JPS6232186A - Preparatin of combustible gas in variable composition and equipment therefor - Google Patents

Preparatin of combustible gas in variable composition and equipment therefor

Info

Publication number
JPS6232186A
JPS6232186A JP17125685A JP17125685A JPS6232186A JP S6232186 A JPS6232186 A JP S6232186A JP 17125685 A JP17125685 A JP 17125685A JP 17125685 A JP17125685 A JP 17125685A JP S6232186 A JPS6232186 A JP S6232186A
Authority
JP
Japan
Prior art keywords
gas
carbon particles
carbon
fuel
combustible gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17125685A
Other languages
Japanese (ja)
Other versions
JPH0631351B2 (en
Inventor
Toshiaki Hasegawa
敏明 長谷川
Tatsuhiro Imai
今井 達裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP60171256A priority Critical patent/JPH0631351B2/en
Publication of JPS6232186A publication Critical patent/JPS6232186A/en
Publication of JPH0631351B2 publication Critical patent/JPH0631351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)

Abstract

PURPOSE:To perform mass production of combustible gas of a desired composition continuously on a commercial basis from one type of raw material, by mixing carbon particles into gaseous or liquid hydrocarbon fuel for partial combustion. CONSTITUTION:A gaseous or liquid hydrocarbon fuel is burned in a carbon particle generator 1 under short supply of air to produce carbon particles (soot). The sooty carbon particles taken out of the generator 1 together with exhaust gas are separated from the exhaust gas in a carbon particle collector 2. A predetermined amount of stored carbon particles are fed continuously into a gas producing oven 5 through a feeder 3. In the gas producing oven 5, raw material fuel such as propane gas is burned partially under short supply of air and is converted into a low-calorie gas with a predetermined calorific value. The low-calorie gas as it is fed, as trial gas,etc., into a low-calorie gas turbine, burner, etc. under development for use as fuel.

Description

【発明の詳細な説明】 ■1発明の目的 (産業上の利用分野) 本発明は、水性ガスおるいは合成ガスと一般に呼ばれて
いる一酸化炭素(Co>と水素(H2)を主成分とする
可燃性ガスの製造方法及び装置に関する。更に詳細に説
明すると、本発明は、気体ないし液体の原料炭化水素か
ら部分燃焼によって可燃性ガス(本明細書においては水
性ガス及び合成ガスを含む)を製造する際にその組成を
可変にする変成処理方法及び装置に関する。
Detailed Description of the Invention ■1 Purpose of the Invention (Field of Industrial Application) The present invention is directed to a water gas or synthesis gas, which is mainly composed of carbon monoxide (Co> and hydrogen (H2)). The present invention relates to a method and apparatus for producing a flammable gas.More specifically, the present invention relates to a method and apparatus for producing a flammable gas (including water gas and synthetic gas in this specification) from a gaseous or liquid raw material hydrocarbon by partial combustion. The present invention relates to a metamorphic treatment method and apparatus that allows the composition to be varied during production.

(従来の技術) 近年、国家的事業として石炭転換利用技術の開発即ち石
炭のガス化ないし液化技術の開発が提唱され、各国で推
し進められている。そして、この開発の一環として、石
炭ガス化によって生成されたガス(以下石炭ガス化ガス
若しくは生成ガスと言う)、特に2000kcal/N
m3未満の低カロリーガスを燃料とする低カロリーガス
用タービンやバーナ等の並行開発が要求されている。
(Prior Art) In recent years, the development of coal conversion and utilization technology, that is, the development of coal gasification or liquefaction technology, has been proposed as a national project and is being promoted in various countries. As part of this development, the gas produced by coal gasification (hereinafter referred to as coal gasified gas or produced gas), especially 2000 kcal/N
There is a need for parallel development of low-calorie gas turbines, burners, etc. that use low-calorie gas of less than m3 as fuel.

この種の低カロリーガス用タービンやバーナ等の開発に
際しては、石炭のカス化技術が開R段階にある現状にお
いては燃焼器の性能・効率・安定性等を評価するための
模擬ガスが工業的規模で大量に必要となる。しかも、こ
の模擬ガスは、原料炭の組成成分が不均質であったり種
類が異なったりすると生成ガスの発熱量や組成もまちま
ちとなることから、これに合わせて多種用意する必要が
ある。 そこで、本発明者らは、この模擬ガスを、炭化
水素系原料からアンモニアやメタノールなどの合成原料
ガスを連続的につくる従来の部分燃焼法(化学大辞典7
第918頁:昭和56年10月15日共立出版株式会社
発行)を利用して、炭化水素系燃料そのものを原料とし
て所定発熱量の可燃性ガスを工業的規模で大量かつ安価
に連続生産することを考えた。
When developing this type of low-calorie gas turbines and burners, it is necessary to use simulated gas to evaluate the performance, efficiency, stability, etc. of the combustor, as coal casing technology is currently in the open stage. A large amount is required on a large scale. Furthermore, if the composition of the raw coal is heterogeneous or of different types, the calorific value and composition of the generated gas will vary, so it is necessary to prepare a wide variety of simulated gases to match this. Therefore, the present inventors used the conventional partial combustion method (Chemistry Encyclopedia 7) to continuously produce synthesis raw material gases such as ammonia and methanol from hydrocarbon raw materials.
Page 918: Published by Kyoritsu Shuppan Co., Ltd. on October 15, 1981) to continuously produce flammable gas with a predetermined calorific value on an industrial scale in large quantities at low cost using hydrocarbon fuel itself as a raw material. I thought about it.

