsaturated ketone from acetone and paraformaldehyde
US3020281A (en) Method of preparing quinoline
JPS6256141B2 (en)
JPS6313988B2 (en)
US2393532A (en) Catalytic oxidation of ketones
JPS5899473A (en) Preparation of alpha-acetyl lactones
JPS5826890B2 (en) Method for producing methyl-nonyl-acetaldehyde
JPS5910662B2 (en) Production method of substituted pyridine
CA1115705A (en) Process for producing substituted pyridines
US4298762A (en) Process for the oxidation of primary allylic and benzylic alcohols
JPS5827789B2 (en) Method for producing substituted pyridine
US4663488A (en) Oppenauer oxidation of geraniol/nerol
JP3371544B2 (en) Method for producing aromatic aldehyde
JPH0118889B2 (en)
JPS6148815B2 (en)
CA1067505A (en) Process for the oxidation of primary allylic and benzylic alcohols