この部分燃焼法は、原料炭化水素の一部を酸素又は空気
で燃焼させ、その発生熱によって残存炭化水素を変成し
、合成原料ガスを連続的につくるもので、所定発熱量の
可燃性ガスを得るには好適な製造法である。
In this partial combustion method, a part of the raw material hydrocarbon is combusted with oxygen or air, and the residual hydrocarbon is transformed using the generated heat to continuously produce synthesis raw material gas. This is a suitable manufacturing method for obtaining.

(発明が解決しようとする問題点) しかしながら、この従来の部分燃焼法は原料燃料と空気
不足量を決定すれば、得られる可燃性ガスの発熱量及び
その組成が一義的に定まってしまうものである。このた
め、当該部分燃焼法によって模擬ガスを製造する場合、
所望とする発熱量が得られたとしてもその組成が使用を
予定している生成ガスのものと全く異なる場合もある。
(Problems to be Solved by the Invention) However, in this conventional partial combustion method, once the raw material fuel and the air shortage are determined, the calorific value and composition of the resulting combustible gas are uniquely determined. be. Therefore, when producing simulated gas using the partial combustion method,
Even if the desired calorific value is obtained, the composition may be completely different from that of the generated gas that is planned to be used.

模擬燃料ガスとしては、発熱量が指定通りであることが
最も重要なことではあるが、その組成を全く無視できる
というものではなく、特に水素の存在は燃焼器の性能に
大きく影響を与えることから、実際のガスに近似したも
のとしなければ模擬ガスとしての意義が薄れる。もつと
も、原料燃料を変えることにより模擬ガスの組成を若干
変化させることもできるが、この場合、組成を自由に変
化させ得るという程のものではなく実用上十分なものと
は言えない。
As a simulated fuel gas, it is most important that the calorific value is as specified, but its composition cannot be completely ignored, especially since the presence of hydrogen greatly affects the performance of the combustor. , unless it is made to approximate the actual gas, its significance as a simulated gas will diminish. Of course, it is also possible to slightly change the composition of the simulated gas by changing the raw material fuel, but in this case, the composition cannot be changed freely and cannot be said to be sufficient for practical use.

斯様に従来の部分燃焼法に因るガス変成処理によると、
上述の模擬ガスの製造に限らず、他の可燃性ガスの製造
の場合にもその用途に応じて組成等を最適なものに変化
させることができない不便がおる。
According to the gas conversion treatment using the conventional partial combustion method,
Not only in the production of the above-mentioned simulated gas, but also in the production of other combustible gases, there is the inconvenience that the composition etc. cannot be changed to the optimum one depending on the application.

そこで、本発明は、同−原料から任意組成の可燃性ガス
を連続的に工業的規模で大量に製造できる変成処理方法
及びその装置を提供することを目的とする。更に具体的
には、本発明は発熱量と組成を自由に変化させ得る可燃
性ガス・燃料ガスの変成処理方法及びその装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a shift conversion treatment method and apparatus that can continuously produce a large amount of combustible gas of any composition from the same raw material on an industrial scale. More specifically, it is an object of the present invention to provide a method and apparatus for converting combustible gas and fuel gas, in which the calorific value and composition can be freely changed.

Il、発明の構成 (問題点を解決するための手段) 斯かる目的を達成するため、本発明の可燃性ガスの変成
処理方法は、気体又は液体の炭化水素系燃料に所定量の
炭素粒子を混入して部分燃焼させ、炭素粒子の燃焼によ
って残存炭化水素の変成に必要な熱量の一部と一酸化炭
素とを(q、成分組成を可変にしている。
Il. Structure of the Invention (Means for Solving Problems) In order to achieve the above object, the combustible gas conversion treatment method of the present invention includes adding a predetermined amount of carbon particles to a gaseous or liquid hydrocarbon fuel. Part of the heat required for metamorphosis of the remaining hydrocarbons and carbon monoxide (q, component composition is variable) are mixed and partially combusted.

また、本発明の可燃性ガスの変成処理装置は、炭素粒子
を生成する炭素粒子発生装置と、この炭素粒子発生装置
の排ガスから炭素粒子を捕集する炭素粒子捕集装置と、
炭素粒子を所定量ガス変成炉へ定量的に連続供給する供
給手段と、炭化水素系燃料に前記供給手段から供給され
る炭素粒子を混入して部分燃焼させるガス変成炉とから
構成し、炭化水素系燃料の不完全燃焼あるいは熱分解に
よって生成された炭素粒子を捕集してそのままの高温状
態でガス変成炉へ定量的に所定量を連続供給し、炭化水
素系燃料に混入して部分燃焼させるようにしている。
Further, the combustible gas conversion processing apparatus of the present invention includes a carbon particle generator that generates carbon particles, a carbon particle collector that collects carbon particles from the exhaust gas of the carbon particle generator,
It consists of a supply means for quantitatively and continuously supplying a predetermined amount of carbon particles to a gas conversion furnace, and a gas conversion furnace that mixes the carbon particles supplied from the supply means into a hydrocarbon fuel and partially burns the mixture. Carbon particles generated by incomplete combustion or thermal decomposition of system fuel are collected and continuously supplied quantitatively in a predetermined amount to the gas conversion furnace in the same high temperature state, where they are mixed with hydrocarbon fuel and partially combusted. That's what I do.

(実施例) まず、本発明を実施する具体的装置例を図面に基づいて
詳細に説明する。
(Example) First, a specific example of an apparatus for implementing the present invention will be described in detail based on the drawings.

第1図に本発明の一実施装置例をブロック図で示す。該
図において、1は炭素粒子発生装置、2は炭素粒子捕集
装置、3は供給手段、4は燃焼器、5はガス変成炉であ
る。
FIG. 1 shows a block diagram of an example of an apparatus for implementing the present invention. In the figure, 1 is a carbon particle generator, 2 is a carbon particle collector, 3 is a supply means, 4 is a combustor, and 5 is a gas conversion furnace.

ここで、炭素粒子発生装@1は、不完全燃焼又は熱分解
によって炭素を固定状で生成させるためのもので、本実
施例の場合炭化水素系の気体あるいは液体燃料を空気又
は酸化剤を供給しつつ空気不足のもとで燃焼させ、大き
くて10〜20μ雇、小ざくて1μm以下の直径のすす
のような炭素粒子を気相析出させる所謂ガス又はオイル
ファーネス型のものか採用されている。この炭素粒子発
生装置1としては、炭素を燃焼し易い状態即ち小さくて
軟い状態で連続生成するもので好ましいことから上述の
ファーネス型炭素系粒子発生装置を採用しているが、そ
の他チヤンネル法、ランプ法、サーマル法、アセチレン
ブラック法などのタイプの炭素粒子発生装置の採用も可
能である。
Here, the carbon particle generator @1 is for generating carbon in a fixed form through incomplete combustion or thermal decomposition, and in this embodiment, hydrocarbon gas or liquid fuel is supplied with air or an oxidizing agent. A so-called gas or oil furnace type furnace is used, in which soot-like carbon particles with a diameter of 10 to 20 μm or less are deposited in the vapor phase by combustion in a lack of air. . As this carbon particle generator 1, the above-mentioned furnace type carbon particle generator is used because it is preferable because it continuously generates carbon in a state where it is easy to burn, that is, in a small and soft state. It is also possible to employ carbon particle generators of types such as a lamp method, a thermal method, and an acetylene black method.

炭素粒子捕集装置2は、前述の炭素粒子発生装置1から
炭素粒子のみを捕集するもので、公知のいかなる構造・
型式の集塵装置でも実施可能であり、例えばサイクロン
式集塵器や電気集塵装置、これらにバックフィルターを
組合わせたもの等の採用が好適である。勿論、その他の
捕集手段、例えば単に排ガスを壁面に衝突させて固気分
離し、すす状炭素のみを捕集する構造のものでも実施可
能である。尚、前述のパックフィールターとしては通常
ガラス繊維の濾布から成るものが採用される。
The carbon particle collection device 2 collects only carbon particles from the carbon particle generator 1 described above, and has any known structure or structure.
The present invention can be carried out using any type of dust collector; for example, it is preferable to use a cyclone type dust collector, an electrostatic dust collector, or a combination of these with a back filter. Of course, it is also possible to implement other collection means, such as one having a structure that simply collides exhaust gas with a wall surface to separate solid and gas, and collects only soot-like carbon. The pack filter mentioned above is usually made of glass fiber filter cloth.

供給手段3は、前述の炭素粒子捕集装置2によって捕集
された炭素粒子をガス変成炉5へ所定量定量的に連続供
給するためのもので、供給量が制御可能な公知の供給手
段のいずれも実施可能であり、例えば定量スラリーポン
プや流量調整弁を空気輸送管等に組込んだもの等でも実
施可能である。
The supply means 3 is for continuously supplying a predetermined amount of carbon particles collected by the carbon particle collection device 2 to the gas conversion furnace 5, and is a known supply means capable of controlling the supply amount. Any of these can be implemented, and for example, a metering slurry pump or a flow rate regulating valve incorporated into an air transport pipe or the like can also be implemented.

カス変成炉5は、炭化水素系の気体又は液体の燃料を空
気又は酸化剤等を供給しつつ空気不足のもとて部分燃焼
させ、原料ガスを所定カロリー並びに組成のガスに変成
させるものである。このガス変成炉5の燃焼器4には炭
素粒子捕集装置2が接続され、所定量に制御されたすす
状炭素粒子が火炎内に導入可能に設けられている。尚、
該ガス変成炉5には水蒸気又は水が注入可能に設けられ
、これらを以て生成ガスの急冷おるいは一部変成作用を
行なわせることも可能である。
The waste conversion furnace 5 partially burns hydrocarbon-based gas or liquid fuel in the absence of air while supplying air or an oxidizing agent, thereby converting the raw material gas into a gas having a predetermined calorie and composition. . A carbon particle collection device 2 is connected to the combustor 4 of this gas conversion furnace 5, and is provided so that a controlled amount of soot-like carbon particles can be introduced into the flame. still,
The gas conversion furnace 5 is provided so that steam or water can be injected, and it is also possible to use these to rapidly cool the generated gas or perform a partial conversion action.

以上のように構成された変成処理装置を用いて本発明の
可燃性ガスの変成処理方法を以下に詳細に説明する。
The method for converting combustible gas according to the present invention will be described in detail below using the converting apparatus configured as described above.

まず、炭素粒子発生装置1で気体または液体の炭化水素
系燃料を空気不足状態で燃焼させて炭素粒子即ちすすを
生成する。このすすは、プロパンガスなどの気体燃料や
軽油若しくは灯油などの液体燃料を空気不足状態で燃焼
させて得られる気相折出型のものが好ましい。気相折出
型のすすは、直径が0.02〜0.05μm程度と小さ
くかつ空隙率が概ね98%以上の多孔質であり、比表面
積もB E T ([3runaver −Emmet
t−丁eller)法によって110〜175TIl/
gであってコークス類よりもはるかに大きな比表面積を
持つ燃焼し易い状態にある。勿論、残炭形のすすでも実
施可能である。排ガスと共に炭素粒子発生装置1外へ取
り出された前述のすす状炭素粒子は、炭素粒子捕集装置
2において、排ガスと分離された後一旦貯留され、供給
手段3を介して所定量が定量的にガス変成炉5へ連続的
に供給される。
First, the carbon particle generator 1 burns a gas or liquid hydrocarbon fuel in an air-deficient state to generate carbon particles, that is, soot. This soot is preferably of the vapor phase type obtained by burning a gaseous fuel such as propane gas or a liquid fuel such as light oil or kerosene in an air-deficient state. Vapor-phase precipitation type soot has a small diameter of about 0.02 to 0.05 μm and is porous with a porosity of approximately 98% or more, and has a specific surface area of BET ([3runaver-Emmet
110-175 TIl/by the T-celler method
It has a much larger specific surface area than coke and is in a state where it is easily combustible. Of course, it is also possible to use soot in the form of residual carbon. The above-mentioned soot-like carbon particles taken out of the carbon particle generator 1 together with the exhaust gas are separated from the exhaust gas in the carbon particle collector 2 and then stored once, and a predetermined amount is quantitatively supplied via the supply means 3. The gas is continuously supplied to the gas conversion furnace 5.

ガス変成炉5においては、原料燃料例えばプロパンガス
等が空気不足状態で部分燃焼され、所定発熱量の低カロ
リーガスに変成される。そして、この低カロリーガスは
模擬ガスなどとしてそのまま開発中の低カロリーガス用
タービンやバーナ等へ供給され、燃料として使用される
。通常、部分燃焼によるガス変成は、原料燃料と空気不
足量が定まるとその発熱量と組成が同時に定まる。例え
ば、プロパンカスを原料燃料とする場合を例にとると、
プロパンの燃焼反応は、 79.1 C3H8+λ・5・02+5・πコN2−+a−CO十
b −CO2C−H2+d −H2079,1 +5・汀、gN2・・・(1) の化学平衡に達する。尚、該式でλは空気比を示す。
In the gas conversion furnace 5, a raw material fuel such as propane gas is partially combusted in an air-deficient state and converted into a low-calorie gas having a predetermined calorific value. Then, this low-calorie gas is supplied as a simulated gas or the like to a low-calorie gas turbine, burner, etc. currently under development, and used as fuel. Normally, in gas conversion by partial combustion, when the raw material fuel and the air shortage are determined, the calorific value and composition are determined at the same time. For example, if propane gas is used as raw material fuel,
The combustion reaction of propane reaches the chemical equilibrium of 79.1 C3H8+λ・5・02+5・π koN2−+a−CO1b−CO2C−H2+d−H2079,1+5・汀,gN2 (1). In addition, in this formula, λ represents the air ratio.

このため、プロパンガスを変成して生成された可燃性カ
スの発熱量と組成は第2図に示ず実線状態となる。した
がって、発熱量が指定され、空気比が定められると、生
成可燃性ガスの組成(特にト[2、CO)は一義的に定
まる。例えば、プロパンガスを1京料とする場合、 発熱量1000kcal/Nm3 (Dと8kl、1f
1219vo1%、C017VO1%、1200kca
l/Nm 3 ノトキkl、H223V01%、CO1
9,5vo1%、1400kcal/Nm 3のときに
は、H228VO1%、Co  22vo1%となる。
For this reason, the calorific value and composition of the combustible scum produced by metamorphosing propane gas are not shown in FIG. 2 and are shown as solid lines. Therefore, when the calorific value is specified and the air ratio is determined, the composition of the generated combustible gas (particularly t[2, CO) is uniquely determined. For example, if propane gas costs 1 trillion, the calorific value is 1000kcal/Nm3 (D and 8kl, 1f
1219vo1%, C017VO1%, 1200kca
l/Nm 3 Notoki kl, H223V01%, CO1
When it is 9.5vo1% and 1400kcal/Nm3, H228VO1% and Co22vo1%.

しかし、このガス変成炉5へ前述の炭素粒子を所定用投
入し燃焼させると、プロパンカスの燃焼反応は、 C3Ha+χ・C十λ(5+χ)・0279.1 +5π]N2−+  a ’  −CO+b ’  −
CO279,1 +C’  ・H2+d’・H20+5・旧N2・・・(
2)の化学平衡に達する。尚、該式において、χはプロ
パンに対する炭素粒子のモル比である。
However, when the above-mentioned carbon particles are charged into the gas conversion furnace 5 for a prescribed amount and burned, the combustion reaction of propane gas is as follows: C3Ha+χ・C+λ(5+χ)・0279.1 +5π]N2−+ a′ −CO+b′ −
CO279,1 +C'・H2+d'・H20+5・Old N2...(
2) chemical equilibrium is reached. In addition, in this formula, χ is the molar ratio of carbon particles to propane.

上述の反応は比較的高温に予熱されたプロパンおよび空
気を混合してバーナ4へ送り込み燃焼させることにより
維持される。燃焼帯の温度は通常、1000°C以上、
好ましくは1200’C程度に制御され、例えば第2図
および第3図に示される燃焼実施例については1500
にで行なわれている。
The above reaction is maintained by mixing propane and air preheated to a relatively high temperature and feeding the mixture to burner 4 for combustion. The temperature of the combustion zone is usually over 1000°C,
Preferably controlled at around 1200'C, e.g. 1500'C for the combustion embodiment shown in FIGS.
It is being held in

また、炭素粒子は火炎中に投入されたり、あらかじめ燃
料ガスの中に混合されて供給される。
Further, carbon particles are supplied into the flame or mixed in fuel gas in advance.

この炭素粒子の投入量を変化させることにより、発熱量
と組成を可変とし、任意の値を得ることができる。即ち
、第2図に一点鎖線で示すように、投入炭素粒子量χを
変動させることにより、プロパンだけを燃焼させる場合
(χ=0>よりも曲線がなだらかとなり、その組成を変
化させることが可能でおる。炭素粒子の燃焼によって、
残存炭化水素の熱分解・ガス変成に必要な熱量の一部と
一酸化炭素が炭化水素燃料のガス変成の他に直接得られ
る。また、炭素の燃焼によって二酸化炭素が出現しても
、高温下では一酸化炭素にガス変成する。例えば、発熱
m 1000kcal/Nm 3のものを例に挙げると
、次表の如く組成を任意に変更できる。
By changing the amount of carbon particles added, the calorific value and composition can be varied, and arbitrary values can be obtained. In other words, as shown by the dashed line in Fig. 2, by varying the amount of carbon particles χ introduced, when only propane is combusted, the curve becomes gentler than when χ = 0>, and the composition can be changed. By the combustion of carbon particles,
Part of the heat required for thermal decomposition and gas conversion of residual hydrocarbons and carbon monoxide can be obtained directly in addition to gas conversion of hydrocarbon fuel. Furthermore, even if carbon dioxide is produced through the combustion of carbon, it transforms into gaseous carbon monoxide at high temperatures. For example, taking as an example a material with a heat generation of m 1000 kcal/Nm 3 , the composition can be arbitrarily changed as shown in the following table.

表 投入炭素粒子量 (CfjRニ対TルH2(Vo1%)i   Co(V
o1%)量モル比)χ 5     10.5    24 ’to       7.5    27※但し、生成
ガスの発熱量は1000kCa l / Nm3で必る
Amount of carbon particles added to the surface (CfjR vs. TruH2 (Vo1%) i Co(V
o1%) amount molar ratio) χ 5 10.5 24 'to 7.5 27 *However, the calorific value of the generated gas must be 1000 kCal/Nm3.

この状態を空気比との関係で示したのが第3図である。FIG. 3 shows this state in relation to the air ratio.

該図からも明らかなように、同一原料燃料を一定空気比
の下で部分燃焼させる場合でも、炭素粒子の投入量を変
えることによって、発熱は、H2、Co/+12比を自
由に変化さ1!得ることが理解できる。しかも、この組
成の可変性は原料燃焼を変更することにより更に幅広い
ものとできる。
As is clear from the figure, even when the same raw material fuel is partially combusted under a constant air ratio, the heat generation can be freely changed by changing the amount of carbon particles added to the H2 and Co/+12 ratios. ! I can understand what I'm getting. Moreover, this compositional variability can be made even wider by changing the combustion of the raw materials.

尚、炭素粒子は一般に単独では燃焼困難で必るが、炭素
粒子発生装置1から供給されるものは小径で多孔質(高
空隙率)の快い比較的大比表面積のすす状でかつ温度か
高い(概ね1000°C前後)ことから、ガス変成炉5
内の火炎中に投入されることによって容易に燃焼する。
Incidentally, carbon particles are generally difficult to burn when used alone, but the ones supplied from the carbon particle generator 1 are soot-like with a small diameter, porous (high porosity), relatively large specific surface area, and high temperature. (approximately around 1000°C), gas conversion furnace 5
It burns easily when thrown into a flame.

また、このガス変成は変成炉5内に水又は水蒸気を噴射
させることで制御したり、更にガス中の一酸化炭素の一
部を水素及び二酸化炭素に変成させ、若しくは赤熱炭素
粒子と水蒸気の接触で水性ガス反応を発生させることに
よってコントロールできる。
In addition, this gas transformation can be controlled by injecting water or steam into the transformation furnace 5, or by further transforming some of the carbon monoxide in the gas into hydrogen and carbon dioxide, or by contacting red-hot carbon particles with steam. can be controlled by generating a water gas reaction.

斯様に、本発明の可燃性カス変成方法によると、原料燃
料を適宜選定しかつ炭素粒子の投入量を制御することに
より、発熱量と組成の関係を微妙に変化させて任意の発
熱量並びに組成のガス特に低カロリーカスを製造し得る
。例えば、この低カロリーガスは、石油転換利用技術の
一環として開発された燃焼機器等の模擬ガスとしての使
用に好適である。また、このガス変成方法は、模擬ガス
製造ばかりではなく、用途に応じた最適な組成のガスに
変成して原料カスないし燃料ガスを製造する場合にも好
適である。例えば、燃料ガスから燃焼器の性能に大きな
影響を与える水素を抑えて一酸化炭素だけを必要星増量
させるようなことも可能である。
In this way, according to the method for converting combustible scum of the present invention, by appropriately selecting the raw material fuel and controlling the amount of carbon particles added, the relationship between the calorific value and the composition can be subtly changed to produce an arbitrary calorific value and composition. It is possible to produce gases of different compositions, especially low-calorie gases. For example, this low-calorie gas is suitable for use as a simulated gas for combustion equipment and the like developed as part of petroleum conversion utilization technology. Further, this gas conversion method is suitable not only for producing a simulated gas but also for producing raw material waste or fuel gas by converting the gas into a gas having an optimal composition depending on the application. For example, it is possible to suppress hydrogen from the fuel gas, which has a large effect on the performance of the combustor, and increase only the required amount of carbon monoxide.

III 、発明の効果 以上の説明より明らかなように、本発明の可燃性ガスの
変成処理方法は、気体又は液体の炭化水素系燃料に炭素
粒子を混入して部分燃焼させるので、投入炭素粒子の燃
焼で残存炭化水素の変成に要する熱の一部を補給しかつ
直接−酸化炭素量を増加させ、変成ガスの組成を変化さ
せ得る。即ち、従来の部分燃焼法では原料燃料と空気不
足用か決められると一律に定まっていた発生熱量と組成
を共に自由に変化させ得ることかでき、同−原料から同
一発熱量の可燃性ガスを(qる場合にも自由にその組成
を変化させ得る。依って、本発明によると、実際の石炭
ガス化ガスに近い発熱量と組成の模擬燃料ガスを製造で
きる。
III. Effects of the Invention As is clear from the above explanation, the combustible gas conversion treatment method of the present invention mixes carbon particles into gaseous or liquid hydrocarbon fuel and partially burns it, so that the amount of input carbon particles is reduced. Combustion can replenish some of the heat required to transform residual hydrocarbons and directly increase the amount of oxidized carbon, changing the composition of the transformed gas. In other words, in the conventional partial combustion method, it is possible to freely change both the amount of heat generated and the composition, which are uniformly fixed once the raw material fuel and air shortage are determined. (It is also possible to freely change the composition in the case of q.

更に、本発明の可燃性カスの変成処理装置は、炭素粒子
を生成する炭素粒子発生装置と、この炭素粒子発生装置
の排ガスから炭素粒子を捕集する炭素粒子捕集装置と、
捕集炭素粒子を所定量ガス変成炉へ定量的に連続供給す
る供給手段と、炭化水素系燃料に前記供給手段から供給
される炭素粒子を混入して部分燃焼させるガス変成炉と
から構成し、炭化水素系燃料の不完全燃焼あるいは熱分
解によって生成された炭素粒子を捕集してそのままの高
温状態でガス変成炉へ定量的に所定量を連続供給し、単
独では燃焼困難な炭素粒子を高温でかつ小さく軟かな(
多孔質・低密度)燃焼し易い状態にして炭化水素系燃料
に混入して部分燃焼できるようにしたので混入炭素粒子
の不燃事態が生ずる虞がなく、原料燃料と連続的な部分
燃焼を可能とし、所望の組成の可燃性ガスを工業的規模
で必要なだけ容易かつ安価に連続製造できる。
Furthermore, the combustible scum metamorphosis treatment device of the present invention includes a carbon particle generator that generates carbon particles, a carbon particle collection device that collects carbon particles from the exhaust gas of the carbon particle generator,
Consisting of a supply means that quantitatively and continuously supplies a predetermined amount of captured carbon particles to a gas conversion furnace, and a gas conversion furnace that mixes the carbon particles supplied from the supply means into a hydrocarbon fuel and partially combusts the mixture, Carbon particles generated by incomplete combustion or thermal decomposition of hydrocarbon fuels are collected and continuously supplied quantitatively to the gas conversion furnace in a high-temperature state. Carbon particles that are difficult to burn alone are collected at high temperatures. Big, small and soft (
Since it is made into a combustible state (porous, low density) and can be mixed with hydrocarbon fuel for partial combustion, there is no risk of non-flammability of the mixed carbon particles, and continuous partial combustion with the raw material fuel is possible. , a combustible gas of a desired composition can be continuously produced as easily and inexpensively as necessary on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施装置例を原理的に示すブロック
図、第2図は本発明方法によって得られる可燃性ガスの
発熱量と組成の関係をプロパンガスを原料とした場合に
ついて示すグラフ、第3図は同じく本発明方法によって
得られる可燃性ガスの空気比と発熱量等の関係をプロパ
ンガスを原料とした場合について示すグラフである。 1・・・炭素粒子発生装置、2・・・炭素粒子捕集装置
、3・・・供給手段、4・・・燃焼器、5・・・ガス変
成炉。
Fig. 1 is a block diagram showing the principle of an example of an apparatus for implementing the present invention, and Fig. 2 is a graph showing the relationship between the calorific value and the composition of the flammable gas obtained by the method of the present invention when propane gas is used as the raw material. , FIG. 3 is a graph showing the relationship between the air ratio and calorific value of the combustible gas obtained by the method of the present invention when propane gas is used as the raw material. DESCRIPTION OF SYMBOLS 1... Carbon particle generator, 2... Carbon particle collector, 3... Supply means, 4... Combustor, 5... Gas conversion furnace.

Claims (6)

【特許請求の範囲】[Claims] (1)気体又は液体の炭化水素系燃料に炭素粒子を混入
して部分燃焼させることを特徴とする可燃性ガスの変成
処理方法。
(1) A method for converting combustible gas, which comprises mixing carbon particles into a gaseous or liquid hydrocarbon fuel and partially combusting the mixture.
(2)前記炭素粒子は高温にして投入することを特徴と
する特許請求の範囲第1項に記載の可燃性ガスの変成処
理方法。
(2) The method for converting flammable gas according to claim 1, wherein the carbon particles are charged at a high temperature.
(3)前記炭素粒子は気相折出型であることを特徴とす
る特許請求の範囲第1項又は第2項に記載の可燃性ガス
の変成処理方法。
(3) The combustible gas metamorphosis treatment method according to claim 1 or 2, wherein the carbon particles are of a vapor phase precipitation type.
(4)前記炭素粒子は比較的比面積の大きなオイル又は
ガスファーネス法によるカーボンブラックであることを
特徴とする特許請求の範囲第1項ないし第3項のいずれ
かに記載の可燃性ガスの変成処理方法。
(4) Metamorphosis of flammable gas according to any one of claims 1 to 3, wherein the carbon particles are oil having a relatively large specific area or carbon black produced by a gas furnace method. Processing method.
(5)前記炭素粒子は炭素水素系燃料の不完全燃焼ある
いは熱分解によって生成された炭素粒子を捕集してその
ままの高温状態でガス変成炉へ定量的に所定量を連続供
給し、炭素水素系燃料に混入して部分燃焼させることを
特徴とする特許請求の範囲第1項に記載の可燃性ガスの
変成処理方法。
(5) The carbon particles are collected from carbon particles generated by incomplete combustion or thermal decomposition of carbon-hydrogen fuel, and are continuously supplied quantitatively in a predetermined amount to the gas conversion furnace in a high-temperature state. 2. The method for converting combustible gas according to claim 1, wherein the combustible gas is mixed into system fuel and partially combusted.
(6)炭素粒子を生成する炭素粒子発生装置と、この炭
素粒子発生装置の排ガスから炭素粒子を捕集する炭素粒
子捕集装置と、炭素粒子を所定量ガス変成炉へ定量的に
連続供給する供給手段と、炭素水素系燃料に前記供給手
段から供給される炭素粒子を混入して部分燃焼させるガ
ス変成炉とから成ることを特徴とする可燃性ガス変成処
理装置。
(6) A carbon particle generator that generates carbon particles, a carbon particle collector that collects carbon particles from the exhaust gas of this carbon particle generator, and a quantitative continuous supply of a predetermined amount of carbon particles to a gas conversion furnace. A combustible gas shift processing apparatus comprising a supply means and a gas shift furnace that mixes carbon particles supplied from the supply means into a carbon-hydrogen fuel and partially combusts the mixture.
JP60171256A 1985-08-05 1985-08-05 Method and apparatus for converting flammable gas with variable composition Expired - Lifetime JPH0631351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60171256A JPH0631351B2 (en) 1985-08-05 1985-08-05 Method and apparatus for converting flammable gas with variable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60171256A JPH0631351B2 (en) 1985-08-05 1985-08-05 Method and apparatus for converting flammable gas with variable composition

Publications (2)

Publication Number Publication Date
JPS6232186A true JPS6232186A (en) 1987-02-12
JPH0631351B2 JPH0631351B2 (en) 1994-04-27

Family

ID=15919949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60171256A Expired - Lifetime JPH0631351B2 (en) 1985-08-05 1985-08-05 Method and apparatus for converting flammable gas with variable composition

Country Status (1)

Country Link
JP (1) JPH0631351B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748597A (en) * 1980-09-03 1982-03-19 Nippon Kiki Kogyo Kk Table lift

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748597A (en) * 1980-09-03 1982-03-19 Nippon Kiki Kogyo Kk Table lift

Also Published As

Publication number Publication date
JPH0631351B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
JP3474564B2 (en) Low NO X combustion induced by low NO X X pilot burner
Samiran et al. Swirl stability and emission characteristics of CO-enriched syngas/air flame in a premixed swirl burner
Rahman Test and performance optimization of nozzle inclination angle and swirl combustor in a low-tar biomass gasifier: a biomass power generation system perspective
Kertthong et al. Non-catalytic partial oxidation of methane in biomass-derived syngas with high steam and hydrogen content optimal for subsequent synthesis process
Song et al. Microwave gasification and oxy-steam combustion for using the biomass char
Dybe et al. Design and experimental characterization of a swirl-stabilized combustor for low calorific value gaseous fuels
JPS6232186A (en) Preparatin of combustible gas in variable composition and equipment therefor
Fossum et al. Co-combustion: Biomass fuel gas and natural gas
Winaya et al. FLUIDIZED BED CO-GASIFICATION OF COAL AND SOLID WASTE FUELS IN AN AIR GASIFYING AGENT.
JP4933496B2 (en) NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant
JPH08188784A (en) Reforming of fuel for heating furnace
KR102497426B1 (en) Waste pyrolytic gasification device and Energy system having the same
KR20200090078A (en) Water gas & hydrogen gas Exchange Equipment of gas turbine liquid fuel
JP2004238435A (en) Method of gasifying organic waste and gas conversion apparatus
Hoppesteyn et al. Coal gasification and combustion of LCV gas
US20030200905A1 (en) Process for making a gas from solid fuels and burning the gas in a close coupled combustor to produce clean heat
JP2005325322A (en) Energy recovery method of reducing gasified wood biomass
JPS6250391A (en) Treatment of combustible gas for making composition variable
RU2184905C2 (en) Method of combined burning of hydrocarbon fuel
JPS63225510A (en) Production of co-rich gas
Blasiak et al. Gasification of biomass wastes with high temperature air and steam
Valler et al. NOx formation by synthesis gas–natural gas co-firing
Nurhadi et al. The utilization of fixed bed coal gasification by-products to produce combustible gas by auto-thermal process
JP2017508094A (en) Process of combustion in a heat engine of solid, liquid or gaseous hydrocarbon (HC) raw materials, heat engine and system for producing energy from hydrocarbon (HC) material
Dehli et al. Combustion